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ABSTRACT. Dynamic loadings lead to material degradation and structural failure. This is even
more the case for concrete structures where the parts initially in compression break in tension
due to waves propagation and reflection. The dissymmetry (mainly due to damage induced
anisotropy) of the material behavior plays a major role in such cases. Loading induced
damage is often anisotropic and one proposes here to take advantage of such a feature to
build a damage model for concrete, dissymmetric in tension and in compression, 3D, suitable
for dynamic computations. A single 2nd order tensorial damage variable D is considered with
a damage law ensuring a damage rate proportional to the square of the positive part of the
strain tensor. One focus in the present work on viscous regularizations for the anisotropic
damage model proposed. Numerical examples illustrate the efficiency of the model to deal
with 3D structures.

RESUME. Lors d’un chargement de dynamique transitoire sur une structure en béton, il n’est
pas rare d’avoir des réflexions d’ondes de compression qui, en devenant des ondes de
traction, peuvent provoquer la rupture. La dissymétrie du comportement joue alors un role
majeur, dissymétrie principalement due a ['endommagement anisotrope induit. Nous
considérons donc un modeéle d’endommagement pour le béton, 3D, capable de représenter
cette dissymétrie et adapté aux chargements dynamiques. Nous considérons une variable
d’endommagement tensorielle D, d’ordre 2, avec une loi d’évolution proportionnelle a la
partie positive du tenseur des déformations. Le travail présenté ici traite plus
particulierement de la régularisation visqueuse de ce modeéle ainsi que de son traitement
numérique. Un exemple de calcul de structure montre la pertinence et [efficacité du modéle.
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1. Introduction

Softening damage laws classically lead to strain locatimgphenomenon and to
mesh dependency if no regularization is considered : witlallmonviscous models
the strain-damage localization band computed has fornieisk the inter-Gauss points
distance, thickness which goes to zero as the mesh is morenaral refined. The
damage models giving for quasi-brittle materials a finiiekhess to the localization
bands are in general quite complex, as the nonlocal modgdsifier-Cabotet al,,
1987; de Borset al,, 1991; Peerlingst al,, 1996). More simple models at least from
the programming point of view, introduce instead of nonlibga "viscous" or delay
damage (Ladevéze, 1989; Dubé, 1994; Allbal, 1997; Ladevezet al,, 1998).

Considering dynamics and impact applications needs effisehemes so that the
computations are often performed with explicit ones at Itloéhstructure scale and the
Gauss points level, with the classical stabilility diffites in such cases (they will be
illustrated once more in Section 3). One proposes in theeptesork to use for the
time integration of the constitutive equations the featfran implicit scheme whose
solution can be explicited over a time increment. Such aufeais specific to the
anisotropic damage model considered for concrete (Degrabgd, 2004; Desmorat
et al, 2007). It is extended to the case of viscous regularization

2. Viscousregularizations

For many damage and plasticity models, the elasticity donsailefined through
the introduction of a criterion functiofi such as the domaifi < 0 corresponds to
elastic loading or unloading, and the consistency comusitip = 0, f = 0 corres-
pond to damage evolution and/or yielding. A classical esgian for concrete is the
strain formulationf = € — x(D), with ¢ Mazars equivalent strain (Mazars, 1986) and
k(D) a function of the damag®. A regularization possibility is then to introduce a
characteristic time which, altogether with the consideraof the laws of dynamics,
indirectly defines a characteristic length. In the presast®f elasticity coupled with
damage this is simply done by introducing a viscosity kw= ev(D) in Mazars
criterion. The damage evolution occurs not anymoré at 0 but atf = ¢, > 0. A
classical law for isotropic damage is Norton-Perzyna pdasr e, = kD", with
k andn the viscosity parameters (see also (Dubé, 1994; Gateingt, 2002)). It
leads to an unbounded damage rate often too high at higin satss. It is possible
to bound the damage rate, for instance by the maximumIbate = 1/7. material
dependent equal to the inverse of the characteristictinfleadevezeet al, 1998; Al-

lix etal, 1997; Suffis, 2004). To gain this property, these authawsitethe criterion
surface ag = g(é) — D (with g = k1) and define the viscosity law as

. 1. (Du—D
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from which derives the delay-damage law, saturating at kigdin rates,
D = Do [1 = exp (=b(g(é) — D))] [2]

The viscosity parameters, material dependent, are fherandb. This regularization
is defined locally ite. at a structure Gauss point) and is well adapted for dynamics
computations. One extends it next to to the case of inducisdt@opic damage.

3. Anisotropic delay-damage model

For concrete, the microcracks due to tension are mainloguahal to the loading
direction, when the microcracks due to compression arelynparallel to the loading
direction. The damage state has then to be represented hyaaitd variableD (either
a fourth rank tensor or a second rank tensor) (Leekia., 1981; Krajcinovic, 1985).
The use of a second order damage tensor is more conveniepitsefctical applica-
tions (as well as for the material parameters identifictiord this is the choice made
here. The damage anisotropy induced by either tension opssion is then sim-
ply modeled by the consideration of damage evolution lavesieng a damage rate
proportional to the positive part of the strain tensor, aelamage governed by the
principal extensions (Mazagt al., 1990; Dragoret al,, 1998).

The basis of the present work is the rate-independant aoEotdamage model
proposed by Desmorat al. (Desmoratt al,, 2004) (see also (Lemaitet al., 2005)).
According to the thermodynamics framework, the single dzenaariableD is consi-
dered and a single set of material parameters is valid f@idarand compression.

The full set of proposed constitutive equations includingatropic delay-damage
reads :

— elasticity
1
e ;V&—%tr&l of e—E':6 [3]

with E the young’s modulusy the Poisson’s ration anBl the Hooke’s tensor.
— effective stress

G = [(1 -D) 2P (1- D)*W‘]D + % [% + (tr a>] 1 [4]

where(e)” denotes the deviatoric park) . (resp.(e)_) the positive (resp. negative)
part of a scalar.

— Mazars damage criterion

f=r"H&O—trD, e=+/{e)y:(e)y = \/7m o]
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using the viscous regularization [1], so that the condifor 0 corresponds to elastic
loading or unloading and the conditigh> 0 corresponds to damage growth. In this
last case one writes then :

1 Doo—trD
f:—gln<T> (6]

(€)+ is the positive part of the strain tensor build from the pesieigen strains. Note
that to take the positive part of a second order tezbsand to make it at the power
a consists i) in makingd diagonal through the change of base maffixA 4., =
P~1AP, ii) in taking the positive part powet of the diagonal terms defining the
?;i%or}ill_Tatrlegos, iii) in turning back the tensor in its initial base &4)7 =

pos

The material parameteis., andb are the delay-damage parameters and:the
function is set as

k1) = g(é) = ad {arctan <§> — arctan (%)] [7]

introducingk as damage threshold,anda as damage parameters;
—induced damage anisotropy governed by the positive ertes)s

D =X\e)i [8]

The damage multipliek is determined from the damage criterion expression for
f > 0 (Equation [6]).

The delay-damage law (2) is recovered from previous equsiémd extended to
induced anisotropy as :

tr D = Do [1 — exp (=b (g(é) — tr D))] [9]

The use of a damage criterion functighwritten in terms of strains instead of
stresses altogether with the logarithmic regularizatijreflows for a simple imple-
mentation in a Finite Element computer code (see Section Mdte that at the final
stage of the numerical implementation the elasticity laedseto be inverted. This can
be done in a closed form as :

a:(l—D)l/z&(1—D)1/2—%(1—D) [10]
+ % [(1—=tr D)(tr &) + (tra)-]1 [11]

Figure 1a shows the monotonic stress-strain curves forretan tension. Quasi-
static and dynamic responses (at different strain ratesplatted. The material pa-
rameters describing well concrete quasi-static behavior & = 42 GPa,v = 0.2,
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Figure 1. a/ Stress-strain curves for concrete at different loadiates, b/ Saturation
of the damage rate for differeri?,

ko =5107°, A =5 102, a = 2.93 10~%. The viscous regularization parameters are
b=1andD., = 50000 s~L. The rate effect obtain with these parameters are closed
to those experimentally observed. Indeed using a modifieslore of the Hopkinson
bar test, Klepaczko and Brara (Klepaczbpal., 2001) obtained an increase of ten-
sile resistance of 10 for 800 s ~! strain rate. Figure 1b shows different damage rate
evolutions forb x D, = 50000 constant.

4. Exact implicit numerical scheme

The initial (Desmoratt al., 2007) quasi-static anisotropic damage model can be
simply implemented in finite element computer codes, "syhpheaning by use of
Euler backward scheme and without any need of Newton or guesion iterative
processes at the Gauss point level. One proposes here aralequischeme for the
dynamic case, the resolution of the scalar delay damageXpmegding to be studied
first.

4.1. Exact implicit scheme for the delay-damage evolution law

An implicit scheme is preferred here as the consideratidghetielay-damage law
may lead to oscillating solutions. To illustrate the diffices encountered, the loading
is here a linear increase of Mazars strdift) = ¢xs4.t With for the present example
émar = 107!s7! the applied strain rate. For the set of delay paramelﬁ%cs =
50000s~!, b = 1, the maximum time increment for the correct time integraihick
black lines) isAt = 4 10~°s for Euler explicit scheme, it is onlt = 5.3 10~ 5s in
the Runge-Kutta case. It can be increased by a factor of athdde At = 4 10~*s by
considering the implicit scheme proposed next. Figures@2a show the oscillatory
responses (grey lines) obtained for time steps just a biatge for the explicit scheme
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(a) Euler explicit

(b) Runge-Kutta 4

(c) New implicit scheme
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Figure 2. Time integration of the delay-damage law with differentesoks

compared to previous limit values. Note that increasinddbding rate and addressing
then faster dynamics range makes the things much better.

In order to derive a new efficient implicit scheme, consider bbgarithm of the
regularized form (Equation [1]) and take its derivativetlwigéspect to time,

g'(@)é—-D= %% [12]
with here :
—1
o dr? e\’
g (€)= 7 =A 1—|—<E>] [13]

Using Euler backward schemB(t,,41) & (Dy41 — D)/ At, D(tn41) & (Dpy1 —
Dn)/Atv gn-i-l = (gn-i-l - én)/ALLy giVES
1 DnJrl - Dn

—_— 14
DAt Do — Dyya .

g/(én+1)én+1 - DnJrl -
so that the damage rate at timg ; is solution of the second degree equation,

D
bAt
[15]

1 . N 2 :
—> D"+1+g/(€n+l)6n+1Doo+ =0

Diy - (9'(€n+1)én+1 + Do + AL

The solution which recovers the quasi-static damageliaw, = g’(€n+1)én+1 for
b — 0isfinally :

: 1 4Ch 11 D,

D,11=-B, 1—,11-— 1 16
T g B2, < * bAtCnH) [e]

Dyi1 =Dy + Dy At [17]
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here in a form which avoids the difference of large numbeth as initial conditions
Dy =0, Dy = 0 and where :

~ X = 1 ~ X -
BnJrl = g/(€n+1)€n+1 + Do + @OnJrl = g/(EnJrl)EnJrlDoo [18]
This new implicit scheme is efficient as it does not need itena, as it allows for
much larger time steps, it avoids the oscillatory featukenavhen the convergency
is poor (Figure 2c) but also as it recovers the quasi-stase c

The numerical scheme proposed can easily be applied to thetapic delay-
damage law (9), just by replacing,,, D, 1, D, andD,,,; in equations (17)-(18) by
tr Dyy1,tr Dy, tr D,, andtr D,, ;1.

4.2. Exact Euler backward scheme for the anisotropic damage model

The time integration procedure for the full anisotropicajetiamage model is gi-
ven next. It takes place at a Gauss point. The sk@in = €(t,41) attimet,; 1, the
damageD,, and the trace of the damage rateD,, at timet,, are the inputs of the
procedure. The outputs are the stregs; and the damag®,, .1, but also the trace
of the damage rater D, at timet,.,. Euler backward scheme is used, i.e. the
variables are replaced by their value at titne, in the constitutive equations when
the damage rat® and the damage multiplier are replaced bAD = D,,,; — D,,
andAX = A\, 11 — A, inthe damage law.

In order to integrate the damage model proceed as follows :

1) compute the equivalent strain,

ént1 = V{€nt1)t : (€nvi)r [19]

2) make a test on the criterion functigh= g(é,+1) — tr D,,. _
If f<0,the material behaves elastically, set ti&pn,; = D,, andtr D, = 0.
If f > 0, the damage must be corrected by using the delay-damagetievolaw
discretized as

AD =D, 41 — D, = AX (€,11)2 [20]

Gainingtr D,,,, from equations (17)-(18) allows to derive the exact expossfor
the damage multiplier increment), even if the scheme is implicit,

_ tr Dy —tr Dy

AN [21]

€t
and the exact actualization 6f,

Dn+1 = Dn + A <€n+1>3- [22]
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3) compute the stresses using first the elasticity law writte
6n+1 = E C€n+t1 [23]

using then Equation (11),

Ont1=1-Dpy1)? 6,01 (1 — D, )2

(1-Dyy1) 10041
— 1-D,
3—tr Dn+1 ( +1)

+ [(1 —tr Dn+1)<t7’ &n+1>+ + <t7’ &n+1>7] 1 [24]

w| =

The numerical scheme is fully implicit, therefore robustt ibhas the main advan-
tage of the explicit schemes : there is no need of a localtiterarocess as the exact
solution of the discretized constitutive equations carlieited.

When damage reaches large values, one must be carefullucegthe damaged
elastic tensor to remain positively defined. This is doneifiduced anisotropic da-
mage by using a specific procedure for the numerical contnelgiure (Desmoragt
al., 2007).

5. Structurescomputations
5.1. Dynamic tension tests

The anisotropic delay-damage model has been implementée implicit Finite
Element code CAST3M developed by the CEA Saclay. The nu@lesaheme for the
time integration of the viscosity law is the Euler backwacieme solved explicitly
of Section 4.1.

In order to get tensile results at very high strain ratessitertests by scabbing
were developed (Klepaczket al, 2001; Schuleet al, 2006). Figure 3 shows the
principle of the test. The setup consists of a striker (l&atdhe velocity V), an input
bar and the tested specimen. The input bar of (Klepaezkab, 2001) experiment has
a diameter of 40 mm for a one meter length, while the conceatgte has the same
diameter for a length of 120 mm. After the impact of the striken incident wave
propagates in the input bar. One part of the wave is transthitto the specimen and
another one is reflected at the bar/specimen interface. réhsrhitted compression
wave is reflected at the free end and becomes a tensile waigele@l to fracture in
the spall plane.

The Finite Element meshes used are given in Figure 4a. Theeagesh is made
of 1584 6-nodes prism elements, the medium mesh of 3168 anfirntb mesh of
6336. At timet = 0 the mesh boundaries are free and the experimental presauee w
is applied on the right face of the specimen. The simulatiothe test must make it
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Figure 3. Principle of the dynamic tension test
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Figure4. a/ Coarse, medium and fine mesh, b/ Damage in the concretdesamp

possible to find the rupture of the sample experimentallynked,i.e. a single main
rupture crack at the distancé = 65.8 mm of the impacted face. In this test, we
don'’t try to obtain quantitative comparisons but we mainignivto show the mesh
independency.

Figure 4b shows the damage fidlt]; associated with the axial axg. When the
material is subjected to compression the imposed straiotisufficient to damage the
material. To the opposite, when the state of tension becsuféisiently large after
the compressive wave reflection on the free surface, onénsldadamagé,; close
to 1 in a cross section.

In order to illustrate the mesh independency (due to theouiscegularization of
the delay-damage model), the results are presented on #nsecanedium and fine
meshes (Figure 4a). The damage maps obtained for the threlgemare shown in
Figure 4b. One can notice that the width of the localized dgmismnd is the same for
the three meshes and equal to approximéiely., therefore of the order of magnitude
of a characteristic length introduced from the knowledgthefwave celerity, I, =
Cr, X Te = CL/Doo-
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Figure5. Finite Element mesh

5.2. Impact on areinforced concrete slab

The anisotropic delay-damage model has been also impleghenthe explicit Fi-
nite Element code LS-Dyna. In order to evaluate the abilityhe anisotropic damage
model to describe the concrete behavior in a case ratherlegropt representative of
an industrial application, a test in which a projectile irofsea concrete slab has been
carried out. The projectile is a cylinder representativa Gessna engine (masse=200
kg, velocity=83,3 m/s, cross sections#) with an elastic behavior.

Figure 5 shows the finite element mesh used for the simukationa 4 meters
width and 0.5 meters thick slab. The slab is meshed with 28manderintegrated
elements and the reinforcements are represented by 2389hears. The impacted
area has a refined mesh whereas the other part of the slab bassa one.

Figure 6 shows the damagé¥;;, D.> and D33 into the slab. One can notice
that due to the symmetry condition, the damdge and D,> have a similar pattern.
The damageDs; represents the cracks in the slab thickness and is repatisentf
the scabbing phenomenon. In our simulation, damd@gsand Dy, are quite large
exhibiting a shear rupture of the concrete slab with the afipa of a punch cone
as experimentally observed in cases of thin slabs. In the sane, the damag®s;
remains small and does not exhibit scabbing.
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Figure 6. Damage map

6. Conclusions

As a conclusion, a 3D anisotropic delay-damage model has pessented. The
dissymetry tension/compression is mainly due to the laadiduced damage aniso-
tropy and a single (tensorial) damage variable is introdu¢ée number of material
parameters introduced in the model is quite low : 2 for edétgt( , v), 1 as damage
threshold £o), 2 for damage evolution4, a) and 2 for saturating viscous regulariza-
tion (Do, b).

An efficient implicit scheme has been derived, avoiding nticagiterations at the
Gauss point level and therefore well adapted to fast dynarAic important feature is
also that the quasi-static case is recovered at a low coitigmeiacost. Both the delay-
damage model and the numerical schemes have proven satigfan 3D dynamics
computations.
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