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ABSTRACT. Dynamic loadings lead to material degradation and structural failure. This is even 
more the case for concrete structures where the parts initially in compression break in tension 
due to waves propagation and reflection. The dissymmetry (mainly due to damage induced 
anisotropy) of the material behavior plays a major role in such cases. Loading induced 
damage is often anisotropic and one proposes here to take advantage of such a feature to 
build a damage model for concrete, dissymmetric in tension and in compression, 3D, suitable 
for dynamic computations. A single 2nd order tensorial damage variable D is considered with 
a damage law ensuring a damage rate proportional to the square of the positive part of the 
strain tensor. One focus in the present work on viscous regularizations for the anisotropic 
damage model proposed. Numerical examples illustrate the efficiency of the model to deal 
with 3D structures. 
RÉSUMÉ. Lors d’un chargement de dynamique transitoire sur une structure en béton, il n’est 
pas rare d’avoir des réflexions d’ondes de compression qui, en devenant des ondes de 
traction, peuvent provoquer la rupture. La dissymétrie du comportement joue alors un rôle 
majeur, dissymétrie principalement due à l’endommagement anisotrope induit. Nous 
considérons donc un modèle d’endommagement pour le béton, 3D, capable de représenter 
cette dissymétrie et adapté aux chargements dynamiques. Nous considérons une variable 
d’endommagement tensorielle D, d’ordre 2, avec une loi d’évolution proportionnelle à la 
partie positive du tenseur des déformations. Le travail présenté ici traite plus 
particulièrement de la régularisation visqueuse de ce modèle ainsi que de son traitement 
numérique. Un exemple de calcul de structure montre la pertinence et l’efficacité du modèle. 
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1. Introduction

Softening damage laws classically lead to strain localization phenomenon and to
mesh dependency if no regularization is considered : with local nonviscous models
the strain-damage localization band computed has for thickness the inter-Gauss points
distance, thickness which goes to zero as the mesh is more andmore refined. The
damage models giving for quasi-brittle materials a finite thickness to the localization
bands are in general quite complex, as the nonlocal models (Pijaudier-Cabotet al.,
1987; de Borstet al., 1991; Peerlingset al., 1996). More simple models at least from
the programming point of view, introduce instead of nonlocality a "viscous" or delay
damage (Ladevèze, 1989; Dubé, 1994; Allixet al., 1997; Ladevezeet al., 1998).

Considering dynamics and impact applications needs efficient schemes so that the
computations are often performed with explicit ones at boththe structure scale and the
Gauss points level, with the classical stabilility difficulties in such cases (they will be
illustrated once more in Section 3). One proposes in the present work to use for the
time integration of the constitutive equations the featureof an implicit scheme whose
solution can be explicited over a time increment. Such a feature is specific to the
anisotropic damage model considered for concrete (Desmorat et al., 2004; Desmorat
et al., 2007). It is extended to the case of viscous regularization.

2. Viscous regularizations

For many damage and plasticity models, the elasticity domain is defined through
the introduction of a criterion functionf such as the domainf < 0 corresponds to
elastic loading or unloading, and the consistency conditions f = 0, ḟ = 0 corres-
pond to damage evolution and/or yielding. A classical expression for concrete is the
strain formulationf = ǫ̂ − κ(D), with ǫ̂ Mazars equivalent strain (Mazars, 1986) and
κ(D) a function of the damageD. A regularization possibility is then to introduce a
characteristic time which, altogether with the consideration of the laws of dynamics,
indirectly defines a characteristic length. In the present case of elasticity coupled with
damage this is simply done by introducing a viscosity lawǫv = ǫv(Ḋ) in Mazars
criterion. The damage evolution occurs not anymore atf = 0 but atf = ǫv > 0. A
classical law for isotropic damage is Norton-Perzyna powerlaw, ǫv = kḊ1/n, with
k andn the viscosity parameters (see also (Dubé, 1994; Gatuingtet al., 2002)). It
leads to an unbounded damage rate often too high at high strain rates. It is possible
to bound the damage rate, for instance by the maximum rateḊ∞ = 1/τc material
dependent equal to the inverse of the characteristic timeτc (Ladevezeet al., 1998; Al-
lix et al., 1997; Suffis, 2004). To gain this property, these authors rewrite the criterion
surface asf = g(ǫ̂) − D (with g = κ−1) and define the viscosity law as

f = Dv > 0 with Dv = −
1

b
ln

(

Ḋ∞ − Ḋ

Ḋ∞

)

[1]
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from which derives the delay-damage law, saturating at highstrain rates,

Ḋ = Ḋ∞ [1 − exp (−b(g(ǫ̂) − D))] [2]

The viscosity parameters, material dependent, are thenḊ∞ andb. This regularization
is defined locally (i.e. at a structure Gauss point) and is well adapted for dynamics
computations. One extends it next to to the case of induced anisotropic damage.

3. Anisotropic delay-damage model

For concrete, the microcracks due to tension are mainly orthogonal to the loading
direction, when the microcracks due to compression are mainly parallel to the loading
direction. The damage state has then to be represented by a tensorial variableDDD (either
a fourth rank tensor or a second rank tensor) (Leckieet al., 1981; Krajcinovic, 1985).
The use of a second order damage tensor is more convenient forpractical applica-
tions (as well as for the material parameters identification) and this is the choice made
here. The damage anisotropy induced by either tension or compression is then sim-
ply modeled by the consideration of damage evolution laws ensuring a damage rate
proportional to the positive part of the strain tensor, i.e.a damage governed by the
principal extensions (Mazarset al., 1990; Dragonet al., 1998).

The basis of the present work is the rate-independant anisotropic damage model
proposed by Desmoratet al.(Desmoratet al., 2004) (see also (Lemaitreet al., 2005)).
According to the thermodynamics framework, the single damage variableDDD is consi-
dered and a single set of material parameters is valid for tension and compression.

The full set of proposed constitutive equations including anisotropic delay-damage
reads :

– elasticity

ǫǫǫ =
1 + ν

E
σ̃σσ −

ν

E
tr σ̃σσ 111 or ǫǫǫ = EEE−1 : σ̃σσ [3]

with E the young’s modulus,ν the Poisson’s ration andEEE the Hooke’s tensor.

– effective stress

σ̃σσ =
[

(111 −DDD)−1/2 σσσD (111 −DDD)−1/2

]D

+
1

3

[

〈tr σσσ〉+
1 − tr DDD

+ 〈tr σσσ〉−

]

111 [4]

where(•)D denotes the deviatoric part,〈•〉+ (resp.〈•〉−) the positive (resp. negative)
part of a scalar.

– Mazars damage criterion

f = κ−1(ǫ̂) − tr DDD, ǫ̂ =
√

〈ǫǫǫ〉+ : 〈ǫǫǫ〉+ =
√

tr〈ǫǫǫ〉2+ [5]
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using the viscous regularization [1], so that the conditionf ≤ 0 corresponds to elastic
loading or unloading and the conditionf > 0 corresponds to damage growth. In this
last case one writes then :

f = −
1

b
ln

(

Ḋ∞ − tr ḊDD

Ḋ∞

)

[6]

〈ǫǫǫ〉+ is the positive part of the strain tensor build from the positive eigen strains. Note
that to take the positive part of a second order tensorAAA and to make it at the power
α consists i) in makingAAA diagonal through the change of base matrixPPP , AAAdiag =
PPP−1AAAPPP , ii) in taking the positive part powerα of the diagonal terms defining the
diagonal matrixAAAα

pos, iii) in turning back the tensor in its initial base as〈AAA〉α+ =
PPPAAAα

posPPP
−1.

The material parameterṡD∞ andb are the delay-damage parameters and theκ−1

function is set as

κ−1(ǫ̂) = g(ǫ̂) = aA

[

arctan

(

ǫ̂

a

)

− arctan
(κ0

a

)

]

[7]

introducingκ0 as damage threshold,A anda as damage parameters ;

– induced damage anisotropy governed by the positive extensions,

ḊDD = λ̇〈ǫǫǫ〉2+ [8]

The damage multiplieṙλ is determined from the damage criterion expression for
f > 0 (Equation [6]).

The delay-damage law (2) is recovered from previous equations and extended to
induced anisotropy as :

tr ḊDD = Ḋ∞ [1 − exp (−b (g(ǫ̂) − tr DDD))] [9]

The use of a damage criterion functionf written in terms of strains instead of
stresses altogether with the logarithmic regularization (1) allows for a simple imple-
mentation in a Finite Element computer code (see Section 4.2). Note that at the final
stage of the numerical implementation the elasticity law needs to be inverted. This can
be done in a closed form as :

σσσ =(111 −DDD)1/2 σ̃σσ (111 −DDD)1/2 −
(111 −DDD) : σ̃σσ

3 − tr DDD
(111 −DDD) [10]

+
1

3
[(1 − tr DDD)〈tr σ̃σσ〉+ + 〈tr σ̃σσ〉−] 111 [11]

Figure 1a shows the monotonic stress-strain curves for concrete in tension. Quasi-
static and dynamic responses (at different strain rates) are plotted. The material pa-
rameters describing well concrete quasi-static behavior are : E = 42 GPa,ν = 0.2,
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Figure 1. a/ Stress-strain curves for concrete at different loading rates, b/ Saturation
of the damage rate for differenṫD∞

κ0 = 5 10−5, A = 5 103, a = 2.93 10−4. The viscous regularization parameters are
b = 1 andḊ∞ = 50000 s−1. The rate effect obtain with these parameters are closed
to those experimentally observed. Indeed using a modified version of the Hopkinson
bar test, Klepaczko and Brara (Klepaczkoet al., 2001) obtained an increase of ten-
sile resistance of 10 for a100 s −1 strain rate. Figure 1b shows different damage rate
evolutions forb × D∞ = 50000 constant.

4. Exact implicit numerical scheme

The initial (Desmoratet al., 2007) quasi-static anisotropic damage model can be
simply implemented in finite element computer codes, ”simply” meaning by use of
Euler backward scheme and without any need of Newton or quasi-Newton iterative
processes at the Gauss point level. One proposes here an equivalent scheme for the
dynamic case, the resolution of the scalar delay damage law (2) needing to be studied
first.

4.1. Exact implicit scheme for the delay-damage evolution law

An implicit scheme is preferred here as the consideration ofthe delay-damage law
may lead to oscillating solutions. To illustrate the difficulties encountered, the loading
is here a linear increase of Mazars strain,ǫ̂(t) = ǫ̇Maxt with for the present example
ǫ̇Max = 10−1s−1 the applied strain rate. For the set of delay parametersḊ∞ =
50000s−1, b = 1, the maximum time increment for the correct time integration (thick
black lines) is∆t = 4 10−5s for Euler explicit scheme, it is only∆t = 5.3 10−5s in
the Runge-Kutta case. It can be increased by a factor of almost 10 to∆t = 4 10−4s by
considering the implicit scheme proposed next. Figures 2a and 2b show the oscillatory
responses (grey lines) obtained for time steps just a bit toolarge for the explicit scheme
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Figure 2. Time integration of the delay-damage law with different schemes

compared to previous limit values. Note that increasing theloading rate and addressing
then faster dynamics range makes the things much better.

In order to derive a new efficient implicit scheme, consider the logarithm of the
regularized form (Equation [1]) and take its derivative with respect to time,

g′(ǫ̂) ˙̂ǫ − Ḋ =
1

b

D̈

Ḋ∞ − Ḋ
[12]

with here :

g′(ǫ̂) =
dκ−1

dǫ̂
= A

[

1 +

(

ǫ̂

a

)2
]

−1

[13]

Using Euler backward scheme,D̈(tn+1) ≈ (Ḋn+1 − Ḋn)/∆t, Ḋ(tn+1) ≈ (Dn+1 −
Dn)/∆t, ˙̂ǫn+1 = (ǫ̂n+1 − ǫ̂n)/∆t, gives

g′(ǫ̂n+1) ˙̂ǫn+1 − Ḋn+1 =
1

b∆t

Ḋn+1 − Ḋn

Ḋ∞ − Ḋn+1

[14]

so that the damage rate at timetn+1 is solution of the second degree equation,

Ḋ2
n+1−

(

g′(ǫ̂n+1) ˙̂ǫn+1 + Ḋ∞ +
1

b∆t

)

Ḋn+1+g′(ǫ̂n+1) ˙̂ǫn+1Ḋ∞+
Ḋn

b∆t
= 0

[15]

The solution which recovers the quasi-static damage lawḊn+1 = g′(ǫ̂n+1) ˙̂ǫn+1 for
b → 0 is finally :

Ḋn+1 =
1

2
Bn+1



1 −

√

√

√

√1 −
4Cn+1

B2
n+1

(

1 +
Ḋn

b∆tCn+1

)



 [16]

Dn+1 = Dn + Ḋn+1∆t [17]
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here in a form which avoids the difference of large numbers with as initial conditions
D0 = 0, Ḋ0 = 0 and where :

Bn+1 = g′(ǫ̂n+1) ˙̂ǫn+1 + Ḋ∞ +
1

b∆t
Cn+1 = g′(ǫ̂n+1) ˙̂ǫn+1Ḋ∞ [18]

This new implicit scheme is efficient as it does not need iterations, as it allows for
much larger time steps, it avoids the oscillatory features even when the convergency
is poor (Figure 2c) but also as it recovers the quasi-static case.

The numerical scheme proposed can easily be applied to the anisotropic delay-
damage law (9), just by replacingDn, Dn+1, Ḋn andḊn+1 in equations (17)-(18) by
tr DDDn+1, tr DDDn, tr ḊDDn andtr ḊDDn+1.

4.2. Exact Euler backward scheme for the anisotropic damage model

The time integration procedure for the full anisotropic delay-damage model is gi-
ven next. It takes place at a Gauss point. The strainǫǫǫn+1 = ǫǫǫ(tn+1) at timetn+1, the
damageDDDn and the trace of the damage ratetr ḊDDn at timetn are the inputs of the
procedure. The outputs are the stressσσσn+1 and the damageDDDn+1, but also the trace
of the damage ratetr ḊDDn+1 at time tn+1. Euler backward scheme is used, i.e. the
variables are replaced by their value at timetn+1 in the constitutive equations when
the damage ratėDDD and the damage multiplieṙλ are replaced by∆DDD = DDDn+1 −DDDn

and∆λ = λn+1 − λn in the damage law.

In order to integrate the damage model proceed as follows :

1) compute the equivalent strain,

ǫ̂n+1 =
√

〈ǫǫǫn+1〉+ : 〈ǫǫǫn+1〉+ [19]

2) make a test on the criterion functionf = g(ǫ̂n+1) − tr DDDn.
If f ≤ 0, the material behaves elastically, set thenDDDn+1 = DDDn andtr ḊDDn+1 = 0.
If f > 0, the damage must be corrected by using the delay-damage evolution law
discretized as

∆DDD = DDDn+1 −DDDn = ∆λ 〈ǫǫǫn+1〉
2
+ [20]

Gainingtr DDDn+1 from equations (17)-(18) allows to derive the exact expression for
the damage multiplier increment∆λ, even if the scheme is implicit,

∆λ =
tr DDDn+1 − tr DDDn

ǫ̂2n+1

[21]

and the exact actualization ofDDD,

DDDn+1 = DDDn + ∆λ 〈ǫǫǫn+1〉
2
+ [22]
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3) compute the stresses using first the elasticity law written

σ̃σσn+1 = EEE : ǫǫǫn+1 [23]

using then Equation (11),

σσσn+1 = (111 −DDDn+1)
1/2 σ̃σσn+1 (111 −DDDn+1)

1/2

−
(111 −DDDn+1) : σ̃σσn+1

3 − tr DDDn+1

(111 −DDDn+1)

+
1

3
[(1 − tr DDDn+1)〈tr σ̃σσn+1〉+ + 〈tr σ̃σσn+1〉−] 111 [24]

The numerical scheme is fully implicit, therefore robust, but it has the main advan-
tage of the explicit schemes : there is no need of a local iterative process as the exact
solution of the discretized constitutive equations can explicited.

When damage reaches large values, one must be carefull to ensure the damaged
elastic tensor to remain positively defined. This is done forinduced anisotropic da-
mage by using a specific procedure for the numerical control of rupture (Desmoratet
al., 2007).

5. Structures computations

5.1. Dynamic tension tests

The anisotropic delay-damage model has been implemented inthe implicit Finite
Element code CAST3M developed by the CEA Saclay. The numerical scheme for the
time integration of the viscosity law is the Euler backward scheme solved explicitly
of Section 4.1.

In order to get tensile results at very high strain rates, tensile tests by scabbing
were developed (Klepaczkoet al., 2001; Schuleret al., 2006). Figure 3 shows the
principle of the test. The setup consists of a striker (launch at the velocity V), an input
bar and the tested specimen. The input bar of (Klepaczkoet al., 2001) experiment has
a diameter of 40 mm for a one meter length, while the concrete sample has the same
diameter for a length of 120 mm. After the impact of the striker, an incident wave
propagates in the input bar. One part of the wave is transmitted into the specimen and
another one is reflected at the bar/specimen interface. The transmitted compression
wave is reflected at the free end and becomes a tensile wave. This lead to fracture in
the spall plane.

The Finite Element meshes used are given in Figure 4a. The coarse mesh is made
of 1584 6-nodes prism elements, the medium mesh of 3168 and the fine mesh of
6336. At timet = 0 the mesh boundaries are free and the experimental pressure wave
is applied on the right face of the specimen. The simulation of the test must make it
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Figure 4. a/ Coarse, medium and fine mesh, b/ Damage in the concrete sample

possible to find the rupture of the sample experimentally observed,i.e. a single main
rupture crack at the distanceX = 65.8 mm of the impacted face. In this test, we
don’t try to obtain quantitative comparisons but we mainly want to show the mesh
independency.

Figure 4b shows the damage fieldD11 associated with the axial axe−→e1 . When the
material is subjected to compression the imposed strain is not sufficient to damage the
material. To the opposite, when the state of tension becomessufficiently large after
the compressive wave reflection on the free surface, one obtains a damageD11 close
to 1 in a cross section.

In order to illustrate the mesh independency (due to the viscous regularization of
the delay-damage model), the results are presented on the coarse, medium and fine
meshes (Figure 4a). The damage maps obtained for the three meshes are shown in
Figure 4b. One can notice that the width of the localized damage band is the same for
the three meshes and equal to approximately5×lc, therefore of the order of magnitude
of a characteristic length introduced from the knowledge ofthe wave celeritycL, lc =
cL × τc = cL/D∞.
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5.2. Impact on a reinforced concrete slab

The anisotropic delay-damage model has been also implemented in the explicit Fi-
nite Element code LS-Dyna. In order to evaluate the ability of the anisotropic damage
model to describe the concrete behavior in a case rather complex but representative of
an industrial application, a test in which a projectile impacts a concrete slab has been
carried out. The projectile is a cylinder representative ofa Cessna engine (masse=200
kg, velocity=83,3 m/s, cross section=1m2) with an elastic behavior.

Figure 5 shows the finite element mesh used for the simulations on a 4 meters
width and 0.5 meters thick slab. The slab is meshed with 240003D underintegrated
elements and the reinforcements are represented by 2300 truss-bars. The impacted
area has a refined mesh whereas the other part of the slab has a coarse one.

Figure 6 shows the damagesD11, D22 and D33 into the slab. One can notice
that due to the symmetry condition, the damageD11 andD22 have a similar pattern.
The damageD33 represents the cracks in the slab thickness and is representative of
the scabbing phenomenon. In our simulation, damagesD11 andD22 are quite large
exhibiting a shear rupture of the concrete slab with the apparition of a punch cone
as experimentally observed in cases of thin slabs. In the same time, the damageD33

remains small and does not exhibit scabbing.
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6. Conclusions

As a conclusion, a 3D anisotropic delay-damage model has been presented. The
dissymetry tension/compression is mainly due to the loading induced damage aniso-
tropy and a single (tensorial) damage variable is introduced. The number of material
parameters introduced in the model is quite low : 2 for elasticity (E, ν), 1 as damage
threshold (κ0), 2 for damage evolution (A, a) and 2 for saturating viscous regulariza-
tion (Ḋ∞, b).

An efficient implicit scheme has been derived, avoiding numerical iterations at the
Gauss point level and therefore well adapted to fast dynamics. An important feature is
also that the quasi-static case is recovered at a low computational cost. Both the delay-
damage model and the numerical schemes have proven satisfactory on 3D dynamics
computations.
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