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ABSTRACT. The model proposed by MacCormick (1989) describing dynamic strain aging is 
used for a nickel based superalloy. The model is presented for small deformations, and an 
analytical homogeneous solution is calculated for simple tension. Parameters for the 
nickelbased superalloy at 500 °C are obtained from tensile tests at constant strain rates. A 
linear perturbation analysis is performed to evaluate the critical strain (i.e. when serrations 
begin). The convergence toward this critical value of two numerical integration schemes of 
material law is studied for the simulation of a plate in tension.  
RÉSUMÉ. Le modèle de comportement proposé par MacCormick (1989) décrivant le 
vieillissement dynamique des métaux est utilisé pour modéliser un superalliage à base de 
Nickel. Le modèle est présenté en petites déformations, une solution analytique homogène en 
traction simple est déterminée, et un jeu de paramètres pour le superalliage à 500 °C est 
identifié à partir d’essais de traction à déplacement imposé. La déformation critique 
d’instabilité pour laquelle les oscillations débutent est déterminée à l’aide d’une analyse de 
perturbation linéaire. Elle est utilisée pour évaluer la convergence de deux schémas 
numériques d’intégration de la loi de comportement pour la simulation d’une plaque en 
traction. 
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1. Introduction

The macroscopic load/displacement tensile curve of many materials exhibits serra-
tions. This discontinuous yielding, associated with the repeated propagation of bands
of localized plastic strain rate in tensile specimens, is due to dynamic strain ageing
(DSA). DSA can be associated with a negative strain rate sensitivity (SRS) of the
material in some range of strain rate and temperature, which can be evidenced by per-
forming tensile tests at various strain rates. DSA is related at a microscopic scale to
dynamic interactions between mobile dislocations and diffuse process of solute atoms.
First observations of this phenomenon have been reported by (Le Chatelier, 1909) in
iron and steel between 80◦C and 250◦C; and by (Le Chatelieret al., 1923) in alu-
minium alloys at room temperature. Many experimental evidences of the so called
Portevin-Le Chatelier (PLC) effect in such materials may be found in the references
of (Neuhäuser, 1990), or in the first seven articles ofScripta Metallurgica et Materi-
alia, Vol. 29-9, 1993.

Articles dealing with observations of PLC and DSA in nickel based superalloys
are less common, perhaps because of the temperatures at which these effects appear.
Serrated yielding has been observed by (Dybiecet al., 1991) in Inconel 718: they
investigated the influence of heat treatments on the critical plastic strain (i.e. when
serrations begin). In (Bhanu Sankara Raoet al., 1995), PLC effect is observed on
Inconel 718 during strain controlled low cycle fatigue test. On the same material,
(Fournieret al., 2001) evidenced the link between PLC effect and shear fracture. The
serrated flow appears around 500◦C, in air and under secondary vacuum. Finally,
(Girardin et al., 2004) outlines the role of hydrogen during strain ageing in Nickel
based alloys.

Material models attempting to describe the DSA and the PLC effects may be sep-
arated into two main groups. (i) Kubin-Estrin (KE) models proposed first by (Kubin
et al., 1985) and extended by (Zbibet al., 1988) are based on the macroscopic de-
scription of deformation bands. The negative SRS is explicitly defined and serra-
tions are obtain from strain rate jumps. (ii) MacCormick (MC) models proposed by
(MacCormick, 1989) and improved by (Mesarovic, 1995) are based on a microscopic
description of the DSA based on an internal variableta called ageing time. The neg-
ative SRS and serrations are implicit consequences of constitutive equations. Some
more sophisticated models, improving previous ones (Fressengeaset al., 2005), can
also be found among the numerous references given in (Rizziet al., 2004).

Both models have been used to perform finite element simulations of the PLC
effect in different structures. KE type models have been used by (Tsukaharaet al.,
1999) in 2D plates, by (Koket al., 2003) in 3D flat strips, and by (Benallalet al., 2006)
in 2D axisymmetrical smooth and notched tensile test specimens. MC type models
have been used by (Zhanget al., 2001) in 3D thin flat strips and round bars, by (Graff
et al., 2004) on 2D U-notched specimens, and by (Graffet al., 2005) on V-notched
and CT specimens.
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Some of these studies give details on parameters used to perform simulations. But
there is generally a lack of information concerning computation parameters : number
of time steps in the non-linear computation, numerical schemes used... The present
article focuses on the computation parameters needed to capture the critical strain in
the simulation of a plate in tension. For that purpose, the MC model is presented,
and an homogeneous solution is calculated. Parameters of Udimet 720 at 500◦C are
identified from stress versus strain rate plots. Simulations of plates in tension are
performed with Zset F.E. program (Bessonet al., 1997) for a constant applied global
strain rate equal to10−3s−1. A stability analysis of the model is performed : (i) from
the 1D linear perturbation method, the theoretical critical plastic strain is obtained;
(ii) from (Drucker, 1950; Hill, 1958) stability conditions, local and global loss of
stability are detected in the numerical solutions. The experimental, theoretical, and
numerical critical plastic strains are compared to validate model parameters. Finally,
two different methods to integrate the constitutive equations are compared.

2. Material model

2.1. Constitutive equations

Constitutive equations of the material model are formulated in the small strain
framework. The strain rate tensorε̇∼ is split into elastic and plastic contributions, the
evolution of the latter being given by the yield functionf .

ε̇∼ = ε̇∼e
+ ε̇∼p

[1]

f(σ∼ , p, ta) = J2(σ∼)−R(p)− P1Cs(p, ta) [2]

R(p) = R0 + Q
(
1− e−bp

)
[3]

whereJ2(σ∼) is the second invariant of the stress tensor,R(p) is the nonlinear hard-
ening law, andP1Cs(p, ta) is the extra-hardening induced by strain ageing. The over-
concentration of solute atoms around dislocationsCs is estimated as a function of both
internal variables of the model : the cumulated plastic strainp and the ageing timeta.

Cs(p, ta) = Cm

(
1− e−P2p

αtna
)

[4]

The maximal over-concentration isCm. P2 characterises the rate of saturation of
solute atoms around dislocations. The intensity in stress of the ageing effect is charac-
terized by parameterP1 (unit MPa). In fact, only the productP1Cm can be identified
based on mechanical tests. The cumulated plastic strain rateṗ is computed from the
following viscoplastic hyperbolic flow rule.

ṗ = g(f) = ṗ0 sinh
(
〈f〉
K

)
, 〈f〉 =

abs(f) + f
2

[5]
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whereg is an invertible monotonic function. The ageing time increment is computed
from an implicit evolution law in which appears the cumulated plastic strain rateṗ.

ṫa = 1− ta
w

ṗ [6]

wherew is the increment of the plastic strain which is produced when all the stopped
dislocations overcome their obstacles.

2.2. Homogeneous solutions

For a simple tension test in a plate at a constant strain rateε̇0, variables are uniform
in the structure before the critical plastic strainpc. In the plastic domain, the cumulated
plastic strain ratėp is nearly constant while plastic deformation increases. Then the
Equation [6] can be integrated analytically and provides an explicit expression ofta,
as a function oḟε0 andp.

ta(p) =
w

ε̇0

(
1− e

− p

w

)
+

R0

Eε̇0
e
− p

w [7]

The uniaxial tensile stressσ1D is then given as a function of the cumulated plastic
strainp and rateṗ from Equations [2], [4], [5].

σ1D(p) = Karcsinh

(
ṗ

ṗ0

)
+ R0 + Q

(
1− e−bp

)
+ P1Cm

(
1− e−P2p

αta(p)n) [8]

This expression is useful for the stability analysis performed in the next section.
Indeed,σ1D coincides with the response of the tensile plate before the critical plastic
strain. Some particular states of the material can be underlined, corresponding to
specific values ofta andσ1D. The min. and max. solutions correspond respectively to
virgin and fully aged states of the material. They represent the upper and lower limits
for serrations, while the extra-hardening is either null either equal toP1Cm. Another
solution corresponds to elastic loading/unloading, when ageing time incrementdta =
dt. The final state is obtained for the constant value ofta =

w

ε̇
reached whenp →

+∞. This is the asymptotic value of the homogeneous solution [7].

2.3. Material model parameters

Parameters presented in the Table 2.3 have been obtained from various simple
tensile tests performed on cylindrical smooth tensile specimens for different applied
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strain rates. The stress/strain curves have been smoothed in order to : (i) evaluate the
hardening parametersR0, Q, andb for the slowest test (ii) outline the negative strain
rate sensitivity of the material by plotting stress/strain rate curves at different deforma-
tion values. Hardening, viscous (K, ṗ0) and ageing (P1Cm, P2, α) parameters have
been identified, from the experimental data on the stress/strain rate curve (see Figure
1). n andw are taken from (Graffet al., 2005). The experimental curve at a constant
strain rate of10−3s−1 is plotted in Figure 2, with the min., max., and homogeneous
solutions for the parameters given by the identification. The experimental solution is
accurately limited by the max. and min. solutions, and differs from the homogeneous
one as soon as serrations begin. One can observe thatpEXP

c ≈ 0.8%.
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Figure 1. Stress as a function of strain rate for experimental points and analytical
curves for parameters given in Table 2.3. The model fits the experimental negative
strain rate sensitivity in the range[10−5s−1, 10−3s−1] for different plastic strain val-
ues

Table 1. Material model parameters identified for the nickel based superalloy at
500◦C

Elasticity Hardening Viscosity Ageing
E 200 GPa R0 1046 MPa K 1.55 MPa P1Cm 96 MPa

ν 0.3 Q 2200 MPa ṗ0 10−4 s−1 P2 4.1 s−n

b 1.88 α 0.55
n 0.33
w 10−4
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Figure 2. Homogeneous, minimum, and maximum solutions, compared with an exper-
imental simple tension test for the nickel based super-alloy at 500◦C. The strain rate
is for each solution equal to10−3s−1

2.4. Tension of a plate

The specimen geometry is a12.5mm × 2.5mm plate, meshed with 2D 8 nodes
plane stress elements with reduced integration (4 Gauss points). The numerical so-
lution of this problem for a constant applied global strain rate equal to10−3s−1 is
drawn in Figure 3. The critical plastic strainpc, obtained from the stability analysis
performed further, is indicated on the stress/strain curve. The maps of cumulated plas-
tic strain rateṗ and of ageing timeta are drawn on the structure for a global applied
strainε = 3.2%. The analytical homogeneous solution coincides with the numerical
solution before instability occurs, and the numerical critical plastic strain is close to
the experimental value :pNUM

c ≈ 0.82%. This critical plastic strain is evaluated from
the criterion [12], which detects the loss of homogeneity of the solution in the plate.
The good agreement between experimental and numerical values of the critical plastic
strain is obtained adjusting the material model parameterα. The 1D linear perturba-
tion analysis presented section 3.1 is performed for different values ofα, in order to
determine which value returns a theoretical critical plastic strain in agreement with
experimental results.

3. Stability analysis

In this section, the 1D linear perturbation analysis provides a method to predict
the theoretical critical cumulated plastic strainpc. Stability conditions help to detect
the corresponding numerical value in the 2D simulation. The critical plastic strain
provided by finite element simulations is highly related to the method and the time
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Figure 3. Homogeneous analytic solution and numerical solution of a tensile plate at
500◦C. The strain rate is constant and equal to10−3s−1. The plastic strain is0.022

increments in the integration of constitutive equations. The numerical value of the
critical plastic strain have to coincide with the theoretical approach to validate simu-
lations.

3.1. 1D linear perturbation

The 1D linear perturbation method consists in applying a perturbation(δp, δta)
to a homogeneous solution in a infinite medium of a given material (MacCormick,
1989; Mesarovic, 1995). For a given material and a given state of the structure - here
a simple tension at a given strain rate - this method predicts the critical plastic strain
pc for which instabilities may occur. The stability of the medium is evaluated from
the evolution of the perturbation rate(δṗ, δṫa).

(
δṗ
δṫa

)
= [M].

(
δp
δta

)
= G(ṗ)

(
A(p, ta) B(p, ta)
C(p, ta) D(p, ṗ, ta)

)
.

(
δp
δta

)
[9]
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Terms of the transition matrix[M] are calculated from the analytical homogeneous
solution [7 - 8].


G(ṗ) = −g′ = −dg

df
; A(p, ta) =

∂(R + P1Cs)
∂p

; B(p, ta) =
∂(P1Cs)

∂ta

C(p, ta) = − ta
w

∂(R + P1Cs)
∂p

; D(p, ṗ, ta) = − ta
w

∂(P1Cs)
∂ta

+
ṗ

w

1
g′

[10]

Eigenvalues of the matrix[M] linking (δp, δta) to (δṗ, δṫa) are evaluated. The
stability is lost when these eigenvalues become purely real and positive (MacCormick,
1989). Eigenvaluesλ of [M] are solutions of :

λ2 + 2Φλ + λ2
0 = 0 with,

Φ = −G

[
A + D

2

]
; λ2

0 = G2 [AD −BC] > 0; ∆ = Φ2 − λ2
0

[11]

The existence of real eigenvalues depends on the sign of∆. If ∆ > 0, eigenvalues
are real. If∆ < 0, eigenvalues are complex and the sign of their real parts is the
sign of−Φ. For a given constant strain rate, three types of eigenvalues exist. This
type depends on the plastic strain rate value, as represented in Figure 4. In areaa©,
eigenvalues are complex with a negative real part, the perturbation evolves in a sinu-
soidal decreasing manner. In areab©, eigenvalues are complex with a positive real
part, the perturbation evolves in a sinusoidal increasing manner. In areac©, eigenval-
ues are real and positive, the perturbation evolves in an exponential increasing manner.
(MacCormick, 1989) has shown that the instability occurs when eigenvalues become
real. Then, for a constant strain rate equal to10−3s−1, the theoretical critical plastic
strain rate ispTH

c = 0.8% (cf. Figure 4), that is close to the experimental value.

3.2. Stability conditions

During the stable homogeneous evolution, ageing timeta tends slowly towards

its asymptotic value
w

ε̇
. When serrations begin, most of the structure is submitted to

elastic unloading (dta = dt), while plastic strain rate is concentrated in bands where
ta falls down to0. An accurate tool to detect such unstable areas is the condition of
negative second order work (Drucker, 1950; Hill, 1958) :

σ̇∼ : ε̇∼ < 0 [12]

Even if this condition is fulfilled locally, the global stability of the structure is
ensured as long as global stability condition is satisfied (Hill, 1958):
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Figure 4. Bifurcation diagram for a simple tensile state at a constant strain rate equal
to 10−3s−1

Equilibrium is stable if ∀V kinematically admissible to 0,

∫
Ω

(
σ̇∼ : ε̇∼(V )

)
dv > 0 [13]

Local instabilities coincide with drops ofta (cf. Figure 5(a)). Global instabilities
are accompanied with serrations on the global load/displacement curve, i.e. when the
external load decreases. The frequency and intensity of drops of the external load
can be measured from the global stability condition (cf. Figure 5(b)). In most cases,
the “local instability” (first drop ofta) occurs just before the global one (begin of
serrations). The local instability condition provides a good estimate of the critical
strain. Indeed, for a global strain rate of10−3s−1, the numerical plastic strain is
pNUM

c ≈ 0.82%, that is close to experimental and theoretical values.

4. Comparison of time integration methods

In this section, two numerical methods for the integration of constitutive equations
are presented and compared, in terms of global time increment sensitivity of the re-
sults. The first integration method is an explicit fourth order Runge Kutta method with
automatic time stepping. The second one is an implicit mid-point method (Θ-method)
solved by a Newton-Raphson method, improved by the local switch to the Runge
Kutta method. Simulations have been performed with the same precision for both
methods, at a constant strain rateε̇ = 10−3s−1, for different values of the maximum
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Figure 5. (a) Local indicator (second order work) and ageing time at a given Gauss
Point (b) Global indicator and load applied on the structure for a tensile plate simu-
lation at a global strain rate equal to10−3s−1

allowed global strain increment∆εmax per global increment. For each method the
value of the critical cumulated plastic strainpc, for which the numerical local insta-
bility occurs is evaluated. One can observe in Figure 6 that (i) theΘ-method is more
efficient than the Runge Kutta one for a given∆εmax (ii) a small value of∆εmax is
needed to capture an accurate value of the critical plastic strain.

5. Conclusion

An original method to evaluate parameters of the MC model is presented. Param-
eters have been validated from a stability analysis based on the linear perturbation
method, and from finite element simulations of a plate in tension. Two methods of
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time integration of constitutive equations are compared for their ability to accurately
predict the critical plastic strain. Using theΘ-Method, an accurate value of the critical
plastic strain is obtained for a maximal strain increment below10−4. This value can
arbitrary be taken as a reference value for the maximum increment of global strain
increment for simulations performed using parameters given in this article.

Runge-Kutta
Θ-method

Theoretical value : 0.8%

∆εmax

p c
(%

)

0.0011e-041e-05

5
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1

0

Figure 6. Critical plastic strainpc provided by Runge-Kutta method and modifiedΘ-
Method for the simulation of a plate in tension at a given strain rate equal to10−3s−1.
Simulations are performed for different values of∆εmax
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