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ABSTRACT. The finite element approximation of a grain growth model based on the variational
formulation of Lagrange equations is presented. The specific developments needed to
implement it into the flexible finite element sofiware Zset are detailed. These are mainly the
topological transformations due to geometry changes, and the associated remeshing. Finally,
the evolution of a typical microstructure of 20 grains is simulated.

RESUME. L approximation par éléments finis d’un modele de croissance de grains basé sur
une formulation variationnelle des équations de Lagrange est présentée. Les développements
spécifiques pour ['implémentation de ce modeéle dans le code de calcul aux éléments finis Zset
sont détaillés. 1l s agit principalement des transformations topologiques liées au changement
de géométrie, et du remaillage associé. Finalement, [’évolution d’une microstructure typique
de 20 grains est simulée.
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1. Introduction

Polycrystalline materials are composed of grains, characterized by different crys-
tallographic orientations. The transition region between two neighbouring grains is
called a grain boundary. Due to local atomic disorder, grain boundaries possess a
surface free energy -, which depends on crystallographic misorientation. The mi-
crostructure thus evolves to reduce the total grain boundary free energy (Burke et
al., 1952). The motion of each point on the boundary is along the local normal, and
the velocity v,, is proportional to the local curvature « (Turnbull, 1951). The propor-
tionality coefficient is the product of -y and the grain boundary mobility m, v,, = m~yk.
The mobility characterizes the velocity of atoms in crystallographic lattices.

Many numerical methods can be employed to simulate grain growth, in two or
three dimensions. Stochastic approaches using Monte Carlo techniques (Anderson et
al., 1984; Ono et al., 1999; Kim et al., 2005) or cellular automata are very popular.
However, they may lead to biased results due to anisotropic discretization (Weygand,
1998), and physical entities such as time, local geometry.. ., are not clearly defined.
Phase field and Level Set techniques are also used (Russo et al., 2000; Adalsteinsson
et al., 1995), although time consuming and thus difficult to apply to 3D analyses.
Finally, Finite element based methods (Bergheau et al., 2004) are used to simulate
grain growth (Weygand et al., 1998; Kuprat, 2000; Couturier et al., 2003; Brakke,
1992; Wakai et al., 2000). In this case, dedicated software are often developed.

The aim of this paper is to present an implementation of the grain growth equations
into a commercially available finite element software Zset (Besson et al., 1997). After
giving the main physical equations, we focus on remeshing and topological trans-
formations, which were specifically developed for this purpose. Finally, we give an
application example, which validates the implementation. It should be noted here that
the use of a commercial code facilitates further developments linked to crystal growth
like recrystallization, influence of second phase particles. ..

2. Finite element method applied to grain growth

The grain evolution is modeled according to the Kawasaki assumptions (Kawasaki
et al., 1989; Sun et al., 1997), which describe the movement of grain boundaries
through a viscous fluid medium. The Kawasaki formulation states the free energy
decrease is entirely dissipated during the grain boundary motion. It is based on two
terms:

—afreeenergy L = / vds
S

2
— a Rayleigh’s dissipative potential D = / n s
S 2m



3D simulation of grain growth 775

In these equations, integration is carried out over the total area of grain bound-
aries S. The two terms are used to write the variational formulation of the Lagrange
equation for a structure composed of N nodes:

N
oD L\ ..
Z;(aﬁﬁa@)'xi_o [1]

In this equation, Z; is the current position of node 7 and @; its velocity. The vector
27 is a virtual position associated with the node .

All grain boundaries are meshed with 2D surface elements in 3D space. The mo-
bility and the surface free energy are assumed to be constant in each element. Element
quantities are built from the analytical computation of the partial derivatives in Equa-
tion [1]. The first term appears as a product between a viscosity matrix and a velocity
vector, whereas the second acts as a loading vector.

Element viscosity matrix

A mobility me is defined for element e with surface S¢. The element viscosity
term then reads:

oD¢ v, OV
e e Aqre
oVt ge M® O

(2]

In this equation, ¢ is the velocity of node ¢ in element e. In an isoparametric
element, the velocity of each point can be written as a linear combination of the node
velocities. It turns out that the normal velocity and its derivative with respect to @ can
be expressed as follows:

. v _,
v, = Z N;T5.1¢  and m — N;#ie

=1 ' 8171
where & is the number of nodes in element e, IV; the shape function associated with
node ¢ and 72¢ the local normal vector.

The above equations lead to the following element viscosity term:

dD¢ 1 e
S = > US — NiNjii® @ ids | .7 [3]

=1

where ® denotes the tensorial product.
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Finally, we can write Equation [3] for all nodes in the element e as a product of an
element viscosity matrix [A¢] and a vector {V ¢} containing the all nodal velocities:

0D _ 4 vy [4]

ov;,

Element load vector

The derivative of element free energy L¢ = ~+°S* with respect to the position Z
of node < in element e gives the element load f;:

) )
f'i - 8.’;5 = -7 8.’;5 [5]

The surface variation with respect to node position is derived in appendix A. Fi-
nally, Equation [5] is equivalent to:

- ON; ON;
e _ e ize  ONig) e
fi== /soKan“ af”)”}dgd” L]

This allows the definition of an element load vector { F¢ }, whose components are
nodal load vectors ff.

Assembly

The above element terms are directly derived from geometry, mobility and surface
free energy of the grain boundary. The corresponding vectors and matrices {V ¢},
{F°} and [A°] are assembled respectively into two global vectors {V'} and {F'} and
one viscosity matrix [A]. This typical task is assigned to the finite element code Zset,
which has finally to solve the following global system:

[Al{V} = {F} (7]

Dof assignment and resolution

In the computation of element quantities, no assumptions are made on the kine-
matic conditions for grain boundaries displacement. However, nodal motion depends
on its connectivity with grain boundaries and grains. If a node belongs to only one
grain boundary, its displacement is collinear to the local normal vector. In this case,
only one degree of freedom (dof) is affected to the node, namely its normal velocity.
If the node is on a triple line (i.e. intersection between three grains), then its displace-
ment is collinear to each grain boundary normal, and thus must be orthogonal to the
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triple line. Two degrees of freedom are affected to this type of node. Lastly, if a node
is a quadruple point (i.e. intersection between four grains), three degrees of freedom
are assigned to it because there is no particular kinematic condition.

A substitution method is applied to incorporate these conditions in the system [7].
Classic implementations of this method require a reduction of the global matrix and
a recalculation of common terms for each increment. Our approach avoids redundant
calculations by taking into account node connectivity during the construction of the
system. This allows us to directly obtain the reduced matrix. It should be noted here
that, according to this approach, non dissipative motions, like displacement within the
grain boundary, are automatically excluded.

An explicit time integration scheme is used to determine node displacement from
velocity. The time step At is automatically adjusted to avoid too large displacements.
Finally, to prevent singularities in the system for particular geometries (e.g. flat grain
boundary), the diagonal terms of the viscosity matrix are slightly penalized by a factor
p: [A] = [A] + pmax; ; [A;|[1].

3. Topological transformationsand remeshing
3.1. Topological transformation

During grain growth, microstructure evolution involves geometrical transforma-
tions. Theses transformations follow some rules on grain connectivity (Kinderlehrer
et al., 2004; Wakai et al., 2001). For example, a quadruple point must be connected
to four grains, six grain boundaries and four triple lines. Two types of transformations
(Figure 1) exist in three dimensions: a reversible transformation between a line and a
grain boundary, and a grain shrinking to a quadruple point.

The transformation of an entity involves removing, creating and modifying ge-
ometrical objects such as triple lines, grain boundaries, grains and vertices. These
topological transformations are treated before the remeshing step. A critical length /..
is used: a line with length smaller than ., a grain boundary with surface less than (2,
and a grain with volume less than 13, are to be transformed. However, connectivity
conditions are also used to determine if the transformation is allowed. For example,
only triangular grain boundaries and tetrahedral grains can be transformed.

The transformation algorithm begins by transforming grains, followed by grain
boundaries and lastly triple lines. This order is established because grains contain
grain boundaries and grain boundaries contain lines. In addition, for each entity group,
the transformation order is done from smallest to largest. In the case of a transform-
ing grain, the grain is replaced by a quadruple point localized at the grain barycenter.
For grain boundary transformation, the boundary face is converted into a triple line
orthogonal to the boundary. The middle of the created triple line coincides with the
barycenter of the transformed grain boundary. When a triple line has to be trans-
formed, the above procedure is reversed.
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(a) Reversible transformation of a grain boundary into a line

(b) Loss of grain

Figure 1. Available topological transformations in 3D during grain growth

3.2. Remeshing

Evolution of the microstructure may require remeshing. This task is accomplished
by coupling the free mesher GMSH? with meshing tools in Zset. Topological transfor-
mations automatically lead to remeshing. However, Remeshing can also be triggered
by other criteria such as element quality and a predetermined remeshing frequency.
The Figure 2 is an example of topological transformation followed by remeshing.

The first remeshing step treats triple lines as splines in order to prevent the ap-
parition of non conform elements. Indeed, the connection between lines is easily
guaranteed since intersections only exist at line extremities. The second step is the
remeshing of grain boundaries. Each grain boundary is first projected onto its mean
plane, then remeshed using Delaunay triangulation developped by J. R. Shewchuk

1. http://www.geuz.org/gmsh
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(Shewchuk, 1996) and available in GMSH, and finally projected back to the initial
geometry. The algorithm keeps node positions on the triple lines during meshing.
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(@) Initial mesh

(b) Final mesh

Figure 2. Example of the transformation of a line: the horizontal central line is trans-
formed into an orthogonal grain boundary

A direct method is used to project nodes and elements from the initial mesh to
the mean plane and from the mean plane to the final mesh. This simple and efficient
method is appropriated because of the low curvature of grain boundaries. Element and
node groups are updated in the last step. Since grain interiors are empty, no further
operation is requires for their remeshing.

No vectorial values are projected in the new mesh because the grains evolution is
purely geometrical. In our case studies, structures have geometrical periodic condi-

tions. A periodic mapping is performed to ensure that two periodic boundaries will
have same mesh. This modification is done after a remeshing step.

4. An evolution example

A structure composed of 20 grains with geometrical periodic conditions was gen-
erated with a Voronoi tessellation. After a first transformation and remeshing step
where all small objects are suppressed, the initial structure contained 283 vertices,
496 triples lines and 234 grain boundaries. A mobility m and a surface free energy
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~ were selected for all grain boundaries. Based on the initial average grain boundary
area Sg, we defined an average energy E, = 7S, and a reference time 7 = %

@ t/t =0 (b) /%o = 0.48

(C) t/zo ~ 0.96 (d) t/zo ~ 1.45

Figure 3. Evolution of structure initialy composed of 20 grains

The average length between two neighbouring nodes is chosen as 20% of a char-
acteristic length 1,,,, and the critical length I, is equal to 3% of this length. In this
example, the characteristic length /,,, is the cube root of the mean grain volume. The
initial mesh had 4806 elements for 2350 degrees of freedom. It should be noted here
that the dof assignment described above leads to a reduction of the number of degrees
of freedom from 6705 to 2350.

The Figure 3 shows the evolution of the microstructure from 20 to 7 grains. It
shows the initial, two intermediate and the final configurations. The computation was
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stopped due to periodic constraints in the last configuration: the next transformation
would have involved two periodic grain boundaries in the same grain. The Figure 4
gives the evolution of energy, number of vertices, lines, boundaries and grains, as a
function of time. Two major phases of energy evolution can be observed in this figure.
The first phase is characterized by a strong non-linear variation of the energy. Dur-
ing this phase, initially plane shaped grain boundaries acquire a curvature in order to
respect tension equilibrium at triple lines. During the second phase, the energy evo-
lution depend linearly on time. This can be explained by the fact that the majority of
the movement is controlled by grain boundary curvature, and thus energy decrease is
controlled by a decrease of area. The evolution of the number of geometrical objects
shown in this figure illustrates the fact that the main topological evolutions are con-
trolled by grain disappearance. The number of topological entities is nearly constant
between two grain shrinkages.
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Figure4. Energy and topology evolution of structure initially composed of 20 grains

5. Conclusion

This paper gives an application of the finite element method to the simulation of
grain growth. This includes the development of dedicated tools to remesh and trans-
form a representative structure of polycrystalline materials. Our mathematical formu-
lation is independent of the number of nodes per element. This allows a large flexibil-
ity on the choice of element type. By design, the size of the global system is reduced
to the geometrically necessary number of degrees of freedom, leading to a significant
reduction in computational time. A numerical example illustrates the evolution of a
representative elementary volume made of 20 grains. It successfully demonstrates the
application of this method to 3D structures with complex and periodic topological
transformations. It is now possible to simulate the evolution of microstructures com-
posed of a few tens of grains. The Zset software with our library allows to study the
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influence of physical parameters such as surface free energy, the mobility or the initial
grain size distribution. However, some optimization in the algorithms is still required
to reduce the remeshing time. More representative microstructures will be simulated.
The obtained results will be analyzed in forthcoming papers.
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A. Surfacevariation with respect to node position

- =

X1 X2

Figure5. Geometry of 2D element in a 3D space

Calculations are performed in the reference element coordinate (£, 7). The surface
can be written as:

=3 _ Zk IN; =e

a = . 1€

56 = / G x @||dédn  with =1 9e
So al =3 o0 T

where Sy is the reference element area, and x denotes the cross product.

As shown in Figure 5, the vector 7¢ = @& x @" is collinear to the element normal 3¢
at point Z(&,n). The derivative of the element surface is obtained from the derivative
of the norm of this vector:

alwe|| 1 o _ ov e 8]

oxFe  ||e|| o7 oF¢

St
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The ¢ derivative can be divided in two terms:

o _ o 0d"  0d

- = a 2 T a5 X
0§ 0x; 0

a’

The orientation tensor E can be used to express the cross product: @ x @ =
a".E.as. This leads to:

ase o ON;i . ON;
— e _ iog iy —e
oz~ oF; ( an * ae “ ) 7 9]





