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Abstract

In this study, the effect of nonlocal scale value and two phases lags on the free
vibration of generalized magneto thermoelastic multilayered LEMV (Linear
Elastic Material with Voids)/CFRP (Carbon Fiber Reinforced Polymer) com-
posite cylinder is studied using nonlocal form of linear theory of elasticity.
The governing equation of motion is established in longitudinal axis and
variable separation model is used to transform the governing equations into
a system of differential equations. To investigate vibration analysis from
frequency equations, the stress free boundary conditions are adopted at the
inner, outer and interface boundaries. The graphical representation of the
numerically calculated results for frequency shift, natural frequency, and
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thermoelastic damping is presented. A special care has been taken to inspect
the effect of nonlocal parameter on the aforementioned quantities. The results
suggest that the nonlocal scale and the phase lag parameters alter the vibration
characteristics of composite cylinders significantly.

Keywords: Multilayered cylinders, non local, LEMV/CFRP, thermoelastic,
phase lags, hall current.

1 Introduction

The anticipated models of nonlocal elasticity and nonlocal thermoelasticity
solids be subject to different approaches of additional functions of solid
mechanics and go through stress-strain relations, governing equations and
laws of equilibrium, were deliberated by [1–6]. Under the precise conditions
studied, the response of both models is identical for steady homogeneous
flows such as steady simple shear flow or pure extension by [7]. To put the
method to the test, some important problems in 2D incompressible elasticity
are addressed. It is demonstrated that it can be effectively used to capture
large strains of incompressible solids by [8]. A center manifold reduction
theorem for quasilinear elliptic equations posed on infinite cylinders that is
done without a phase space in the sense that we avoid explicitly reformulating
the PDE as an evolution problem, as well as an exact solution for the prob-
lem of large deformations of torsion, axial tension–compression, and radial
expansion or shrinkage of an elastic hollow circular cylinder equipped with
pre-stressed elastic coatings and the effect of preliminary stresses coatings on
the stress–strain state of a cylindrical pipe by [9, 10]. New approach opens a
new avenue to modeling of soft materials accurately and conveniently at large
deformation, directly from the data by [11]. Vibration analysis of multilay-
ered composite LEMV/CFRP cylinders are investigated and the effect of the
rotation, initial stress and gravity discussed by [12–15].

Layered shells subjected to static loading are taken into account. The
theory is founded on a variational formulation in which the associated
Euler-Lagrange equations include, in addition to the usual shell equa-
tions formulated in stress resultants, the equilibrium of higher order stress
resultants resulting from the thickness integration of the local equilib-
rium equations by [16]. A rigorous (nonlinear) basic state and asymptotic
analysis of buckling of compressed thin cylindrical shells are used and



Effect of Nonlocal Elasticity and Phase Lags 159

novel singular-perturbation problem that arises as a result of the preceding
problems by [17]. The phenomenon of snap-buckling in an infinitely long
nanocomposite cylindrical panel subjected to uniformly distributed trans-
verse pressure loading is investigated by [18]. [19] deliberated thermoelastic
solutions for thermal distributions moving over thin slim rod under memory-
dependent three-phase lag magneto-thermoelasticity and memory response
in a magneto-thermoelastic rod with moving heat source based on Erin-
gen’s nonlocal theory under dual-phase lag heat conduction. [20] debated
three-dimensional thermoelasticity analysis of graphene platelets reinforced
cylindrical panel. [22] deliberated nonlocal theory of thermoelastic materials
with voids and fractional derivative heat transfer. [23] studied thermoelastic
interactions on hyperbolic two-temperature generalized thermoelasticity in
an infinite medium with a cylindrical cavity. [24] investigated of thermal
preloading and porosity effects on the nonlocal nonlinear instability of FG
nanobeams with geometrical imperfection. The combined effect of electric
and magnetic field in a conductor is known as hall current due to their proper-
ties its more attention. Lata and Singh [25–27] studied the wave propagation
in nonlocal magneto-thermoelastic solids with Hall current and discussed the
various effects on wave characteristics.

Forced vibration analysis in axisymmetric functionally graded viscother-
moelastic hollow cylinder under dynamic pressure and effect of three-
phase-lag model on the analysis of three-dimensional free vibrations of
viscothermoelastic solid cylinder is discussed by [28–32]. Effect of dual-
phase-lag and three phase lag model on the vibration analysis of nonlocal
generalized thermoelastic diffusive hollow sphere and hollow sphere with
voids is investigated by [33].

In the current work, we originate the new constitutive relations and
the governing equations for nonlocal thermoelastic multilayered composite
cylinder in the existence of Eringen’s nonlocal elasticity model. Variable sep-
aration is used to convert the governing equations into a system of differential
equations. For traction-free thermal boundary conditions, the frequency equa-
tion is investigated for the survival of a variety of possible modes in compact
form: thermally insulated and isothermal boundary conditions. To investigate
vibration analysis from frequency equations, we use the numerical technique
to generate numerical data with the help of the Matlab software. The numer-
ically computed and simulated results for frequency shift, natural frequency,
and thermoelastic damping are addressed with graphs and tables.
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2 Modelling of Problem

A homogeneous, transversely isotropic elastic cylinder of inner and outer
radius x and a exposed with thermal field in axial direction is considered
for the free vibration of nonlocal composite cylinder. The displacement with
hall current and thermal field equations in cylindrical coordinates (r, z) is
given by

σlrr,r + σlrz,z + r−1(σlrr) + (1− ϵ2∇2)F⃗r = (1− ϵ2∇2)ρul,tt (1a)

σlrz,r + σlzz,z + r−1σlrz + (1− ϵ2∇2)F⃗z = (1− ϵ2∇2)ρwl
,tt (1b)

K11(T
l
,rr + r−1T l

,r) + τt(K11T
l
,rr +K33T

l
,zz),t

=

(
δ + τq

∂

∂t

)
[T0dT

l
,t + T0(β1(e

l
rr + elθθ) + β3e

l
,zz)] (1c)

The non-local stress strain relations are given as follows [31]

(1− ϵ2∇2)σlrr = c11e
l
rr + c12e

l
θθ + c13e

l
zz − β1T

l (2a)

(1− ϵ2∇2)σlzz = c13e
l
rr + c13e

l
θθ + c33e

l
zz − β3T

l (2b)

(1− ϵ2∇2)σlrz = c44e
l
rz (2c)

where σlrr, σlrθ, σlrz , σlθθ, σlzz , σlθz are the stress and elrr, e
l
zz, e

l
θθ, e

l
rθ, e

l
zθ, e

l
rz

are the strain components, T is the temperature, c11, c12, c13, c33, c44, c66 are
the elastic moduli, β1, β3 are thermal expansion moduli and K1,K3 thermal
conductivities, ρ is density, cv is specific heat capacity and τθ and τq are
phase lags. Here ϵ = e0a0 is the elastic nonlocal parameter, a0 is the internal
characteristic length and e0 is a material constant.

The current density from the Jx = σ0µ0H0

1+m2 (mu,t −w,t) and Jz =
σ0µ0H0

1+m2

(u,t +mw,t) can be computed from the Lorentz’s force F⃗i = µ0(J⃗ × H⃗0)i
in which j⃗ = σ0

1+m2 (E⃗ + µo(⃗̇u× H⃗ − 1
ene

j⃗ × H⃗0)) Lata and Singh [2021].
Where, σ0 is the electrical conductivity, m(= ωete) is the Hall parameter,

ωe is the electronic frequency, te is the electron collision time, e is the charge
of an electron, ne is the number of density of electrons.

The strains fields of the cylinder is taken as

elrr = ul,re
l
θθ = r−1(ul + vl,θ), elzz = wl

,z
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elrθ = vlr − r−1(vl − ul,θ), elzθ = vl,z + r−1wl
,θ,

elrz = wl
,r + ul,z (3)

Substitution of the “Equation (3) and (2)” into “Equation (1)” gives the
following small motion equations.

c11
1− ϵ2∇2

(ul,rr + r−1ul,r + r−2ul) +
c13

1− ϵ2∇2
wl
,rz

+
c44

1− ϵ2∇2
(ul,zz + wl

,rz)−
βl1

(1− ϵ2∇2)
T l
,r

− (1− ϵ2∇2)
µ20H

2
0σ

2

1 +m2
(u,t +mw,t) = (1− ϵ2∇2)ρlu,tt (4a)

(c44 + c13)

1− ϵ2∇2
(ul,rz + r−1ul,z) +

c33
1− ϵ2∇2

(wl
,zz)

+
c44

1− ϵ2∇2
(wl

,rr + r−1wl
,r)−

βl3
1− ϵ2∇2

T l
,r

− (1− ϵ2∇2)
µ20H

2
0σ

2

1 +m2
(mu,t − w,t) = (1− ϵ2∇2)ρlw,tt (4b)

K11(T
l
,rr + r−1T l

,r) + τθ(K11T
l
,rr +K33T

l
,zz),t

=

(
δ + τq

∂

∂t

)
[T0dT

l
,t + T0(β1(u

l
,rt + r−1ul,t) + β3w

l
,z)] (4c)

where Kij is heat conduction coefficient, d = ρCv

T0
. The coupled thermoe-

lasticity (CTE) theory may be obtained when τθ = τq = 0 and δ = 1
in “Equation (4c)”. The Lord–Shulman (LS) generalized thermoelasticity
theory may be obtained when τθ, τq → 0, δ = 1 in “Equation (4c)”.
The Green–Naghdi (GN) thermoelasticity is obtained when τθ, τq → 0, δ = 0
in “Equation (4c)”.

The time harmonic solutions of “Equation (4)”, is assumed as

ul = U l
,rexp{i(kz + pt)}

wl =

(
i

h

)
W lexp{i(kz + pt)}

T l =

(
c44
β3

)(
ϕl

h2

)
exp{i(kz + pt)} (5)
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Where, ul, wl, φl indicates the displacement potential function, k is the
wave number parameter, p is the angular frequency i =

√
−1. For convenient

problem solving, we set the following non-dimensional values x = r
a , ε =

ka, c = ρp, Ω = ρp2a2(1−ϵ2∇2)
2

c44

c11 = c11(1− ϵ2∇2)/c44, c13 = c13(1− ϵ2∇2)/c44,

c33 = c33(1− ϵ2∇2)/c44, c66 = c66(1− ϵ2∇2)/c44,

β = β1(1− ϵ2∇2)/β3, ki =
(ρc44)

1
2

β23T0aΩ
, N =

(1− ϵ2∇2)
2

c44

µ20H
2
0σ

2

1 +m2
.

Substituting “Equation (5)”, in “Equation (4)”, we obtain:

[c11∇2 − (Ω2 − ε2)− iNp]U l −
[
ε(1 + c13) +Nm

(p
h

)]
W l − βϕl = 0

[ε(1 + c13)∇2 − imNp]U l + [∇2 + (Ω2 − c33ε
2)]

+m
(p
h

)
]W l − εϕl = 0

βT0z

c44
∇2U l +

τqp
2ia

c44
W l

+

(
iK11

βa2
∇2(1 + τt) +

iK33

β
(1 + ipτt)ε

2 − ρdip

β
(1− τq)

)
ϕl = 0

(6)

“Equation (6)”, can be written as in the following form using above
relations∣∣∣∣∣∣∣∣∣∣

[c11∇2 − (Ω2 − ε2)− iNp]
[
ε (1 + c13) +Nm

(
p
h

)]
β

[ε(1 + c13)∇2 − imNp]
[
∇2 + (Ω2 − c33ε

2) +m
(
p
h

)]
ε

βT0z
c44

∇2 τqp
2ia

c44

(
iK11

βa2 ∇2(1 + τt) +H
)

∣∣∣∣∣∣∣∣∣∣
× (U l W l ϕl)T = 0 (7)

Bifurcating the “Equation (7)”, we can arrive

(A∇6 +B∇4 + C∇2 +D)(U l W l ϕl)
T
= 0 (8)
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where

A = c11
iK11

βa2
(1 + τt)

B = c11H + c11
iK11

βa2
(1 + τt)

(
Ω2 − c33ε

2 +m
(p
h

))
− (Ω2 − ε2 − iNp)

iK11

βa2
(1 + τt)

+ [ε2(1 + c13) + ε(1 + c13)]
iK11

βa2
(1 + τt)−

β
2
T0z

c44

C = c11(Ω
2 − c33ε

2+)H − c11ε
2 τqp

2ia

c44
− (Ω2 − ε2)H

− (Ω2 − ε2)
iK11

βa2
(1 + τt)

(
Ω2 − c33ε

2 +m
(p
h

))
+ [Hε2(1 + c13)− imNp]− [imNp+ (1 + c13)ε

2]
βT0z

c44

+ β[imNp(1 + c13)ε
2]
τqp

2ia

c44
−
(
Ω2 − c33ε

2 +m
(p
h

)) β2T0z
c44

D = ε[(Ω2 − ε2)− iNp]
τqp

2ia

c44

− (Ω2 − ε2 − iNp)
(
Ω2 − c33ε

2 +m
(p
h

))
H

H =
iK33

β
(1 + ipτt)ε

2 − ρdip

β
(1− τq)

When the relationship given in “Equation (8)”, is factored into a
biquadratic equation for (αl

ja)
2, j = 1, 2, 3, 4 and the symmetric mode

solutions are derived as

U l =
3∑

j=1

[AjJn(αjx) +Bjyn(αjx)],
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W l =

3∑
j=1

alj [AjJn(αjx) +Bjyn(αjx)],

ϕl =
3∑

j=1

blj [AjJn(αjx) +Bjyn(αjx)], (9)

Where (αl
jax) > 0, for (j = 1, 2, 3, 4) are the zeros the following

equation

(A(αl
ja)

6 +B(αl
ja)

4 + C(αl
ja)

2 +D)(U l W l ϕl)T = 0 (10)

The following relations ensure the values of the constants alj , b
l
j and clj in

“Equation (9)”.

[c11∇2 − (Ω2 − ε2)− iNp]− [ε(1 + c13)]a
l
j − βblj = 0

[ε(1 + c13)∇2] +
[
∇2 +

(
Ω2 − c33ε

2 +m
(p
h

))
H
]
alj − εblj = 0

β∇2 + εalj + (iK1∇2 + iK3ε
2 − d+H)blj = 0

3 Motion Model for Linear Elastic Materials with Voids
(LEMV)

The motion equation of displacement and equilibrated inertia of LEMV is
modelled as

(λ+ 2µ)(u,rr + r−1u,r − r−2u) + µu,zz

+ (λ+ µ)w,zz + βψ,r = ρutt

(λ+ µ)(u,rz + r−1u,z) + µ(w,rr + r−1w,r)

+ (λ+ 2µ)w,zz + βψ,z = ρw,tt

− β(u,r + r−1u)− βw,z + α(ψ,rr + r−1ψ,r + ψ,zz)

− δkψ,tt − ωψ,t − ξψ = 0 (11)

The LEMV stress is given as

σ,rr = (λ+ 2µ)u,r + λr−1u+ λw,z + βϕ

σrz = µ(u,t + w,r).
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The solution of “Equation (11)”, is considered as

u = U,rexpi(kz + pt)

w =

(
i

h

)
Wexpi(kz + pt)

ψ =

(
1

h2

)
χ expi(kz + pt) (12)

“Equation (11)”, can be reduced in the following determinant form for
further estimation∣∣∣∣∣∣∣

(λ+ 2µ)∇2 + k1 −k2 k3

k2∇2 µ∇2 + k4 k5

−k3∇2 k5 α∇2 + k6

∣∣∣∣∣∣∣ (U,W,χ) = 0 (13)

Where

∇2 =
∂2

∂x2
+

1

x

∂

∂x

k1 = (ch)2
ρ

ρ1
− ε2µ, k2 = (λ+ µ)ε, k3 = β,

k4 = (ch)2
ρ

ρ1
− ε2(λ+ µ), k5 = βε

k6 =
ρ

ρ1
(ch)2k − αε2 − iω(ch)− ξ

The “Equation (13)”, can be rewritten as,

(∇6 + P11∇4 + P12∇2 + P13)(U,W,ψ) = 0 (14)

Where

P11 =
[(λ+ 2µ)k6µ+ (λ+ 2µ)αk4 + k1αµ+ k22α+ k23µ]

(λ+ 2µ)αµ

P12 =

[(λ+ 2µ)k4k6 + (λ+ 2µ)k25 + k1k6µ

+ k4k1α+ k22S6 + 2k2k3k5 + k23k4]

(λ+ 2µ)αµ

P13 =
k1k4k6 − k1k

2
5

(λ+ 2µ)αµ
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The solution of “Equation (14)”, is estimated as

U =
3∑

j=1

[AjJ0(αjx) +Bjy0(αjx)],

W =

3∑
j=1

aj [AjJ0(αjx) +Bjy0(αjx)],

χ =
3∑

j=1

bj [AjJ0(αjx) +Bjy0(αjx)],

The values of aj and bj are calculated from the following relations

k2∇2 + (µ∇2 + k4)aj + k5bj = 0,

−k3∇2 + k5aj + (α∇2 + k6)bj = 0

4 Boundary Conditions-Frequency Equations

In order to get the required dispersion relation, the following boundary condi-
tions are adopted along inner, outer and interface area of nonlocal composite
cylinder.

(i) σlrr = σlrz = T l = 0 with l = 1, 3
(ii) σlrr = σrr; σlrz = σrz; T l = 0;

A 18 × 18 determinant is reached while plugging the above boundary
conditions in the obtained solutions

|(Rij)| = 0, (i, j = 1, 2, 3, . . . 18) (15)

At x = x0 Where j = 1, 2, 3

R1j = 2c66

(
α1
j

x0

)
J1(α

1
jx0)− [(α1

ja)
2
c11 + ζc13a

l
j + βblj ]J0(α

1
jax0)

R2j = (ζ + a1j + βb1j )(α
1
j ) J1(α

1
jx0)

R3j =
b1j
x0
J0(α

1
jx0)− (α1

j ) J1(α
1
jx0)
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And the other nonzero elements R1,j+4, R2,j+4, R3,j+4 and R4,j+4 are
obtained by replacing J0 by J1 and y0 by y1.

At x = x1

R4j = 2c66

(
α1
j

x1

)
J1(α

1
jx1)

− [(α1
ja)

2
c11 + ζc13a

l
j + βblj ]J0(α

1
jax1)

R4,j+8 = −
[
2µ

(
αj

x1

)
J1(αx1)

+ {−(λ+ µ)(αj)
2 + βbj − λζaj}J0(αjx1)

R5j = (ζ + a1j + βb1j )(α
1
j ) J1(α

1
jax1)

R5,j+8 = −µ(ζ + aj)(αj)J1(αjx1)

R6j = (αl
j)J1(α

l
jx1)

R6,j+8 = −(αj)J1(α
l
jx1)

R7j = aljJ0(α
l
jx1)

R7,j+8 = −aljJ0(αl
jx1)

R8j = bljJ0(α
l
jx0)

R8j = aj(αj)J1(α
1
jx1)

R9j =
blj
x1
J0(α

l
jx1)− (αl

j)J1(α
l
jx1)

And Ri,j+4, Ri,j+8, Ri,j+11, Ri,j+14, (i = 5, 6, 7, 8, 9) and R9,j+4,
R10,j+4, R11,j+4, at x = x1 is computed by swapping J0 by J1 and y0
by y1 in the proceeding values. The values Rij , (i = 12, 13, . . . , 15 and
j = 8, 9, . . . , 18) are drafted by changing x1 by x2 at x = x2. Also, the
values Rij , (i = 16, 17, 18 and j = 14, 15, . . . , 18) can be derived at x = x3
by proper replacements.
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5 Validation of the Results

5.1 Thermal Hollow Cylinder by Multi-dual Phase-lag Theory

From this model, if we ignore the nonlocal parameter (∈= 0) and LEMV, we
can obtain the vibration of thermal hollow cylinder via a multi-dual phase-lag
theory as discussed in [34].

5.2 Pyrocomposite Hollow Cylinder

From this model, if we ignore nonlocal parameter (∈= 0) and vanish the
parameters phase-lag of the heat flux τθ, phase-lag of temperature gradient
τq and put δ = 1, we can deduce this result in to pyrocomposite hollow
cylinderwhich is consistent with the analytical model derived in [35].

5.3 Pyrocomposite Hollow Cylinder with CFRP Core

If the constants like, void volume fraction ψ = 0, and the Lame’s constants
λ = c12, µ = c11−c12

2 in the Equation (11), then the analytical model has been
reduced in to free vibration analysis of multilayered composite cylinder with
embedding core material CFRP.

6 Numerical Discussion

In this subsection, numerical examples are projected to authenticate the
proposed analytical model. Also, different theories of thermoelasticity
like GTE (generalized thermoelasticity), CTE(coupled thermoelasticity) and
E(elasticity) are drafted and studied numerically. The physical constants of
CdSe is taken for numerical computation as follows [15]

C11 = 7.41× 1010 Nm−2; C12 = 4.52× 1010 Nm−2;

C13 = 3.93× 1010 Nm−2;C33 = 8.36× 1010 Nm−2;

C44 = 1.32× 1010 Nm−2; β1 = 0.621× 106 NK−1m−2;

β3 = 0.551× 106 NK−1m−2; ρ = 5504 kgm−3;T0 = 298 K

The numerically computed complex frequency might be written as Ω =
ΩR + iΩI , the size dependent frequency shift is defined as

ΩShift =
|ΩR − Ω0|

Ω0
,
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Where ΩR is the real part and Ω0 is the fundamental vibration frequency
of nonlocal polygonal plate in the absence of thermal field and is defined as

Ω0 = λ

√
E

ρ(1 + ξ2λ2)

The thermo elastic damping is taken as

Q−1 = 2

∣∣∣∣ΩI

ΩR

∣∣∣∣
Numerical results which are obtained for various thermoelasticity theories

and nonlocal parameter (ϵ) as function of wave number is derived for multi-
layered composite LEMV/CFRP cylinders. The non-dimensional frequency
is tested over wave number for various thermo elasticity theories and increas-
ing value of nonlocal parameter (ϵ) are compared in Tables 1 and 2. From
this results the influences of various thermoelasticity and nonlocal parameter
(ϵ) in non-dimensional frequency is having considerable impact. Especially
the nonlocal parameter gives noticeable impact in both LEMV and CFRP
cylinders.

Table 1 Non-dimensional frequency in CFRP composite cylinder
Non-dimensional Frequency

Non-Local Parameter ∈= 0.01 Non-Local Parameter ∈= 0.02

Wave Number CTE LS GN CTE LS GN
0.2 0.1455 0.1578 0.1678 0.1549 0.1678 0.1748
0.4 0.2235 0.2458 0.2685 0.2694 0.2874 0.2978
0.6 0.4578 0.5014 0.5874 0.3564 0.3674 0.3874
0.8 0.6547 0.7452 0.8974 0.6878 0.7478 0.8589
1 0.8978 0.9582 1.0258 0.8074 0.9578 1.0010

Table 2 Non-dimensional frequency in LEMV composite cylinder
Non-dimensional Frequency

Non-Local Parameter ∈= 0.01 Non-Local Parameter ∈= 0.02

Wave Number CTE LS GN CTE LS GN
0.2 0.7456 0.8549 1.0214 0.7248 0.7154 0.6985
0.4 0.9885 0.9912 1.1258 0.9568 0.9258 0.9021
0.6 1.0625 1.1258 1.2574 1.002 0.9985 0.9754
0.8 1.4589 1.5421 1.6254 1.2356 1.1125 1.0025
1 1.7895 1.8126 1.8578 1.5684 1.4985 1.3254
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Table 3 Variation of Radial, Axial and Temperature in LEMV composite cylinder with
∈= 0.01

Wave number CTE LS GN
0.2 U 1.2214 1.1422 1.0419

W 0.8456 0.8248 0.8085
T 4.1584 4.0587 4.0276

0.4 U 1.5640 1.4599 1.3615
W 0.8885 0.8568 0.8365
T 3.2334 3.0572 3.5918

0.6 U 2.1917 2.0865 2.9986
W 1.0025 1.0020 0.9996
T 2.6083 2.5357 2.4631

0.8 U 2.6309 2.4622 2.2066
W 1.2589 1.2356 1.0235
T 1.2049 1.1242 1.0428

1 U 3.4837 3.2911 3.0588
W 1.6895 1.5684 1.3258
T 0.9863 0.656 0.5844

In Tables 3 and 4 the Radial, Axial and Temperature Distribution are
observed for multi-layered composite LEMV/CFRP cylinders for amplified
wave number values in the presence of various thermoelascity theories and
nonlocal parameter. As visualized from these tables, the radial and axial
values reaches higher mode as wave number rises. However, this trend is
reversed or temperature distribution in both LEMV and CFRP cylinders.
Also, a significant effect of various thermo elastic and nonlocal values prevail
for all the physical variables.

Variation of non-dimensional frequency against mode number is observed
from Figures: 1 & 2 in the presence of various thermoelasticity theories and
elasticity for thermoelastic hollow multi-layered LEMV cylinders with the
nonlocal and hall current parameters ∈= 0,∈= 0.03 and m = 0,m = 0.1.
In all cases for increasing value of mode number (n) frequency keeps linear
nature in GTE, CTE for ∈= 0 & ∈= 0.03, but in the presence of elasticity (E)
and non-local parameter (∈) frequency makes light variation from the linear
nature.

The non-dimensional frequency as a function of mode number of multi-
layered CFRP cylinders are plotted in Figures: 3 & 4 in the presence of
various thermoelasticity theories and elasticity with the nonlocal and hall
current parameters ∈= 0, ∈= 0.03 and m = 0,m = 0.1. In Figure 3 the
increasing values of mode number frequency values increases in presence the
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Table 4 Variation of radial, axial and Temperature in LEMV composite cylinder with
∈= 0.02

Wave number CTE LS GN
0.2 U 3.4561 3.3589 3.2145

W 0.8485 0.8258 0.8014
T 4.3255 4.2589 4.2147

0.4 U 3.7589 3.6587 3.5687
W 1.0045 1.0005 0.9756
T 3.4589 3.2147 3.1459

0.6 U 4.3684 4.2457 4.1257
W 1.1568 1.1025 1.0135
T 2.8569 2.7489 2.6589

0.8 U 4.8547 4.6859 4.4258
W 1.4589 1.3589 1.1359
T 2.4589 2.3258 2.2548

1 U 5.6895 5.4587 5.2589
W 1.6578 1.5895 1.2689
T 1.8589 1.7256 1.5896

Table 5 Comparison of dimensionless frequency against wave number with [35]
Non-dimensional Frequency

Wave Number [35] Present Study
0.2 0.1999 0.1987
0.4 0.6000 0.6056
0.6 0.1200 0.1190
0.8 0.1800 0.1792
1 0.2400 0.2412

Table 6 Comparison of temperature distribution with [34]
Thermoelasticity Theories [34] Present Study

CTE 0.557632 0.549321
Temperature distribution L-S 0.469378 0.468198

G-N 0.254464 0.249533

of GTE, CTE, elasticity (E) for ∈= 0 & ∈= 0.03 on the other hand from
Figure 4 it can be seen that the presence of GTE, CTE,elasticity (E) and
nonlocal parameter frequency keeps tiny oscillation nature increasing values
of mode number.

Further, the impact of frequency shift on the mode number of multi-
layered LEMV cylinder is observed in Figures 5 and 6 in the presence of
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Figure 1 Variation of non-dimensional frequency against mode number (n) in the LEMV
cylinder with ∈= 0.03 &m = 0.1.
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Figure 2 Variation of non-dimensional frequency against mode number (n) in the LEMV
cylinder with ∈= 0 &m = 0.
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Figure 3 Variation of non-dimensional frequency against mode number (n) in the CFRP
cylinder with ∈= 0.03 &m = 0.1.
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Figure 4 Variation of non-dimensional frequency against mode number (n) in the CFRP
cylinder with ∈= 0 &m = 0.
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Figure 5 Variation of frequency shift against mode number (n) in the for LEMV cylinder
with ∈= 0.03 & m = 0.1.
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Figure 6 Variation of frequency shift against mode number (n) in the LEMV cylinder with
∈= 0 & m = 0.
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various thermoelasticity theories and elasticity with the nonlocal and hall
current parameters ∈= 0,∈= 0.03 and m = 0,m = 0.1. In LEMV cylinders
the frequency shift have linear nature for lower values of mode number
and nonlinear nature for higher values of mode number in the presence and
absence of nonlocal parameter. From the Figures 7 and 8, the discrepancy
between frequency shift and mode number are observed in the presence of
various thermoelasticity theories and elasticity with the nonlocal and hall
current parameters ∈= 0,∈= 0.03 and m = 0,m = 0.1 for thermoelastic
hollow multilayered CFRP cylinders. In CFRP cylinders the frequency shift
have experiences nonlinear nature for lower values of mode number and
linear trend for higher values of mode number and he significant influence
of nonlocal parameters has been observed.

Variation of thermoelastic damping against mode number of thermoe-
lastic hollow multilayered LEMV/CFRP cylinders has been observed form
Figures: 9–12 in the presence of various thermoelasticity theories and
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Figure 7 Variation of frequency shift against mode number (n) in the CFRP cylinder with
∈= 0.03 &m = 0.1.
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Figure 8 Variation of frequency shift against mode number (n) in the CFRP cylinder with
∈= 0 & m = 0.
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Figure 9 Variation of thermoelastic damping against mode number (n) in the LEMV
cylinder with ∈= 0.03 &m = 0.1.
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Figure 10 Variation of thermo elastic damping against mode number (n) in the LEMV
cylinder with ∈= 0 &m = 0.
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Figure 11 Variation of thermo elastic damping against mode number (n) in the CFRP
cylinder with ∈= 0.03 &m = 0.1.
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Figure 12 Variation of thermo elastic damping against mode number (n) in the CFRP
cylinder with ∈= 0 &m = 0.

elasticity with nonlocal and hall current parameters ∈= 0,∈= 0.03 and
m = 0, m = 0.1. In both LEMV/CFRP cylinders thermoelastic damping
decreasing for lower values of mode number and retains oscillating nature for
higher values of mode number. In both the cases, efficiency of the damping
is increased by the nonlocal parameter.

7 Conclusions

This study proposed the natural frequency of a transversely isotropic nonlocal
magneto thermoelastic multi-layered LEMV/CFRP hollow cylinder with Hall
current. By using variable separation, governing equations can be converted
into differential equations. The outer and inner surfaces of a hollow cylin-
der were determined to be stress free and thermally insulated/isothermal
boundaries. According to the calculated analytical and numerical results, the
influence of mode number on non-dimensional frequency, frequency shift,
and thermoelastic damping is significantly affected by nonlocal parameter
and phase lags of various thermoelasticity theories (GTE, CTE and E). Fur-
ther, these improvements of mode number on the discussed physical variables
were intensified by embedding CFRP core.
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