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ABSTRACT. The aim of this study is to better understand the basic mechanisms leading to 
possible defect occurrence in spot laser welding. For that purpose we have developed a 
numerical model, which takes into account the key-hole dynamics together with a dedicated 
energy deposition model featuring the multiple reflection effects. Many experiments have also 
been achieved enabling us to report several defect classes. The analysis of some of these 
scenarios have been performed and favourably compared to experiments. 
RÉSUMÉ. L’objectif de cette étude vise à mieux comprendre les mécanismes de base à l’origine 
de l’apparition de défauts en cours de soudage par laser impulsionnel. Dans ce but, nous 
avons développé un modèle numérique qui tient compte de la dynamique de creusement en 
mode key-hole, ainsi qu’un modèle de dépôt d’énergie incluant les effets de réflexions 
multiples. Plusieurs expériences ont permis de mettre en évidence divers types de défauts. Les 
simulations numériques de certains de ces scénarios ont été effectuées et comparées aux 
résultats expérimentaux. 
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1. Introduction

Compared to other welding processes spot laser welding offers several advantages
in industrial manufacturing. Indeed, localized temperature gradients require weaker
global heating and accordingly lower workpiece distortions. Therefore spot laser
welding processes are well suited to problems in which the allowed Affected Heat
Zone is required to remain as small as possible in the vicinity of the weld joins. Un-
fortunately, the operating parameters leading to defect-free weld joins are difficult to
obtain, owing to a relatively poor understanding of the problem. Consequently, unsafe
weld joins are frequently encountered, polluted by micro or macro pores defects.

In order to better understand why and how these defects occur, both experimental
and numerical approaches have been used (Girard et al., 2000), (Kaplan et al., 2002).
From the computational point of view, at least three major kinds of difficulties have to
be overcome to design robust and accurate numerical models well suited to the spot-
laser-welding class of problems: i) The laser-beam energy deposition onto a moving
and highly deforming interface (the keyhole) requires dedicated numerical models,
whenever the gas phase is not ionized (no plasma). Indeed, the laser beam is trapped
into the keyhole, and undergoes multiple reflections along the liquid-gas interface.
Several models based on Fresnel’s laws have been developed to account for the local
energy concentration in the lower part of the keyhole (Fabbro et al., 2000), (Amara et
al., 2002); ii) The multiphase problem (solid-liquid-gas) is not straightforward to deal
with, especially for alloys made up of several metals. Few authors have proposed to
solve the incompressible Navier Stokes equations in all phases (solid, liquid and gas)
(Ganesh et al., 1997a), (Ganesh et al., 1997b). Nonetheless, the releavance of such
models becomes at least questionable in the gas phase where the Mach number could
reach values up to 0.5 when the vaporization rate is very high; iii) The algebraic system
resulting from the discretization of this class of problems is very stiff (ill-conditioned)
and highly non-linear owing to the strong material and geometrical coupling. Therfore
it remains up-to-now computationally expensive to solve even in simplified configu-
rations. For these reasons analytical and semi-analytical approaches are still widely
used in keyhole dynamics models (Semak et al., 1999), (Solana et al., 1999), (Jouvard
et al., 2001), as far as three-dimensional effects could be neglected (Ki et al., 2001).

The paper is organized as follows. The physical and numerical models specific to
the single-laser-pulse interaction are first described in section 2. Then, in a third sec-
tion several results are presented for a simplified Nd:Yag pulse on a TA6V alloy plate.
Finally, we discuss the obtained results; give some concluding remarks and future
directions on the way to better understand and optimize spot-laser-welding processes.

2. Physical and numerical models

The present model has been designed to study the dynamics of a single laser-pulse
onto a thin metal plate, in the keyhole welding mode. So, to tackle this problem we
have introduced the following set of simplifying assumptions of physical releavance:
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axial-symmetry condition; no ionization of metallic vapours and shield gas through-
out the whole transient study; no beam diffusion inside the vapours. Furthermore, the
coupled fluid flow and heat transfer model is focused on the condensed phases (solid
and liquid), whereas the dispersed ones (metallic vapours and shield gas) have been
modelled in the simplest way to enter the model as boundary conditions. The numeri-
cal model is built in the finite element framework and takes advantage of a segregated
approach (Rabier et al., 2003), (Medale et al., 2004). Indeed, it consists in splitting
the whole problem into sub-problems, easier to successively build up (develop and
validate) and also to solve. The four stages considered in the present model are the
following: i) compute the laser-beam energy deposition; ii) compute the heat transfer
in the whole computational domain; iii) compute the fluid flow in the liquid phase,
if any; iiii) perform a computational domain update to satisfy the mass conservation
in the condensed phases. The resulting solution algorithm consists in consecutively
solving these four stages at each time step of the whole transient process.

2.1. Laser-beam energy deposition model

Let us first consider at this stage that the computational domain geometry is en-
tirely defined, so are its boundaries. Moreover, for simpler modelling purpose one
discretizes the laser-beam into concentric annulii and split their optical path into two
parts: before and after their first interaction with the condensed matter. Prior to their
first incidence the intensity I of the ray-tubes is modeled by the Gaussian expression
of Equation [1] (Duley, 1999):

I(r, z) =
2P

πω2(z)
exp

(
2r2

ω2(z)

)
[1]

ω(z) = ω0

√
1 +

(
z

zR

)2

[2]

where (r, z) designate the axial-symmetry coordinates, P, ω and zR are the laser beam
power, waist and Rayleigh distance, respectively.

Then, based on Fresnel’s law, for each ray-tube leaving the beam, one can deter-
mine its whole optical path throughout multiple reflections, if any, along the keyhole.
At each ray interaction with the condensed matter, one part of the incident optical
power is absorbed into the condensed matter, whereas the remaining part is reflected
with an angle equal to the incidence one with respect to the outward normal. Indeed,
for rather low power density Nd:Yag laser applications as in the present case, the
metallic vapors remain so poorly ionised that one can assume they are perfectly trans-
parent to laser rays, unlike for higher power density or shorter wavelength cases as
for CO2 lasers. Therefore the absorbtivity A can be assumed to only depend on both
the incidence angle α and temperature T at the incident location. So, the absorbed
intensity along the liquid-gas interface corresponds to the sum of the energy density
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transmitted to the condensed matter at each local interaction. It is accounted for in the
present model according to Eq. [3] and acts in the heat transfer model as an applied
heat flux condition along the interface boundary subset exposed to the laser beam.

qlb(r, z) =
nray∑
ray=1

nreflec∑
reflec=1

I(r, z)A(α, T ) [3]

2.2. Heat transfer model

The macroscopic model dedicated to the condensed phases is derived from the
two-phase model (Bennon et al., 1987) and (Ni et al., 1995), in which the represen-
tative control volume could contain either purely solid, liquid or a mixture of both
phases. Therefore, the conservation equations of mass, momentum and energy apply
on the whole condensed matter domain with physical properties specific to each phase.
In the present case, the applied heat flux density induces solid-liquid and liquid-vapor
phase changes, which are taken into account in the present heat transfer model thanks
to an enthalpy formulation of the energy conservation equation [4]:

∂ρi(Cpi T + ∆h)
∂t

+ (~V − ~W ) · ~∇(ρi(Cpi T + ∆h)) = ∇ · (ki∇T ) [4]

where the subscript i designates either solid, mushy or liquid phase; ρ, Cp and k
stand for the density, specific heat and thermal conductivity, respectively, and T is the
temperature. Moreover, as the computational domain has deforming shape and bound-
aries, the conservation equations are written in an Arbitrary-Lagrangian-Eulerian for-
mulation (~V and ~W designate the fluid and mesh velocity vectors, respectively).
Concerning the solid-liquid phase change latent enthalpie (denoted ∆h), various phe-
nomenological relationships can be used depending on the physical knowledge of the
considered alloy. In the present work, it is related to the liquid fraction by the classical
linear relationship. On the other hand, the liquid-gas phase change enters the present
model as a boundary condition to satisfy the energy conservation equation.

The considered thermal boundary conditions associated with the heat transfer
problem can be splitted into four parts. The first one is associated with the axial-
symmetry condition (adiabatic condition along the symmetry axis); the second one is
the applied heat flux associated with the laser beam interaction (qlb, Equation [3]); the
third boundary condition models the rate of thermal energy devoted to vaporization
or condensation qlv, if any. It is accounted for in our model as a boundary condition
along the interface part where liquid-vapor phase change occurs (Equation [5]). The
vaporization rate ṁlv is drawn from the mass balance across the liquid-vapor inter-
face, Equation [6].

qlv = ṁlv ∆hlv [5]

ρl ~Vl/Σ · ~n = ρv ~Vv/Σ · ~n [6]
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Finally, the forth thermal boundary condition is associated with the radiative and con-
vective heat transfer along the other boundaries of the condensed phase domain. They
are modeled in the classical way, Equation [7]:

qrc = σε
(
T 4 − T 4

∞
)

+ h (T − T∞) [7]

where σ, ε and h designate the Stefan constant, the emissivity and convective heat
transfer coefficients, respectively, while T∞ is the room temperature.

2.3. Fluid flow model

As far as melting and vaporization are involved in the process, the heat transfer in
the melted pool is significantly dominated by advection. Therefore, one models the
liquid metal flow as an incompressible fluid flow and the classical Navier-Stokes equa-
tions should be supplemented with an extra term to account for the smooth solid-liquid
transition characteristic to metal alloys. Moreover, in the solidification zones an inter-
dendrite fluid flow could also exist and should be modelled at the macroscopic scale
(Voller et al., 1987). Consequently, the mass and momentum conservation equations
here again in an ALE framework read, Equation [8, 9]:

~∇ · ~V = 0 [8]

ρl

(
∂~V

∂t
+ (~V − ~W ) · ¯̄∇~V

)
= ∇ · ¯̄σ + ~fv + ~Su [9]

The first constitutive law used to close the preceding set of equations is that of a New-
tonian fluid (Equation [10]). Secondly, the Boussinesq approximation (Equation [11])
is used to take into account buoyancy in the incompressible fluid flow model. Fi-
nally, the last term is selectively introduced in the mushy zone to model at the macro-
scopic scale the fluid flow which takes place at microscopic scale in the vicinity of
the solid-liquid interface. It is modelled as a Darcy-like flow (Equation [12]), which
furthermore ensures a vanishing velocity when approaching the solid metal without
any explicit front tracking technique.

¯̄σ = −p ¯̄I + µ

[
¯̄∇~V +

(
¯̄∇~V
)t]

[10]

~fv = ρl0 [1− β (T − T0)] ~g [11]

~Su =
µ

K
(~V − ~W ) [12]

where µ, β and K are the liquid metal dynamic viscosity, thermal expansion coeffi-
cient and permeability of the porous media in the mushy zone, respectively.
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The boundary conditions that apply to the liquid metal fluid flow problem read in
a formal notation, Equation [13, 14]:

~V = ~W = ~0 on ∂Ωsl [13]

~Tl + ~Tg +
γ

R
~n+

∂γ

∂s
~tg = ~0 on ∂Ωlg [14]

Indeed, the stresses acting along the liquid-gas interface ~Ti (i = l, g) result from
the interactions between the liquid and gas phases, which can be attributed to: i) the
recoil pressure associated with the evaporation process; ii) the shear stress induced by
the high velocity metallic vapours flowing out from the key hole; iii) surface tension
effects: capillary forces owing to high curvature of the liquid-gas interface (γ is the
surface tension coefficient, R the interface radius of curvature) and thermo-capillary
forces along the interface induced by surface tension gradients (∂γ∂s ).

2.4. Computational domain update - Mesh adaption model

As the computational domain is restricted to the condensed matter (solid and liquid
phases), it evolves and deforms in the course of the computation. So, to prevent from
excessive mesh distorsion responsible for poor accuracy in the solution, we supple-
ment our numerical model with a steady pseudo-elastic problem for the mesh at each
time step, Equation [15], (Rabier et al., 2003). It is formulated in nodal mesh displace-
ment variables ~Um, throughout an elastic-like stress-strain relationship, Equation [16],
in which Em and νm are numerical coefficients tuned to produce satisfactory mesh
quality.

∇ · ¯̄σm = ~0 [15]

¯̄σm =
Em

1 + νm
¯̄εm +

Em νm
(1 + νm)(1− 2νm)

tr (¯̄εm) ¯̄I [16]

¯̄εm =
1
2

[
¯̄∇~Um +

(
¯̄∇~Um

)t]
[17]

The mass conservation of the condensed matter requires to explicitly satisfy a kine-
matic boundary condition along the computational domain boundary, which results in
a vanishing normal component of the relative velocity between the liquid fluid flow
and the mesh along the boundaries, Equation [18].

~Um · ~n = ∆t ~V · ~n on ∂Ωm [18]

Once the solution of the pseudo-elastic problem is obtained one performs the update
of the mesh node coordinates ~Xm according to Equation [19]:

~Xt+∆t
m = ~Xt

m + ~Um [19]
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3. Numerical model verifications and validations

As a first step of verification, we have tested separately each component of the
global model, which represents one of the main advantages of the chosen segregated
approach. The thermo-hydraulic model has already been validated previously in both
capillary and gravity free surface problems (Rabier et al., 2003), so one focusses here
on the laser-beam energy deposition model. Indeed, in the keyhole mode configuration
the laser beam undergoes multiple reflections, so one want first to check the model in a
given and fixed keyhole shape. The sinusoidal shape has been selected as a test case in
a fixed geometry because it exhibits several focus zones where spatial resolution could
be crucial. The reflected rays in the sinusoidal shape keyhole are displayed in Figure 1,
together with the resulting dimensionless heat flux along the curvilinear abscissa. One
can observe the very sharp peaks in the dimensionless heat flux density plot, which
result from the two focus zones in the lower part of the keyhole. In order to assess the
solution accuracy in such a configuration we have performed a convergence study and
sensibility analysis of the numerical integration parameters (spatial resolution along
the keyhole boundary, number of integration points per finite element, number of rays
to discretize the laser beam) and we present in Table 1 the results. It turns out that
in this keyhole shape one needs at least five rays per element and fifteen integration
points per ray in order to find out the converged results. So these values will be used
as minimum values to set up the user defined parameters in the computations.

 

Figure 1. Energy deposition in a keyhole of sinusoidal shape. Reflected rays (left) and
dimensionless heat flux along the curvilinear abscissa (right)

4. Analysis

We consider a single laser pulse carried out in the middle of a 3mm metal sheet
(no junction zone), to satisfy the axial-symmetry condition. The delivered laser beam
power is considered constant (P=1500 W) throughout the 10 ms laser pulse dura-
tion. It is carried by an optical fiber and its spatial distribution over the metal sheet
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Table 1. Spatial convergence analysis and sensibility to numerical integration
parameters. N1, N2, N3, qp1 and qp2 stand for the number of integration points per
ray, number of integration points per element, number of rays per element, first peak
intensity, second peak intensity, respectively

N1 N2 N3 qp1 qp2
1 1 2 2.54 1.10
1 3 4 3.05 1.23
1 9 10 3.90 1.42
1 19 20 4.36 1.43
1 49 50 4.36 1.43
20 40 3 2.94 1.16
20 60 4 3.69 1.22
15 60 5 4.36 1.43

is assumed to be a 600 µm diameter top hat at the focal point. To later on compare
computations to experiments carried out at our CEA laboratory, the material proper-
ties of TA6V plate (aluminium alloy) have been considered in the computations (see
physical properties provided in Table 2).

Table 2. Physical properties used in computations for the TA6V alloy at 1923 K

Melting temperature 1923 K
Solid-liquid latent enthalpy 4 105 J.kg−1

Vaporization temperature 3591 K
Liquid-gas latent enthalpy 8.8 105 J.kg−1

Liquid density 4110 Kg.m−3

Dynamic viscosity of liquid 3.4 10−3 Pa.s
Surface tension coefficient 1.6 N.m−1

Thermal coef. surface tension 3 10−4 N.m−1.K−1

Specific heat 743 J.kg−1.K−1

Thermal conductivity 35 W.m−1.K−1

The thermo-hydraulic finite element model has been previously validated in sim-
plified configurations (Rabier et al., 2003), (Medale et al., 2004). So, the present study
aims to validate the energy deposition model on a dynamically deforming keyhole
where multiple reflections take place. As the free surface deforms to a large extent
(keyhole) during the laser pulse, the laser energy deposition becomes of first concern,
especially when multiple reflections occur in the keyhole. The computational domain
is 3 mm thick (metal sheet thickness) and 1 mm width, initially at room tempera-
ture T0 = 300 K. In the present computations we assume constant physical properties
(given in Table 2) all over the solid-liquid domain, and the simplified thermal heat



Numerical spot laser welding model 803

exchange boundary conditions (Equation [7]) are set to: ε = 0.5, h = 10Wm−1K−1

and T∞ = 300K. The mesh used is made up of 75x150 bi-quadratic quadrilateral
finite elements (Q9), non-uniformly distributed in the radial and axial directions. A
constant time increment of ∆t = 10−2ms has been used, so the computation of the
whole laser pulse requires 1000 time steps.

 
Figure 2. Comparison between computations and experiments. Melted pool and af-
fected heat zone (left); keyhole depth (top right) and width (bottom right) plots versus
time in ms. Solid line: computations; dashed line: experiements

The recoil pressure applied onto the free surface induces a fast drilling of the key-
hole. The computations faithfully reproduce this behaviour, as shown in Figure 2 for
t = 2, 4, 6 ms, respectively. As the keyhole becomes deeper and deeper the number
of laser-rays reflections increases significantly, as can be observed in Figure 3, which
depicts a close up of the reflected ray paths in the vicinity of the keyhole tip, together
with the corresponding thermal field, at time t = 5 ms. The multiple reflections in-
side the highly deformed keyhole result in a noticeable power intensity focus over the
keyhole tip. Indeed the global absorbtivity coefficient, which measures the energy ef-
ficiency of the interaction, raises from roughly 50% at the beginning of the laser pulse
up to 80% as soon as the keyhole is deep enough to trap most of the reflected rays.
The finite element mesh adaption technique performs well to deal with the moving
boundary problem in such a highly deformed computational domain, as shown in Fig-
ure 4 for t = 3, 5 ms, respectively, resulting in a fairly good accuracy over the whole
computations.
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Figure 3. Velocity field in the liquid metal (left), reflected rays at the liquid-gas inter-
face and thermal field (right) at t = 5 ms
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Figure 4. Computational mesh evolution in the course of time. At t = 3 ms (left) and
t = 5 ms (right)
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5. Conclusions

The numerical model we have developed to study the dynamics of a single laser
pulse acting on a thin metal sheet is expected to provide us with a better understanding
of the basic mechanisms that could be responsible for numerous defects in industrial
spot laser welding processes. It is focussed on the condensed phases (solid and liq-
uid), but take into account the dispersed phase (vapors and shield gas) in a simplified
manner. It is made up of four main stages: the laser energy deposition, the heat trans-
fer in computational domain, the fluid flow in the liquid phase, if any, and finally a
computational domain and mesh update to account for the total mass conservation
and large distorsion of the liquid-gas interface (keyhole). The present study deals with
an advanced level validation whose objective was the test and verification of the en-
ergy deposition model on a dynamically deforming keyhole where multiple reflections
take place. As the free surface shape evolves continually during the laser pulse, the
ray paths (determined by Fresnel’s law) become of first concern to accurately compute
the laser energy deposition, especially when multiple reflections occur in the keyhole.
The comparison of the computational results to the available lab experiements are in
qualitatively good agreement, despite a finer mesh should be considered in order to
faithfully take into account both solid-liquid and liquid-gas phase changes. Indeed, a
time shift has been observed in the computations, which is probably due to loose time
integration of the energy conservation equation.

The next step in the spot laser welding modelling will be to extend the present
model to full three dimensional geometry in order to be able to represent the actual
welding process, which consist in successive laser impacts along the joining line.
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