
REMN – 17/2008. Giens 2007, pages 807 to 818 

Two examples of partitioning approaches 
for multiscale and multiphysics coupled 
problems 
 
 
David Dureisseix 
 
Laboratoire de Mécanique et Génie Civil (LMGC) 
CNRS UMR 5508/Université Montpellier 2 
CC048 Place Eugène Bataillon 
F-34095 Montpellier cedex 5 
David.Dureisseix@lmgc.univ-montp2.fr 
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1. Introduction

Improvement of the fidelity and prediction ability of numerical models often leads
to an increase in simulation accuracy (and problem size), complexity of the constitu-
tive relations (number of internal variables), or to take into account couplings between
several physics (number of involved fields).

The simulation of such models requires the development of suited computational
strategies. Amongst others, partitioning methods offer a large flexibility, an improved
code durability, and an easier maintenance and evolution (for instance with code cou-
pling). The partitioning can be geometric, for instance with domain decomposition,
or between physics, for instance for fluid / structure interaction problems. These ap-
proaches focus on interactions between subsystems and often lead to isolate their treat-
ment from the behavior of the subsystems themselves for which adequate techniques
can be used in a modular fashion.

Usually, the reference coupled problem exhibits several scales (spatial or tempo-
ral ones) in the solution. A partitioning technique may take this fact into account for
improving its efficiency or its practical implementation. Herein, we discuss two ex-
amples falling into this category: (i) the coupling between subdomains with different
spatial scales, (ii) the coupling between different physics, with different time scales.

2. Gluing spatial multiscale fields with domain decomposition

The spatial geometric partitioning arising from a non overlapping domain decom-
position naturally induces interfaces (surfaces for 3D problems) between subdomains
(Le Tallec, 1994; Farhat et al., 1994; Magoulès, 2007), Figure 1 (a). If different spatial
scales are present in the searched solution field, a dedicated multiscale representation
of the field trace on the interfaces can be built. This can be used for several goals
such as: homogenization of a subdomain, convergence acceleration of the domain de-
composition algorithm, coupling different subdomains with different discretizations,
etc.

Figure 1. A bidimensional substructuring into subdomains and interfaces (a), and
typical solutions before convergence for: FETI-DP (b), micro-macro (c)
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2.1. Modular treatment induced by substructuring

Indeed, a substructuring allows to use different treatments on different subdo-
mains. Their coupling has to be expressed on their common interface. This feature
has been used for different kinds of couplings, for instance with an explicit/implicit/
modal dynamical treatment of different structural parts (Gravouil et al., 2001; Faucher
et al., 2004), different spatial discretizations (Bernardi et al., 1994), for modal synthe-
sis (Farhat et al., 1992; Rixen et al., 1998), or for different physics as for aeroelasticity,
(Felippa et al., 2001).

In this section, we are more concerned with the purely structural problems for
which the fields on the interface are (for quasi-statics): the displacement field V , the
force field F . A representation on two scales may consists in splitting additively these
fields, on each interface independently, (Ladevèze et al., 1999): V = V m + V M and
F = Fm + FM . Superscript M denotes the macro part, while superscript m denotes
the complementary micro part. Note that an additional condition on this splitting
has to be prescribed to uniquely defined each contribution (a kind of orthogonality
between macro and micro spaces) and to make it worth.

2.2. Convergence acceleration using a coarse space

Today, the most efficient domain decomposition methods embed a coarse problem,
global to the whole domain, to improve their convergence, and to make them few
sensitive to the increase of the number of subdomains (and therefore to the increase
in the discretized problem size). This property is known as the numerical scalability
(Bramble et al., 1986).

Let us first discuss this property for the FETI-DP method (Farhat et al., 2001).
This approach first selects the so called ‘corner’ nodes, shared between several subdo-
mains, Figure 1 (b), and avoiding any floating subdomain (with rigid body motions)
if clamped. The total displacement field is prescribed to be continuous at each of
these nodes, leading to a coarse problem whose degrees of freedom are the ‘corner’
displacement unknowns. Lagrange multipliers are used to glue the displacements on
interfaces (on interface nodes other than ‘corner’ ones), and are solved iteratively.
This approach proved to be numerically scalable for 2D and plate problems, but not
for 3D massive problems. To recover numerical scalability in this case, an augmen-
tation of the algorithm is proposed (Farhat et al., 2000b) which is close to a splitting
into macro and micro quantities on the interfaces. The residual at a given iteration is
a displacement gap on the interface; the proposed augmentation is the requirement to
get a null average of the gap on each interface independently, Figure 2. If one selects
the macro space on an interface as this average value, the augmentation is interpreted
as the macro displacement continuity at each iteration: V M = V M ′

(on a local inter-
face between two substructures, superscript M denotes the macro part on a first side of
the interface, i.e. for the first substructure, and superscript M ′ denotes the macro part
on the second side of the interface, i.e. for the other substructure). This constraint is
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prescribed by using a Lagrange multiplier which can itself be interpreted as the macro
force (i.e. the resultant of gluing forces on the interface): λ = FM = −FM ′

. This
multiplier is an additional unknown that increases the coarse problem size. Neverthe-
less, the extensibility is recovered and the resulting algorithm is more efficient with
respect to the CPU usage.

FETI−DP interface

FETI−DP interface

residual

average augmented residual

Figure 2. FETI-DP residual evolution on an interface

2.3. Multilevel domain decomposition and homogenization

Other multilevel representations can be used. One can choose the macro part of
an interface field as the generalized averages of this field (Ladevèze et al., 1999): for
instance, the already mentioned classical average (i.e. the constant part of the field)
which corresponds to translations for the displacement, and to the resultant for the
force. The linear part of the interface fields then corresponds to rotations, extensions
and distortion in the plane of the interface for the displacement V and to torques and
membrane forces for the forces F . The degree of these generalized averages is limited
to 1 (i.e. the linear part), Figure 3, which is usually a good compromise between
convergence rate and cost.

As before, the continuity of macro displacements on each interface V M = V M ′
,

and equilibrium of macro forces FM + FM ′
= 0, are enforced at each iteration. To

get a unique splitting into macro and micro parts, the ‘orthogonality’∫
ΓEE′

FM · V mdS = 0 =
∫

ΓEE′

Fm · V MdS [1]

is used, and the macro part of the unknowns constitutes the degrees of freedom of the
coarse problem, Figure 1 (c).

With this micro-macro representation, the macroscopic behaviour of a subdomain
(the homogenized behaviour of the corresponding elementary representative volume)
is the relationship between a macro force distribution on all of its interfaces, and the
macro part of the corresponding displacement trace on the same interfaces. Using this
homogenized stiffness on the left hand side of the coarse space leads to a multilevel
domain decomposition with an improved convergence rate.

This approach has been used in particular for heterogeneous continuum media
(Ladevèze et al., 2001), multi-cracked structures (Nouy et al., 2002; Ladevèze et



Partitioning approaches 811

al., 2003), non smooth discrete media (Nineb et al., 2007), and composite structures
modelled up to a micro scale (Lubineau et al., 2006; Violeau et al., 2006).

interface

interface field

degree 0 macro part

interface

degree 1 macro part

Figure 3. Micro-macro field evolution on an interface

2.4. Structural zooming

The previous micro-macro description can also lead to a gluing technique between
subdomains described with different refinement levels corresponding to different spa-
tial scales. The scale coupling is therefore performed on interfaces. The direct appli-
cation is a structural zooming technique, allowing for the fine discretization of interest
areas only (i.e. of particular subdomains only). With a LATIN solver, such an applica-
tion is developed in (Guidault et al., 2006; Guidault et al., 2007). For plate problems,
with a FETI-DP like solver, it is presented in (Amini et al., 2006).

Let us also mention that couplings between different discretizations or different
models in subareas can also be performed with overlapping subdomain approaches.
For instance, the Arlequin framework (Ben Dhia, 1998; Ben Dhia et al., 2005) and the
approach detailed in next Section, can be seen as belonging to this category.

3. Field transfer between non matching discretizations for multiphysics
problems

We are concerned herein with multiphysics problems which are strongly coupled
in the body. In such cases, the different physics interact at the constitutive relations
level. One of the simplest cases is saturated poroelasticity (Lewis et al., 1998; Coussy,
2004); the macroscopic constitutive relations are:

σ = Dε− bp1 q =
1
Q

ṗ + b Tr ε̇ W = HZ [2]

The structure-related fields are: the stress field σ and the strain field ε. The fluid-
related fields are: the accumulation rate of fluid q and the opposite of Darcy velocity
W , the pore pressure field p and its gradient Z. Finally, D is Hooke tensor, b and Q
are Biot coefficient and modulus, and H is the permeability.
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The admissibility of the different fields concerns the conservation of momentum
and mass. They lead to two decoupled systems of equations, one for the structure part,
the other one for the fluid part. The corresponding variational formulations are:

– for the structure: U ∈ U , ε =
1
2
(Grad U + Grad UT ), and

∀U? ∈ U0,

∫
Ω

Tr[σε(U?)]dΩ =
∫

∂2Ω

F d · U
?dS [3]

– for the fluid: p ∈ P , Z = grad p, and

∀p? ∈ P0,

∫
Ω

(qp? + W · grad p?)dΩ =
∫

∂4Ω

wdp
?dS [4]

U (respectively P) is the set of finite energy displacement (respectively pore pressure)
fields, satisfying to the boundary condition U |∂1Ω= Ud (respectively p |∂3Ω= pd).
∂1Ω is a first part of the boundary ∂Ω; F d is a prescribed external force on the com-
plementary part ∂2Ω. ∂3Ω is another part of the boundary and wd is a prescribed
fluid flux on the complementary part ∂4Ω. U0 and P0 are the corresponding sets with
homogeneous boundary conditions.

These equations are two linear and decoupled problems for the structure and the
fluid parts of the unknowns.

Several solving strategies can be used for the reference problem [2]-[4] (together
with an appropriate initial condition). A partitioning strategy will avoid a coupled
treatment of both the structure and the fluid (Felippa et al., 2001), for instance, an
iterative strategy that will solve on one hand the local but coupled constitutive equa-
tions [2], and on the other hand the decoupled but global admissibility conditions
[3],[4]. The LATIN (LArge Time INcrement) approach (Ladevèze, 1999) dedicated
to multiphysics problems can be used in such a way; more details on this approach
can be found in (Dureisseix et al., 2003b; Dureisseix et al., 2003a). There are also
connections with the NSCD (Non Smooth Contact Dynamic) approach, for which the
interactions took place between rigid grains; indeed, this approach also focuses on the
contact / friction interactions, while the admissibility equations are the non smooth
dynamics of the grains (Moreau, 1999; Jean, 1999).

An advantage of the partitioning approaches lies in their modularity. We will illus-
trate this point while considering the management of different discretizations for each
physics.

3.1. Using spatial non matching meshes

Let us consider the case of a porous ceramic filter. The fluid to filter goes through
the multi-perforated block of Figure 4 (upper right), and a pressure increase (up to
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a stabilized value) is prescribed for the inflow, while the outflow relative pressure is
null.

Figure 4. Principal strain field (upper left), pore pressure field (upper middle), inflow
and outflow (upper right), and structure, fluid and interface meshes (lower)

The problem is modeled with the assumption of 2D plane strain and the symme-
tries are used to limit the study to a quarter of the section on Figure 4. The reported
principal strain field and pore pressure field are obtained at the last time step of the
transient simulation. This case exemplifies the interest to provide different meshes
for each physics, as those of Figure 4 (bottom), since the gradients in the solution are
not obtained at the same place for the different physics. A tool to transfer the fields
from one discretization to an other, during the iterations of the solving procedure, is
therefore required.

Such a tool has been firstly designed for thermo-viscoelasticity coupled problems,
solved with a partitioning strategy relying on a fixed point method (Dureisseix et
al., 2006). It is re-used here for poroelasticity. The field to transfer (stress, strain...)
is usually available at integration points of a first mesh Ω1. The first step consists in
its extrapolation to the nodes of each finite element independently; the resulting field,
denoted with E1 can be interpolated, and is a priori discontinuous throughout the
element edges. To project E1 into a field E2 defined on a second mesh Ω2, a discon-
tinuous mortar-like technique is used: generalized averages of the field are preserved,
with respect to discontinuous test functions F ?

2 on the target mesh Ω2:

∀F ?
2 ,

∫
Ω2

E2 · F ?
2 dΩ =

∫
Ω1

E1 · F ?
2 dΩ [5]

As test functions, we propose to use the restriction to each element of the finite ele-
ment basis functions, with an interpolation degree selected according to the field to be
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Figure 5. Modifications of transfer operations when adding a new physics; (a): with-
out an interface mesh, (b): with such a mesh

transferred; for instance, if a quadratic interpolation of displacement is used, a linear
test function is used for strain and stress; if a linear interpolation of pore pressure is
used, the same linear test functions are used for the pressure and the fluid accumula-
tion rate, etc. Finally, the projected field E2 is interpolated to the integration points of
Ω2, for each element independently.

The backward transfer from Ω2 to Ω1 is the dual operation, i.e. the transposed
projector with respect to the energy norm

∫
Ω

F ·EdΩ. This formulation is symmetric:
the same couple of dual projector is obtained if one begins with transferring fields
from Ω2 to Ω1.

The solver used herein for the poroelastic problem is the LATIN method
(Ladevèze, 1999). Basically, it solves iteratively on one hand the admissible con-
ditions [3] and [4] separately on the different meshes of Figure 4, and on the other
hand, the coupled constitutive relations [2]. We chose here to use a third mesh at
each integration point of which the last problem is solved independently. This mesh is
called the ‘interface’ mesh, Figure 4. The use of such a mesh allows more flexibility
when adding new coupled physics. This is illustrated on Figure 5 when a third physics
is added; S stands for solid, F for fluid, T for thermal problem, for instance, and I for
the interface dedicated discretization.

3.2. Using non-matching time discretizations

For the time multiscale aspect, the same poroelastic problem will serve as an illus-
tration. In order to focus on the time evolution of the solution, let us consider a pure
strain monodimensional consolidation problem. The constitutive relations [2] read:

σ = Eε− bp q =
1
Q

ṗ + bε̇ W = HZ [6]

where E is Young modulus. The admissibility equations [3],[4] lead to

∂σ

∂x
= 0 q =

∂W

∂x
Z =

∂p

∂x
[7]
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where x ∈ [0, L] is the spatial coordinate. With a prescribed traction σd(t) at x = L,
the problem reads:[

−E b
b 1/Q

]
︸ ︷︷ ︸

M

d

dt

[
ε
p

]
−
[
0 0
0 H

]
︸ ︷︷ ︸

A

∂2

∂x2

[
ε
p

]
=
[
−σ̇d

0

]
[8]

If λi and Vi are the generalized eigenvalues and eigenvectors of AVi = λiM iVi

(with a regular M ), the corresponding homogeneous system leads to decoupled scalar
equations ẏi − λi∂

2yi/∂x2 = 0. For λi > 0, the solution is

yi = e−t/τi

(
Ai cos

x
√

λiτi

+ Bi sin
x

√
λiτi

)
[9]

To exhibit the characteristic times τi, boundary conditions are required. If the ob-
servation scale is the same for all the physics, and if L is the characteristic spatial
length of the phenomenon that one wishes to capture, null boundary conditions for
x = 0 and x = L lead to Ai = 0 and the first non zero root of sin(L/

√
λiτi) = 0 is

τi = (1/λi)(L/π)2. For the proposed example, one obtains λ1 = 0 for the structure
(since no viscosity is involved, the characteristic time for the structure is given by the
external load, not by the physics). For the fluid, one gets:

τ2 =
1
H

( 1
Q

+
b2

E

)(L

π

)2

[10]

For the problems treated in (Néron et al., 2008), a ratio of 4 between the characteristic
times are obtained (0.167 s for the loading on the solid, τ2 = 0.043 s for the fluid). For
aeroelasticity problems, a ratio of 10 to 20 is often obtained. Therefore, using different
time discretizations is of interest, for instance to get a solution with an iso-quality for
each of the physics (i.e. the same discretization error for the pressure, with respect to
the exact pressure, and for the strain, with respect to the exact strain).

Several strategies are available to deal with a problem coupling different time
grids. For instance, with an incremental approach, a time marching strategy similar to
(Rey et al., 2005; Farhat et al., 2000a; Combescure et al., 2003; Faucher et al., 2003)
is possible. When relying on the LATIN method as a solver, the situation is different
since it is not an incremental approach (Ladevèze, 1999). Indeed, at each iteration,
the solution is provided on the whole domain and on the whole studied time interval.
If each physics has its own time discretization, this coupling also occurs on the ‘inter-
face’ between the physics when solving the coupled constitutive relations. Therefore,
this ‘interface’ is also equipped with its own time discretization, and a transfer op-
erator between different time grids is also required. The same tool as for the spatial
transfer can be re-used, provided that the time representation allows discontinuities
between time slabs (similar to spatial discontinuity through finite element edges), and
that the time integration scheme relies on a variational formulation. This is the case for
the time discontinuous Galerkin approach (Eriksson et al., 1985; Borri et al., 1993).
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This representation has been used in (Néron et al., 2008) to provide a transfer operator
between different time grids for coupled poroelastic problems (for the fluid, the struc-
ture and the interface). Coupling both time and spatial different discretizations within
the same simulation is the next application and is currently under development.

4. Conclusions

Tools for field transfers between non matching discretizations have been presented
(both for time or space). They allow to perform iterative resolutions where different
scales interfer. Flexibility of such approaches is largely due to the use of an interface
between the fields represented at different scales. This interface can be a geometric
interface between subdomains, or a more numerical one between different grids or
between different physics. In each case, these interfaces possess their own behavior
and discretization. This framework could also be used for the case of model coupling.
Among dedicated application cases, one can find: the coupling and transition between
a discrete representation (for instance with discrete element models) and a continuous
one, for fragmentation; the multiphysics coupling as in granular / fluid interaction for
flow through divided media; the mechanical / convection-diffusion coupling for mod-
eling hygromechanical phenomena, or biomechanical ones such as bone remodelling.
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