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ABSTRACT. The work is focused on the overall optimization associated to powder injection 
molding (PIM). The PIM process includes four main stages, from the mixture of the powders 
and binders to the final sintering stage. Injection and sintering stages are considered to be 
the most important for optimization, as they mostly affect the final quality of the produced 
components. The injection stage shapes the green parts but initiates powders segregation 
that will be inherited and amplified by the sintering stage to finally appear in the resulting 
products. One first introduces an optimization loop based on the surfaces response method   
to minimize the powder segregation. Then the results are transferred to a sintering 
optimization loop applied through an experimentally calibrated thermo-mechanical creep 
model to predict the shrinkage and density contours on the final parts. The overall 
optimization combines both optimizers based on the developed simulation tools to provide a 
realistic way to improve the PIM process design accounting the different processing stages. 
RÉSUMÉ. Un modèle continu basé sur l’évolution d’une loi de comportement visco-plastique 
est utilisé pour décrire le procédé de densification par diffusion en phase solide pour des 
composants fabriqués par le procédé de moulage par injection de poudres céramiques CIM. 
Une méthode d’optimisation est proposée afin de minimiser la ségrégation pour l’étape de 
moulage et d’identifier les paramètres du modèle de la loi de comportement pour l’étape de 
densification. La simulation de l’optimisation globale d’une prothèse de hanche est réalisée 
par ce procédé CIM et pris comme exemple du point de vue numérique et expérimental afin 
de minimiser la ségrégation, de prédire les retraits et les dimensions de la cavité de 
l’empreinte du moule. Les résultats numériques sont validés par des essais expérimentaux. 
KEYWORDS: powder injection molding, processing stages, sintering, overall optimization. 
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1. Introduction 

The material processing by powder injection molding (PIM) exhibits important 
advantages for the manufacturing of small components in 3D complicated shapes 
(German, 1997). The overall PIM process includes four main stages. Firstly the 
feedstock composed of a mixture of powders and binders should be prepared. Then 
the original shape of the component is obtained by powder injection molding. The 
third step consists to remove the binder by thermal or catalytic debinding processes. 
The final product results from the last sintering stage, in which the porous material is 
transformed to a full dense one by the solid state sintering process. The quality of the 
final parts results from their shape and size accuracy, as well as the respect of the 
required mechanical properties. The eventual defects that start to occur in the 
injection stage are accentuated in the next debinding and sintering stages. These 
defects may be effectively amplified by the sintering process resulting in shape 
distortions and improper mechanical properties in the final products (Barriere, 2005). 
The complete control of final quality requires multistage optimization for both the 
individual stages and their sequential effects in the whole PIM process. The original 
feedstock injected into the mould is considered as homogeneous resulting from 
sufficient mixing of the powder and binder components. The processing defects 
begin to appear during the injection stage, associated to the filling flow in sprues, 
runners and inlets associated to mould cavities, as both the geometrical aspects and 
the behavior of mixture flows. Besides other defects that can be observed or 
measured, the powder segregation is difficult to monitor after the injection. If the 
segregation is important, it will result in significant distortions in the remaining 
debinding and sintering stages. However, even if the green parts after injection seem 
perfect, they may include important segregation. One may evaluate segregation 
effects induced in the early injection stage only after the sintering stage. So the 
optimization of PIM process is then an indirect one, which requires the optimization 
of the subsequent stages with the transport of important data and finally overall 
optimization of the whole process. 

The segregation in the injection stage is evaluated through the numerical 
simulation based on a biphasic model (Gelin, 2004). The powder and binder volume 
fraction phases are expressed by two field variables, which stand for the quantity of 
powder segregation during and after the injection process (Barriere, 2001). It is 
generally supposed that distribution of the powder density is not effectively changed 
in the next debinding stage. The role of debinding is mainly to remove the binder 
components resulting in change in shape of the green parts. At the microscale, 
powder particles remain in similar state, except that the binder between them is 
almost removed. The effect of inhomogeneous powders distribution in sintering is 
evident. It is in this stage that the early induced powder segregation exhibits its 
important effects on quality of the resulting products.  

The sintering process is evaluated through simulation based on a viscoplastic 
creep model. This model is based on phenomenological principles and identified 
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through specially designed experiments. The sintering process inherits the density 
distribution that results from injection molding simulation, with the subtraction of 
binder phase due to debinding process. Such a simulation based on the calibrated 
model provides the determination of shrinkage ratios, shape distortions and final 
mechanical properties of the considered parts (Song, 2006). 

The proposed optimization procedure includes the sequential optimization of the 
injection and sintering stages, with the binder removal from components between 
both stages. The overall optimization cycle for both processing stages is important 
too, allowing the optimization of overall parameters for the design of PIM 
processing. The validation of the optimization procedure is carried out considering 
that the PIM process is applied to a hip implant. This typical part is significant in 
terms of thickness and complicated in 3D shape. The parts have been manufactured 
in our laboratory through ceramic injection molding. 

2. Optimization of the injection stage 

2.1. Powder segregation evaluation 

Besides other visible defects, such as jetting, front welding and incomplete filling, 
segregation induced by injection molding represents the most important defects that 
affect final quality of the products (German, 1997). In order to evaluate the 
segregation effects, a biphasic flow model has been developed to describe the 
mixture flow and to properly account powder segregation (Gelin, 2004). The flows 
of the powder and binder are respectively described by two distinct phases. The 
interaction between the flows of both phases is accounted through a term that 
represents their momentum exchange. The volume fraction field for the powder 
phase describes the segregation effects. The density distribution of the powder phase, 
as a function of the powder volume fraction, represents the result of segregation. For 
performing efficient simulation based on the proposed model, the Feapim© FEM 
software has been developed by the authors based on the algorithms proposed in 
(Barriere, 2001, 2005).  

2.2. Optimization of segregation resulting from powder injection moulding 

Based on the developed finite elements simulation tools, the optimization of the 
segregation effects in injection molding was developed (Ayad, 2006). The objective 
function chosen for the optimization consists to minimize the gradient of the powder 
volume fraction in green parts. This objective function is expressed as: 
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where 
0SΦ is the initial powder volume fraction, N stands for total nodes number in 

the FEM mesh, and iS ,Φ  stands the powder volume fraction at the ith node, q is 
chosen equal to 1. The optimization vector variable is ( ) 4,...,1== iixx  Each 
component of the vector x represents a parameter in the injection process, as 
indicated in Table 1. The optimization scheme is then formulated as the 
minimization of function [1] according to the optimization of 4 variables, under the 
constraints associated to the injection process, as related in Table 1. 

Table 1. The optimization variables for the injection stage in PIM 

Component Parameters Optimized range 

x1 Powder volume fraction [0.4 - 0.7] 

x2 Interaction coefficient [0.001 - 0.007 Pa·s·m-2] 

x3 Powder density [1 - 8 g. cm-3] 

x4 Binder density [0.5 - 2.5 g. cm-3] 

The evaluation of the objective function with respect of the constraint functions 
leads to an expensive computational cost due the complexity of biphasic flows.  
Even if an efficient solver has been developed and used with success, it is still far 
away from the application of the FEM solver directly in the optimization loop. So, a 
response surface is built based on a limited number of the response function 
evaluations for the purpose to replace the FEM solver in optimization procedure. An 
adaptive refinement of the optimized space is associated to the application of the 
response surface. The optimization strategy is based on the use of a genetic 
algorithm that requires a large number of evaluations. So, in order to decrease the 
number of the cost function evaluations, an adaptative response surface is built. The 
nodes of the response surface function are assigned by the FEM solver. This 
approximate surface is stretched along dimensions of its variables. However an 
important number of evaluations are still necessary as the response surface is built in 
the space of at least 4 dimensions. In the proposed method as shown in the diagram 
related in Figure 1, Design of Experiments method (DoE) is first used to determine 
the most sensitive process parameters. Then the response surface is built on the 
prescribed nodes by the Moving Least Square method and the adaptative approach 
proposed in (Nayroles, 1991). This response surface is built in the space of 
dimension number equals to the number of optimization parameters (Belytschko, 
1996). The number of the samples is set to be three in each dimension. Then the 
global minimization is achieved through a genetic algorithm.  
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Figure 1. The optimization method for minimization of the segregation in the 
injection stage associated to powder injection molding 

In the next step, an adaptive method is applied. Around the roughly determined 
minimum position, the response surface is then refined by adding new values issued 
from the FEM simulations. The refinement is realized by half of the distance 
between two initial samples (Vergara, 2002). It means that radius of the new sample 
equals half of the radius of the previous ones, see Figure 1. The main reason to retain 
the Surface Response Method is associated to the fact one mainly searches a fast and 
robust solution avoiding local minima and averaging the local variations of the 
objective function. The second reason is associated to the fact that the computational 
cost for each simulation remains large. 

2.3. Optimization of the injection stage for a hip implant 

The optimization procedure is applied to the injection of a ceramic hip implant. 
The process parameters are indicated in Table 1. The variations of filling states 
in 3D is illustrated in Figure 2a, b, c, d, e. Figure 2e relates the optimized powder 
volume fraction contours corresponding to 95% of the filling state. The powder 
volume fraction varies from 0.38 to 0.42. 

Design of Experiments 

(significant parameters) 

Approximation of 
the Cost Function 

Complete knowledge of  
function behaviour 

Parameters evaluations 
(Finite Element calculation) 

Interpolation 
Algorithm 

Moving Least Square 
approximation (MLS) 

with 3 points per direction 

Minimum with a 
Stochastic algorithm  

( Genocop 3) 

Moving Least Square 
approximation (MLS) 

with a new configuration 
2 1 % 5 min min ≥ − − n n 

Stop 

(nth) 

if 
else 
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Meshes composed of 3D elements (1786 Nodes, 2340 elements) 

    
a) 25% b) 50% c) 75% d) 95% e) powder vol. 

fraction (95%) 

Figure 2. a), b), c) and d) Evolution of the filling state for different filling ratios. 
Figure 2e indicates the optimized powder volume fraction corresponding to 95% of 
filled state 

Then the optimization is launched again in a space with two variables, that 
corresponds to most sensitive parameters in injection process: the injection 
pressure (10 - 20 MPa) and the initial powder volume fraction (0.4 - 0.7). The 
position of the samples is illustrated in Figure 3a and the response surface is shown 
in Figure 3b. The optimized solution for both parameters are Pinj = 20 MPa and Φinit 
= 0.4, respectively. 

Powder volume fraction Objective function 

 
Injection pressure 

 
Powder volume fraction 
            Injection pressure 

a) Location of the samples after refinement b) Response surface as function of the 
powder volume fraction and injection 
pressure 

Figure 3. Response surface obtained by the proposed method, a) Powder volume 
fraction contours, b) Shape of the response surface 
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After the injection stage, the debinding one is proceeded to mostly remove the 
binder. One supposes that the powder volume fraction contours remain unchanged 
in the debinding stage. This assumption is reasonable, due to the fact that the binder 
removing leaves the porosity in the parts but it does not change the powder 
distribution. The contours of powder volume fraction are then handed over to the 
sintering stage without any significant change. It plays the important role in 
sintering stage as it may induce the distortion in shape and the defaults in 
mechanical properties. 

3. Optimization of the sintering stage 

3.1. Modeling of the material behaviors in sintering 

A linear viscoplastic constitutive law is used to set up the relationship between 
the stress and strain tensors (Bordia, 1988), expressed as: 
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where vpε  is the viscoplastic strain rate, σ´ is the deviatoric stress tensor, tr(σ) is the 
trace of stress tensor, Gp is the shear viscosity modulus, Kp is the bulk modulus, σs is 
the sintering stress and I is the second order identity tensor. 

Different models have been developed to calibrate the constitutive law; the 
following expression is used in the present analysis (Bordia, 1988):  
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in which zη  and vpν  are respectively the axial viscosity and viscous Poisson ratio 
of the porous material, ρ  is the apparent density of the porous material. The axial 
viscosity can be expressed in the following form (Song et al., 2006):  

)/exp( bb0
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where k is a constant, T is the absolute temperature, G represents the grain size, Ω is 
the atomic or molecular volume, Db0 is the grain boundary coefficient diffusion on, 
Qb is the activation energy for grain boundary diffusion and R is the gas constant. 

The sintering stress corresponding to the ceramic powder is expressed in the 
following form (He, 2005):  
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where svγ  is the surface energy, ssγ  is the grain boundary energy, and 0ρ  is the 
initial relative density. The following equation has been chosen for the powder 
particles growth for alumina powder mixture (Kang, 2004):  

( ) 3
4

3
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where sδ  is the surface diffusion thickness, s0D  represents surface diffusion 
frequency, and sQ  is the activation energy associated to surface diffusion.  

3.2. Identification of the constitutive law for solid state sintering  

For the purpose of sintering simulation, an identification algorithm has been 
applied to determine the material parameters in the sintering constitutive model. An 
optimization strategy is proposed to minimize the gaps between the shrinkage curves 
obtained from dilatometer experiments and by numerical simulations, respectively. 

The material parameters are the variables to be optimized, so the optimization 
problem is formulated as a minimization one expressed as: 
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where ( )xTf ie ,  is the shrinkage curve issued from the dilatometer experiments, 
( )xTf is ,  is the shrinkage curve obtained by numerical simulations and x is the set of 

variables for material parameters. In the sintering model for alumina powder, as 
shown in Equation [3-6], the parameters k , R  and Ω  are physical constants. The 
surface energy svγ  is chosen equal 0.71 J/m2, the grain boundary energy ssγ  is set to 
be 0.34 J/m2 (Kang, 2004). So the identification procedure consists to find the 
optimal values corresponding to bQ , b0bDδ , sQ  and s0sDδ . The identification 
procedure for sintering parameters is applied to the powder alumina and dissolvable 
binder mixture. The shrinkage curve vs. sintering time has been measured in our 
laboratory with a dilatometer. The resulting identified parameters are given in 
Table 2. These parameters are compared with these ones issued from literature 
(Kang, 2004). The dilatometer test results and the simulations with the initial and 
identified parameters are shown in Figure 4.  
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Table 2. The identified parameters and their values related in literature 

 Qb 
(kJ/mol) 

Qs (kJ/mol) δbDb0(m3/s) δsDs0(m3/s) 

Reference (Kang, 2004) 418 493 8.6×10-10 1.26×10-7 

Heating rate 20 °C/min 351.09 234.67 2.1911e-9 4.5284e-12 

holding at 1600 °C 358.68 380.97 2.4503e-9 3.8097e-8 
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with the 
identified 
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Figure 4. The shrinkage obtained from dilatometer tests and simulation results 
obtained from identified parameters or coming from (Kang, 2004)  

3.3. The application to a hip implant 

An example of hip implant has been realized in our laboratory (Liksonov, 2006), 
in order to validate the overall identification optimization process. The contours of 
the initial density for sintering simulation are issued from the optimization of 
injection process on the basis of biphasic simulation, see Paragraph 2. The mean 
density associated to the green part corresponding to the hip implant is equal to 0.58. 
The sintering parameters of the model have been identified and are related in Table 2. 
The initial mesh for the sintering simulation is shown in Figure 5a. The mean 
shrinkage that results from simulation corresponds to 11.85%. The final density 
reaches a value 84.5% issued in simulation. The shape of sintered hip implant is 
shown in Figure 5a, too. The measurements on the hip implants indicate that the 
shrinkage is about 15.4%, and the final density 95% is obtained. The values resulting 
from experiments are greater than the ones obtained by simulation. This significant 
difference is due to the fact that the sintering model is sometimes not adequate for 
prediction of the density evolution at the last stage of sintering by solid state 
diffusion. Nevertheless the model is correct for simulation of the first stages in 
sintering process but not up to the last stage. 
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(a) Initial mesh (debinded part) and final size (sintered hip implant) 

 
(b) Density contours in the sintered hip implant 

Figure 5. Mesh and density contours resulting from the sintering of the hip implant 

 

Figure 6. The mold cavities dimensions resulting from the overall optimization of 
the PIM process  

Dimensions of the final part 

Series of simulations of the ‘injection + sintering stages’

Determination of the shrinkage 

Determination of the cavity sizes 

Complete simulations cycle based on the determined sizes 

Dimensions of the sintered part 

Comparison between the final and desired dimensions 

Stop 

If the difference < 3% If not 

1 

2 
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3.4. Optimisation of the complete processing cycle 

The objective of the overall optimization proposed strategy is to get the final 
dimensions and material properties of the sintered parts. It means that the 
improvements from each optimization step are aimed to upgrade and update the final 
results. In the backward sense, the parameters for the injection phase should be 
guided to provide the suitable initial conditions for the sintering stage to get the 
prescribed dimensions and material properties. Based on the powder volume fraction 
issued from the injection stage, the shrinkage predicted by sintering simulation 
should match the required final dimensions. Then, it is realistic to determine the 
sizes of mold cavities according to the required final dimensions, sintering shrinkage, 
and the powder volume fraction after the injection. Once a cycle of the optimization 
is realized to get the predicted final dimensions, the difference between the required 
and predicted final parts is reported to launch again a complete improvements cycle. 
This procedure continues up to the overall optimization, until the prescribed 
tolerance is achieved, see the diagram in Figure 6. The method that is used consists 
to choose a fixed point in the mesh and to apply a scaling from this fixed node with 
the ratio corresponding to the last obtained mean dimensional shrinkage. 
 

 

Figure 7. Geometry of the required part resulting from PIM processing 

In the section below, the sequential optimization for the final form is applied to 
the hip implant example. At the end of PIM process, the following geometry is 
required for the final sintered parts, see Figure 7. The results of proposed 
optimization strategies are shown in Figure 8. After 3 iterations, the shrinkage reach 
a stabilized value equal 15.2% that permits to determine the dimensions of mold 
cavity. The optimization of the overall process steps permits to evaluate the size of 
mold cavities. The uniform distribution of powder phase after injection is also 
improved to satisfy the final dimension requirements. The macroscopic sintering 
model parameters should be calibrated from experiments to evaluate the final 
shrinkage in sintering process with the required accuracy.  
 

100mm 

40mm 
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1st iteration : 
- Simulation of injection with initial size 
- Simulation of sintering process  
- Result: 15.5% of shrinkage 

 

2nd iteration : 
- Geometric growing factor 1.1150 
- Simulation of injection + sintering  
- 15.21% of shrinkage 
 

 

3rd iteration : 
- Geometric growing factor 1.1521 
- Simulation of injection + sintering 
- 15.2% of shrinkage 
 

 

- Dimensions of the mold cavity 
 
- The computation for 3 iterations take 54 
hours (on a standard PC) 

Figure 8. Optimization of the final hip implant corresponding to Al2O3 mixed 
powders 

4. Conclusions 

An overall optimization strategy for PIM process has been developed and applied 
to the determination of the mold cavities geometry and processing conditions. The 
approach combines sequentially the optimization of the injection moulding stage 
followed by the sintering one. The solver that is used for the injection stage is based on 
a biphasic approach and the optimization strategy based on a Response Surface Method 
leads to the minimization of the powder segregation effects. Then the overall 
optimization includes an inverse identification of the solid state sintering parameters, 
followed by a solver for prediction of the shrinkage resulting from the sintering stage. 
The later is capable to model more precisely the physical mechanisms associated to the 
sintering process, and to predict the final s dimensions of the sintered parts. Finally, 
based on the optimization of injection moulding stage and sintering one, the 
optimization loop leads to the appropriate mould cavity geometry as well as sintering 

118mm

47mm 
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parameters to get the component with the required geometry. An example of hip 
implant made of the alumina powder and dissolvable binder has been realized to 
demonstrate the efficiency of the proposed procedure. According to the final 
dimensions and identified model for sintering, it is realistic to determine the size of 
initial mold cavities and minimize the shape distortion by minimization of the powder 
segregation in injection.  

5. References 

Ayad G., Barriere T., Gelin J.C., “Optimization of powder segregation occurring in metal 
injection molding of stainless steels”, Int. J. of Forming Process, vol. 9, n° 1, 2006, p. 9-28. 

Barriere T., Physique et Technologie du Moulage par Injection de Poudres, Mémoire d’HDR, 
Université de Franche-Comté, décembre 2005, p. 1-214. 

Barriere T., Gelin J.C., Liu B., “Experimental and numerical analyses of powder segregation 
on the properties and quality of parts produced by MIM”, Powder Metall., vol. 44, n° 3, 
2001, p. 228-234. 

Belytschko T., Krongauz Y., Organ D., Fleming M., Krysl P., “Meshless methods: An 
overview and recent developments”, Comput. Methods Appl. Mech. Engrg., vol. 139, 
1996, p. 3-47. 

Bordia R.K., Scherer G.W., “On constrained sintering-I Constitutive model for a sintering 
body”, Acta Metall., vol. 36, n° 9, 1988, p. 2393-2397. 

Gelin J.C., Barriere T., « Ségrégation de phases dans les écoulements de polymères fondus 
chargés en poudres métalliques », Mécanique et Industries, Ed. by EDP Sciences, vol. 5, 
n° 4, 2004, p. 429-440. 

German R.M., Bose A., Injection moulding of metal and ceramics, Princeton, MPIF, 1997. 

He Z., Ma J., “Constitutive modeling of alumina sintering: grain-size effect on dominant 
densification mechanism”, Comp. Mater. Sci., vol. 32, 2005, p. 196-202. 

Kang S-J.L., Kang Y.I., “Sintering kinetics at final stage sintering: model calculation and map 
construction”, Acta Mater., vol. 52, 2004, p. 4573-4578. 

Liksonov D., Experimental and numerical study of the manufacturing and behavior of the 
formal THR components produced by injection molding of fiber composite and by 
powder technologies, Ph. D Thesis, University of Franche-Comté, 2006. 

Nayroles B., Touzot G., Villon P., La Méthode des Eléments Diffus, Comptes Rendus de 
l’Academie de Sciences, 313, série II, Paris, France, 1991, p. 133-138. 

Song J., Gelin J.C., Barriere T., Liu B., “Experiments and numerical modelling of solid state 
sintering for 316L stainless steel components”, J. Mater. Process. Technol., vol. 177, 
2006, p. 352-355. 

Vergara F.E., Khouja M., Michalewicz Z., “An evolutionary algorithm for optimisation 
material flow in supply chains”, Computers & Industrial Engineering, vol. 3, 2002, 
p. 407-421. 



 


