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ABSTRACT. Finite element simulations are well established in industry and are an essential 
part of the design phase for mechanical structures. Although numerical models have become 
more and more complex and realistic, the results can still be relatively far from observed 
reality. Nowadays, use of deterministic analysis is limited due to the existence of several 
kinds of imperfections in the different steps of the structural design process. This paper 
presents a general non-probabilistic methodology that uses interval sets to propagate the 
imperfections. This methodology incorporates sensitivity analysis and reanalysis techniques. 
Numerical interval results for a test case were compared to experimental interval results to 
demonstrate the capabilities of the proposed methodology. 
RÉSUMÉ. Les simulations par éléments finis sont bien implantées dans le monde industriel et 
sont devenues incontournables en phase de conception des structures mécaniques. Bien que 
les modèles numériques soient de plus en plus complexes et réalistes, les résultats obtenus 
présentent encore des écarts non négligeables par rapport à la réalité observée. L’utilisation 
d’une analyse déterministe est limitée car elle néglige les imperfections de la phase de 
fabrication ou encore de la méconnaissance des données d’avant-projet. Une méthodologie 
générale de nature non probabiliste, utilisant les intervalles, est présentée pour propager les 
imperfections. Celle-ci est basée sur le couplage entre analyse de sensibilité et technique de 
réanalyse par projection. Un cas test est présenté pour démontrer la capacité de la 
méthodologie à prédire un ensemble de résultats expérimentaux. 
KEYWORDS: imperfections, interval, reanalysis, frequency response functions, aggregation of 
experimental results. 
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1. Introduction 

Many adjectives are frequently associated to the data and/or objectives used in 
structural analysis: uncertain, imprecise, vague, unknown and subjective are just 
some examples. The difficulty in characterizing parameters necessarily leads to 
errors being introduced into deterministic numerical models. In mechanical 
engineering, such imperfections may be due, for example, to modelling errors, 
material properties or the geometrical tolerances in manufacturing and assembly. 
Given this context, the problem of how data imperfection can be taken into account 
during the design phase has caught the attention of the scientific community. 

To quantify behavioral evolutions, many nondeterministic approaches have 
already been used, namely probabilistic, stochastic, finite element (Sudret et al., 
2000) non-parametric (Capiez-Lernout et al., 2006), interval (McWilliam, 2000) and 
fuzzy set (Massa et al., 2003) methods. The main objective of all these approaches is 
to precisely quantify the propagation of imperfections in industrial models, while 
keeping computational costs compatible with the design phase. 

This paper proposes a non-probabilistic general approach using interval 
formalism to propagate imperfections in finite element models. Our approach's 
objective is to identify the boundaries of a structure’s behavioural variation for 
several kinds of analysis and provide these boundaries to the designer in order to 
optimize the product and make it more robust (Massa et al., 2006). The reanalysis 
phase, in which perturbed eigensolutions are approximated, and the propagation 
phase, in which imperfections are propagated on Frequency Response Functions 
(FRFs), are explained in detail. Then, numerical and experimental interval FRFs are 
compared to highlight the capabilities of this approach. 

2. Imperfection quantification 

Interval formalism is employed here to manage imperfection in structural 
analysis applications. Each parameter of a numerical model, defined with 
imperfections, is described by an interval and is indexed by the symbol I. The 
interval parameter PI is usually written in the following form: 

];[];[ PPPPPPP ccI ∆+∆+==  [1] 

where PPPPP c ∆∆ ,,,,  are respectively the lower bound of the interval, the upper 
bound of the interval, the nominal value, the lower variation and the upper variation. 

The interval concept and arithmetic first appeared in the mid-1960s (Moore, 
1966; Alefeld et al., 1983). Although interval mathematical algorithms have been 
proposed for the last forty years to solve linear interval equations, nonlinear interval 
equations and interval eigenvalue problems, it is difficult to apply these results 
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directly to practical engineering problems in which large finite element matrices 
must be managed. In addition, with classic interval arithmetic, the interval solution is 
always overestimated because of multi-occurrence problems that prevent the 
boundaries of a structure’s behavioral variation from being predicted precisely. 

When interval parameters are considered, the parameter variation space is a 
hyper volume whose size is a function of the number of interval parameters. From a 
practical viewpoint, this continuous variation space can be discretized by 
subdividing the interval associated to each interval parameter. The interval 
parameter PI is defined as a set of discrete values: 

{ }ndI PPPP ,....,, 21=  [2] 

where nd is the number of subdivisions. To build interval solutions, the problem 
becomes finding, among all the different combinations of parameter values, those 
that lead to the minimum and maximum solution variations. A variation space and 
the associated response surface are illustrated Figure 1 for the case of two interval 
parameters. 

 

Figure 1. Space of variation for 2 interval parameters 

The computation time needed to calculate all the possible parameter value 
combinations can be considerable. This time can be reduced by studying the 
solutions' functional dependence with respect to the parameters and by implementing 
an appropriate methodology. Indeed, depending on the type of solutions studied 
(e.g., displacements, stresses, eigenvalues, eigenvectors) and the fuzzy parameters 
(e.g., Young’s modulus, Poisson's ratio, density), the nature of functional 
dependence is not always the same. This dependence may or may not be monotonic 
(e.g., linear, quadratic). For certain parameters, simple rules can be defined because 
the solutions' functional dependence is monotonic. For example, eigenvalues tend to 
increase as Young’s modulus increases and decrease as density increases. However, 
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for other parameters, such as Poisson’s ratio or plate thickness, the functional 
dependence is not always monotonic, particularly in the case of large variations. 
These parameters are present in both the mass and stiffness matrices, either defined 
by a rational fraction in the case of Poisson’s ratio, or as a function of power in the 
case of plate thickness. For these kinds of parameters, the functional dependence is 
different for each eigenvalue and for each component of the solution vector. 

Practically, CPU time can be reduced in different ways, either by limiting the 
number of combination calculations, or by substituting an efficient approximation 
for the finite element calculations of perturbed solutions. In the best case scenario, 
both can be done at the same time. The authors (Massa, 2005; Massa et al., 2003) 
have already proposed an Interval or Fuzzy Finite Element Method (IFEM or 
FFEM) to deal with the interval or fuzzy static and modal analysis. This method is 
reviewed briefly in the next section. In section 5, we propose extending the IFEM to 
the case of interval dynamic problem by basing our investigation on our previous 
research about modal interval analysis. 

3. Imperfection propagation 

As mentioned above, the authors (Massa, 2005; Massa et al., 2003) have already 
proposed a method for solving static and modal interval finite element problems. 
This method has two steps: 1) the determination of the parameter value combinations 
that lead to extreme solution variations and 2) the approximation of extreme 
solutions for these specific combinations in order to build the interval solution. 

The interval problem ),...,( 1
I

Np
II PPfS =  is transformed into two optimization 

problems in which the minimum and maximum solution variations are sought: 

 { };),...,(),...,,...,(),...,,...,(min[ 1
1

1
11

1
nd

Np
ndnd

NpNp
I PPfPPfPPfS =  

 { } ]),...,(),...,,...,(),...,,...,(max 1
1

1
11

1
nd

Np
ndnd

NpNp PPfPPfPPf  [3] 

where Np is the number of interval parameters. As the functional dependence is not 
highly nonlinear, these combinations of parameter values associated to extreme 
variations can be identified by performing sensitivity analyses at different points in 
the parameter space. (More details of this strategy can be found in Massa et al., 
2005). For each identified combination, a high order approximation—for example 
Taylor expansion (Massa et al., 2006) and more recently Padé approximants (Massa 
et al., 2008)—is used to limit the computational cost. 

In order to improve the precision of the approximation, particularly in the case of 
eigenvectors, we propose a reanalysis technique using projection. This technique 
seeks approximate solutions in a subspace T, which is independent of parameters Pi, 



Structural analysis by interval approach     873 

by solving for each value of the parameters Pi. In the case of modal analysis, the 
equilibrium equation becomes: 

 Λ= qTPMTqTPKT TT ])([])([  [4] 

where Ψ and q  are, respectively, the modal basis and the modal coordinates. 
Equation [4] is solved very quickly, and then the responses for all degrees of 
freedom are easily restituted using Tq=Ψ . As underlined by (Balmès et al., 
2005), the fundamental issue is determining the procedure for building a subspace T 
that will provide good predictions for all desired values of Pi. We suggest 
constituting this subspace T with the nominal solutions for the studied problem and 
the orthonormalized perturbed solutions used to construct the rational fractions for 
Padé approximants (Cochelin et al., 1994). The subspace T is written: 

 ,...],...,,...,,...,[ 0
1

0
1

N
ii

NT φφφφ=  [5] 

where k
jφ is the jème perturbed eigenvector of order k. The perturbed eigenvectors are 

obtained by introducing a perturbation into the mass and stiffness matrices and using 
Lee’s method (Lee et al., 1997): 
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where ε represents an additional unknown that allows the perturbed problem to be 
defined. This unknown is similar to the control parameter of classic iterative 
algorithms. 

This reanalysis technique is very powerful even when the variations of mode 
shape behavior are significant. To illustrate this remark, Figure 2 shows an 
imperfection of 30% introduced on thicknesses e1 and e5 in the structure represented. 
This structure is very sensitive to the variations of different plate thicknesses. The 
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Modal Assurance Criterion (MAC), calculated between the nominal and perturbed 
modal bases, shows the importance of this modification. For example, the variation 
of the mode 5 components is close to 70% with a MAC of 0.5. Comparing the 
reference eigensolutions (finite element calculations) and approximated 
eigensolutions confirms the efficiency of this reanalysis technique: the maximum 
error in the eigensolutions is inferior to 0.05%. 

 

Figure 2. Cantilever box beam and results of approximation 

4. Interval modal superposition 

Consider now a system defined with two interval parameters P1 and P2. The 
FRFs obtained for certain combinations of discrete values of interval parameters are 
shown in Figure 3. Three specific kinds of zones are distinguished in the figure: 
resonance zones (2, 6 and 9), antiresonance zones (5) and intermediary zones (1, 3, 
4, 7, 8 and 10). 

Examining the response surfaces pictured in Figure 4 highlights two main cases 
of functional dependence for these three specific kinds of zones: 

On the one hand, the functional dependence is quite non-linear for the resonance 
(response surfaces B & E) and antiresonance (response surface D) zones. The 
extreme variations are not obtained for the combinations of extreme values of 
interval parameters. Studying the response surfaces for successive frequencies shows 
that extreme behavioral variations are obtained for different combinations of discrete 
values of interval parameters. In this case, determining the extreme variation for all 
these zones requires that almost all the combinations of interval parameter values be 
calculated. On the other hand, the functional dependence is generally linear or 
quadratic in the intermediary zones (response surfaces A, C and F) as is the case for 
modal analysis. 
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Figure 3. Example of interval FRF 

 

Figure 4. Response surfaces for different frequency steps 

This simple parametric analysis is representative of the functional dependence of 
solutions and the modification of the dynamic behavior of general mechanical 
structures described with imperfection. Using IFEM (Section 3) for each frequency 
step will be inevitably time consuming. In order to reduce the CPU time, we studied 
the modal superposition formula, in the case of modal damping, to determine the 
number of modal parameter value combinations that will be useful to define the 
variation boundaries of the FRFs. The FRF observed at point i for m modes and k 
excitations is written: 
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where ω0υ
I, ξυI and Фυ

I represent respectively the υème eigenpulsation, the υème 
damping ratio, the υème eigenvector, the loading vector FI, and Ω the excitation 
pulsation. 

To detect specific parameter combinations, the square of the module of 
Equation [8] is analyzed for each zone, namely the resonance, antiresonance and 
intermediary zones: 
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A sensitivity analysis of the module of Equation [8] according to damping ratio 
showed that this parameter did not have much influence on intermediary zones, 
which makes it possible to attribute a nominal value to this damping ratio. On the 
contrary, for the resonance zone, a specific value must be determined for the 
damping ratio. 

By moving away from the mode's resonance zone (zones 3 and 4), the term 

Ω...2 0
II
υυ ωξ  becomes negligible according to 22

0 Ω−I
υω in equation [9], which can 

be written as follows: 
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Maximizing Equation [10] (respectively minimizing) comes down to maximizing 
(respectively minimizing) the numerator and minimizing (respectively maximizing) 
the denominator. Since the numerator is a sum of positive and negative terms, it is 
not possible to determine the parameter value combinations analytically. The choice 
of bounds for the intermediary zone is thus determined using interval arithmetic, 
since there is no problem due to multiple occurrences. 
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For the resonance zone, the response of mode υ becomes dominant. The extreme 
levels are given for Ω=ω0µ with ω0µ included between the lower and upper bounds of 
the pulsation ω0µ

α. In addition, 22
0 Ω−I
υω  becomes negligible according to 

Ω...2 0
II
υυ ωξ  in equation [9]. Thus, equation [9] can be transformed as follows: 
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Equation [11] allows the bounds of the parameters that can be taken into account 
to be determined. The interval solutions are again obtained using interval arithmetic. 

For the antiresonance zone, the minimum level of FRFs boundaries is equal to 
the minimum value obtained when calculating the different FRFs. 

Thus, as shown above, by coupling the functional study and the reanalysis 
technique, it is possible to extend the IFEM to the case of dynamic frequency response. 

5. Comparison of numerical and experimental results 

The objective of our methodology is to numerically predict the variation of a 
structure's dynamic behavior using knowledge of the nominal model and estimations 
of the different variability parameters. This numerical prediction was validated 
experimentally through experimental modal analysis. The test structure (Figure 5) 
consists of two honed steel plates, held together with eight Chc M4 bolts and then 
glued to avoid assembly defects. The finite element model of the nominal structure 
contains 400 shell elements and 2706 degrees of freedom. Imperfections were 
considered for 6 parameters: Young modulus E (±3%), plate thicknesses e1 and e2 
(±20%) and sizes D1, D2 and D3 (±1%). 

 

Figure 5. Nominal two-plate steel structure and the associated finite element model 
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The numerical interval solutions were calculated using the Interval Finite 
Element Method, described in Section 3 for eigensolutions and in section 4 for 
FRFs. The experimental interval solutions were obtained by aggregating the results 
from several experimental modal analyses performed for the nominal values and the 
bounds of the interval variation for the two plate thicknesses. A total of nine (3 x 3) test 
structures were measured. The interval databases were built following a rigorous 
protocol designed to reduce the influence of experimental and modeling imperfections. 
(More details about the experimental tests are presented in Massa, 2005). 

 
Figure 6. Spectrum of interval eigenfrequencies 

Figure 6 presents the interval variations associated to the first five 
eigenfrequencies for both the numerical and experimental procedures. The numerical 
results come reasonably close to the experimental data. The maximal error made in 
evaluating the frequency bounds is less than 7%. The worst result was obtained for 
the fifth eigenfrequency, because both the model and the measurements for this 
mode shape contain some errors. 

 
Figure 7. Experimental and numerical interval FRFs 
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Figure 7 shows the nine FRFs obtained by experimental modal analysis 
compared to the numerical results obtained by IFEM. The results obtained for the 
lower and upper bounds of the FRFs are quite interesting: the amplitude of the 
dynamic response is correctly evaluated. 

6. Conclusion 

This paper proposed an Interval Finite Element Method for analyzing Frequency 
Response Functions. After studying the static and modal interval cases, this new 
investigation required a functional study, a sensitivity study and the use of a 
reanalysis technique using projection to approximate perturbed eigensolutions. 

The numerical interval results were compared with an experimental interval 
reference. The experimental interval database was obtained by aggregating the 
results (frequencies and FRFs) from different configurations of the test structure. 
Using a good quality nominal model and a reasonable estimate of the variability of 
the significant parameters, we were able to demonstrate a good correspondence 
between the numerical and experimental data. 

The main idea is to provide designers with calculation tools (e.g., static interval 
analysis, modal interval analysis, dynamic interval analysis) for different structural 
analysis studies. The proposed methodology determines the boundaries of a 
structure’s behavioural variation using knowledge of a nominal model and 
estimations of the different variability parameters. The interval results will then 
introduce a notion of robustness in design optimization strategy. 
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