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ABSTRACT. Two approaches are presented for the modeling of the impedance matrix of a
random medium: one parametric and the other nonparametric. The former allows to take into
account the data uncertainties while introducing a model error, that yields, in some cases,
very high levels. The latter is based on a much simpler, deterministic, model, for which both
data uncertainties and model errors are accounted for. When the model error is negligible,
the parametric approach can be used for the identification of the parameters of the
nonparametric model of the impedance matrix.

RESUME. Deux approches sont présentées pour la modélisation de la matrice d’impédance
d’un milieu aléatoire : une paramétrique et une non paramétrique. La premiere prend en
compte les erreurs de données, mais introduit une erreur de modeéle, qui peut, selon les cas,
atteindre des niveaux importants. La seconde est basée sur un modele simpliste et
déterministe, pour lequel a la fois les erreurs de données et de modéle peuvent étre prises en
compte. Lorsque [’erreur de modele est négligeable, |'approche paramétrique peut étre
utilisée pour [’identification des parameétres du modéle non paramétrique de la matrice
d’impédance.
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1. Introduction

In many fields of application, as civil engineering or aengics, engineers have to
design structures that are in contact with unbounded danadinthese applications,
only the structure is really of interest for the engineers] the exterior domain is
important only through its equivalent stiffness, in statior its boundary impedance
matrix, in dynamics.

The unbounded domains that are considered in these ajplisatre often inaccu-
rately described and complex. For instance, the naturatbgeneity of a soil is often
replaced, in seismic design problems, by a system of honsmgenhorizontal layers.
However, the physical behavior of such a simplified systequite different from the
original, and some features are then lost. The error thatisduced is referred to as
model error. Besides, once the model has been chosen, thesihe of the domains
that are considered hinders the feasibility of an expertaierampaign to assess the
parameters of that model. The uncertainty associated hétlevaluation of these pa-
rameters is referred to as data uncertainty. For some damaid in particular the
soil in geotechnical problems, these data and model uricges can be very large.
Probabilistic approaches can then be introduced to try akelthem into account.

Two types of approaches are possible: a parametric, whighstato account
data uncertainties only, and a nonparametric, which caesaslsoth model errors
and data uncertainties. The former consists in constmiginobabilistic models of
the parameters of the mechanical system, and to deducerttesponding stochastic
model for the impedance matrix. The most widely used metlwdHis approach
is the Stochastic Finite Element (SFE) method (Ghamgral, 1991). The non-
parametric approach consists in taking into account uaiceigs directly at the level
of the matrices of the considered dynamical system. Basetie@original method
by Soize (Soize, 2000; Soize, 2001), presenting the cartsiruof a probabilistic
model for the generalized matrices of mass, damping anfthests of a dynamical
system, a nonparametric probabilistic model for impedanatices was recently in-
troduced (Cottereau, 2007; Cotteresial, 2007a; Cottereaet al., 2007b).

We propose here to construct, for a common reference prof@éntection 2),
probabilistic models of the boundary impedance matrixlofeing successively a
parametric approach (cf. Section 3.1) and a nonparameipimach (cf. Section 3.2).
When the model error that is introduced in the parametricagugr is negligible, this
method can be used for the identification of the parametereafonparametric model
of the impedance matrix (cf. Section 3.3). An example is led, of a rigid embed-
ded foundation within a layer of random soil on a rigid bedir¢ef. Section 4).

2. Reference problem
Let us consider a general domdih which is considered random in the sense

that its mechanical properties are modeled as random fig€his. domain{2 may be
unbounded, and its boundary is denot¥d. We define part of this boundary as a
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boundary of interedt, with respect to which we want to define the impedance matrix.
For instance, this boundafywould be the interface between the soil and the structure
in seismic design of a structure (see Figure 1(a)), or theruof the interfaces between
the soil and the structure and between the fluid and the ateigt dam engineering.
Free field conditions are enforced on part of the boundano®eos?,,, and clamped
conditions are imposed on another part, dené@gd. We suppose thdtnoQ, = 0,
rnoQ, =0,00,n00, =0, andl’ U IQ, U IQ,, = IN.

I

Q

(a) Reference model (b) Mean model (c) SFE model

Figure 1. (a) Reference problem of a rigid embedded foundation in azbatally-
unbounded layer of random soil on top of a rigid bedrock, (@responding mean
model, and (c) SFE model of the reference problem

The Lamé’s parameterk(x) and p(x) of the random mediunf2 are modeled
as the restrictions of2 of second-order homogeneous random fields, defined on a
probabilistic spac€A, 7, P), and indexed ofiR3. The corresponding mean fields are
constant and denoted

Ao = E[A(x)], po = E[n(x)], [1]
and the covariance is such that
Cap(x,x") = Cap(|x — x'|) = E[(e(x) — a)(B(X') — Bo)], (2]

wherea andg stand either fol or 1, anda andg for A or p. For simplicity, the unit
massp(x) of the medium will be supposed constant throughout thispape

The harmonic boundary value problem (BVP) ihthat is used to define the
impedance matrix consists in finding, for eache R, a displacement fieldr =
[ui]i<i<3 such that, fol < i < 3,

Uij,j( )+P( )w uy=0 in Q,

= ¢; onT,
_ (3]
O'Z‘j(u) n; = 0 onoQ,,
u =0 onoQ,,

where¢ = [¢i]1<i<3 is a given displacement field imposed on the boundamy =
[ni]1<i<3 is the normal to boundar§<,, ando (u) is the elastic stress tensor,

o3 (u) = A(x)ukdiy + p(x) (Wi + ). (4]
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Implicit summation over repeated indexes is considered, amindex following a
comma indicates a derivation with respect to the correspgrebordinated;; repre-
sents Kronecker's delta.

The solutionu(x) of the BVP of Equation [3] corresponds to a traction figidbn
I'. By definition, the impedance operator relafeso the imposed displacement field
¢ onT. When these two fields are approximated by their expansiorssammon
finite Hilbert basis of functions indexed a@h the boundary impedance matf#; (w)]
is defined, with respect to the coordinaiigw)] and[®(w)] of these expansions, by

(Zs (W)][@(w)] = [fr(w)]- 5]

The problem that was described in this section, where theélsaparameters are
modeled as random fields, is referred to as the "referend#egnd (Figure 1(a)). It
yields the definition of the "reference impedance matfi@,(w)].

3. Probabilistic models of the impedance matrix

In the general case, it is not possible to compg(w)]. Therefore, two ap-
proaches are introduced for the modeling of the impedandexrat the reference
problem of Figure 1(a): a parametric one (Figure 1(c)), antbaparametric one.
The former consists in consideringx) and p(x) in the BVP [3] as random only
on part of the random domain, and constant elsewhere, at their mean valyand
lo- Besides possible data uncertainties, this process isdugedel error that cannot
be accounted for. On the other hand, the nonparametric nmbdaked on a "mean”
model (Figure 1(b)), where the Lamé’s parameters are tagkeomstant everywhere,
therefore inducing a large model error. However, in thisrapph, both data uncer-
tainties and model error can be taken into account.

3.1. Parametric model of the impedance matr{¥p(w)]

In this approach, we subdivide into a bounded pai2 p, where the Lamé’s pa-
rameters will be modeled by random fields, as in the "refexrgmoblem”, and its
complement),, where they will be taken as constant, at valdgsand iio. This is
typically what happens when the SFE method is used to solveldgm where ran-
dom fields are defined over an unbounded domain. Indeed, ttisoth requires the
random fields to be discretized over a FE mesh, which meatainbaunded domains
must be cut out in some fashion.

A possible approach, extending the classical, deterngniSE modeling of un-
bounded domains, would consist in introducing absorbingnbary layers, or ab-
sorbing boundary conditions at some distance from the atiwit and observation
points (Magouleset al, 2006). However, no generalization seem to exist yet for
problems with random distributions of the mechanical pai@ms. Another ap-
proach (Saviret al,, 2002), that will be used here, consists in coupling the dedn
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domain{2p, that will be modeled by the SFE method, to the unboundedmi@testic
domain(,, that can be modeled, for example, by the Boundary Elemdsi} ifBzthod.

Within the bounded domaifRp, the covariance function (Equation [2]) of the
Lamé’s parameters is supposed to be known. The fields of aeasncan then be
written as Karhunen-Loéve expansions

M) = X0+ 3 &renx)  p(x) = po+ Y eee(x), [6]
=1 =1

where the{&,},>1 and{k,}¢>1 are uncorrelated random variables, and {bg >1

are eigenfunctions of the covariance operator in Equafidriih practice, the sums in
Equation [6] are truncated afté¥; y modes, which is chosen such that the trace of
the covariance operator is well represented.

We additionally suppose that realizations of &iex) andu(x) can be constructed
by drawing independent realizations of thi&},>1 and {x,},>1 with an uniform
random variables generator, and discarding those realizabf theA(x) and p(x)
that reach a negative value for someFor each acceptable realization of the Lamé’s
parameters fields, a realization of the soil impedance maanh be computed, by
solving the BVP [3]. The probability law dfZp(w)] can then be estimated through
statistics of these realizations.

3.2. Nonparametric model of the impedance matri¥np(w)]

The nonparametric approach is quite different. The refargmmoblem, where the
mechanical fields are random is replaced by a very simpliste; the mean model,
where they are constants. This mean model of the impedaritix i?a (w)] therefore
includes both data and model error, with respe¢¥tdw)]. The nonparametric model
of the impedance matrinp(w)] is therefore introduced, based on the mean model,
to take these errors into account.

The nonparametric method was originally introduced incstmal vibration prob-
lems for the modeling of matrices of mass, damping and ss#r(Soize, 2000; Soize,
2001), and recently extended to impedance matrices (@atiet al., 2007a; Cot-
tereau, 2007; Cottereaat al., 2007b), through the use of so-called "hidden variables
models". In this approach, the probabilistic model of thasidered matrix is con-
structed, around a known mean model, by enforcing that esadlzation of the matrix
verify a given set of algebraic conditions. These condgjdar the impedance matrix,
include that it be causal and stable.

The parameters that have to be identified for the constmucfithe nonparametric
model of the impedance matrix are the mean mddg{w)], and a set of dispersion
parameters, denotek, ép, anddy;. These parameters control the scattering, around
their mean value, of the realizations of the matrices ofre#s[K], damping[D], and
masgM], of the hidden variables model of the impedance matrix. THuéoe of these
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parameters is usually made by comparison with experim&uiz¢, 2005; Arnset
al., 2007; Arnst, 2007). In the next section, we discuss theibitissto identify them
by comparison with numerical experiments constructed thigdparametric approach.

The practical construction ¢%np(w)] is done in the following way:

1) computation ofZ(w)] using any method;

2) identification of the matrices of stiffnefs,|, dampingDy], and mas§M,], of
the hidden variables model §f,(w)], as described in (Cottereatial,, 20072a);

3) computation of realizations of the nonparametric prdisiic models of[K],
[D], and[M], as described, for example, in (Soize, 2001);

4) computation, by condensation, of realization$Zxp(w)];
5) estimation of statistics d¥np(w)].

3.3. Identification of the parameters of the nonparametric mod@np(w)]

In the previous two sections, two probabilistic models @ tmpedance matrix
have been constructed in two very different ways. The firg @nconstructed by
the propagation of randomness on the parameters of the rovebeids the impedance
matrix, and the other is built directly at the level of the iadance matrix, by enforcing
a given set of algebraic conditions. The models of the medinmwhich they are built
are also very different: one is a random medium, althougligtigr while the other
is deterministic. Finally, they do not span the same spatesatrix-valued random
processes. However, they aim at representing the samemeéeproblem.

In both cases, model errors are introduced during the mugigliocess. In the
nonparametric approach these model errors can be accdantechile they cannot
be dealt with in the parametric approach. If it is possibledastruct a parametric
model of the impedance matri%p(w)] in which the model error is negligible, then a
numerical experiment can be conducted that generategaBalis of the impedance
matrix of the reference medium, and accounting for datanaicdies. The parameters
of the nonparametric model of the impedance mdH#iy(w)], assessing both data and
model errors, can then be identified from the results of thimerical experiment.

In the next section, we will construct a parametric modehefimpedance matrix
[Zp(w)] for which the model error is important for some elements aggligible for
others (in particular the shaking element). In that caseptirameters of the nonpara-
metric modelZnp(w)] should be identified only on the latter elements.

4. Impedance matrix of a random layer of soil on top of a rigid kedrock
In this section, we apply the principles seen in the prevamgtions, to a particular

example of the impedance matrix of a rigid embedded fouodain a random layer
of soil, over a rigid bedrock.



Boundary impedance of random media 887

4.1. Reference model of the impedance matrix

The geometry of the reference problem is that presentedgar&il(a), with the
height of layerH, three times larger than the radius of the foundafipand the height
of the embedmenb. The foundation is a rigid cylinder with a circular crosstsen.

H=3R=3D=30m [7]

The unit mass is constant a§ = 2000 kg/m?, and the mean Lamé’s parameters are
Ao = 0.36 GPa ang:y, = 0.18 GPa, corresponding to mean compressional and shear
velocitiesvp g = 600 m/s andvg o = 300 m/s.

4.2. Parametric model of the impedance matrix
Let us first construct the parametric model of the soil impedamatrix[Zp(w)].

We suppose that the correlation structure of the Lamé'speters is of the exponen-
tial type, with an isotropic correlation length.,

o
Cop(|x —X'|) = cacpexp (— ‘XL x |) , [8]

wherea and 3 are either\ or i1, ¢y = 1/(C\y), andc, = /(C,.,.). We consider
ey = YA ande, = ypo, with v = 60%.

Three different correlation lengths are consideréd:= 5 m, L. = 10 m, and
L. = 20 m. The Karhunen-Loéve expansion (Equation [6]) is trurtafeer N =
20 modes, which corresponds to an error in the evaluation dftive of the covariance
matrix of aroundl 5% in the three cases that were considered. 1000 Monte Caals tri
are drawn in each case, which yields a reasonable convergdritbe second-order
statistics.

The real part of the parametric model of two elements of tllérapedance matrix
are drawn in Figure 2, in the case 6f = 10 m. In Figure 3, a frequency-wise
normalized variance is plotted for the same two elementseo$bil impedance matrix.
It is defined, for eacly € R, by

E [ (Zri (@) — Zoyy () (Zoiy @) — Zoyy () |
E [Zpi; ()]

whereZp;;(w) is the elements, j) of matrix [Zp(w)], [Zp(w)] = E[Zp(w)], anda
indicates the conjugate of the complex numéer

gh(w) = , [9]
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Stiffness coefficient []
Stiffness coefficient [-]

0.5 0.5
0 5 10 15 0 5 10
Frequency [Hz] Frequency [HZ]
(a) Real part of shaking element (b) Real part of pumping element

Figure 2. Real part of (a) the shaking and (b) the pumping element&gitv)]: mean
model (dotted line), one Monte Carlo trial (solid line), nmeealue (dashed line), and
90%-confidence interval (shaded area)

Two main facts can be observed on Figure 3:

- gfj (w) generally increases with frequency and in the neighborlodogsonance
frequencies (here, the first compressional - for pumpingd grear - for shaking -
resonances of the layer of soillaHz and2.5 Hz, respectively);

- gfj (w) is much larger for the pumping element than for the shakiageht.

The first item is also observed on the other elements of thedapce matrix, that are
not plotted here for concision. The second item is also eeskbut to a lesser extent,
when comparing the rocking and torsional elements, whicrespond respectively to
a compression and a shear deformation of the layer of soil.

0.09 0.09

0.06

0.03]

Normalized variance [-]
Normalized variance [-]

15

5 10 5 10
Frequency [Hz] Frequency [Hz]

(a) Shaking element (b) Pumping element

Figure 3. Normalized variancgfj of the (a) shaking and (b) pumping elements of
[Zp(w)], for three lengths of correlationL. = 5 m (dotted line),L. = 10 m (dashed
line), andL. = 20 m (solid line)
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The difference in the amplitudes tgfj for the shaking and pumping elements
of [Zp(w)] arise from the error that is made by replacing the referemobl@m by
the SFE model. By doing this, the volume of soil that surrautite sides of the
embedded foundation, which is heterogeneous in the referproblem, is replaced
by a homogeneous volume of soil. This has little impact orrémelom model of the
pumping element ofZp(w)], because the dynamics of the vertical displacements of
the foundation are more influenced by the volume of soil bémiee foundation. On
the horizontal displacements, however, this introducesrg important model error,
virtually canceling any variability on the shaking elemeh{Zp(w)].

4.3. Nonparametric model of the impedance matrix

We then turn to the construction of the nonparametric mofigtleosoil impedance
matrix[Znp(w)]. Itis based on the mean model of the reference problem (Eibyin)),
where all mechanical parameters are considered consttrihuhe layer of soil, at
their mean values (see above). Besides the mean modelsfiersiopn parametedg ,
op, anddy; also have to be selected. We choose here, for illustraigns= op =
om = 0.1, and will discuss this choice further in the next section.

Stiffness coefficient [-]

Stiffness coefficient [-]

0.5 0.5
0 5 10 15 0 5 10 15
Frequency [Hz] Frequency [HZ]
(a) Real part of shaking element (b) Real part of pumping element

Figure 4. Real part of (a) the shaking and (b) the pumping elementZgf(w)]:
mean model (dotted line), one Monte Carlo trial (solid line)ean value (dashed
line), and 90%-confidence interval (shaded area)

The real parts of the nonparametric model of the shaking amnappg elements
of the soil impedance matrix are drawn in Figure 4. The cpoading normalized
variancesj\‘jP (Equation [9]) are plotted on Figure 5. Two facts are notitea

— although the amplitude is different, the dynamical shdgh@normalized vari-
ances fo{Znp(w)] is similar to that of Zp(w)];

— the shaking and pumping elementsir(w)] yield similar levels of variability,
while the levels were very different in the parametric case.
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0.015
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Normalized variance
o
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0.005

15

5 10 5 10
Frequency [Hz] Frequency [Hz]

(a) Shaking element (b) Pumping element

Figure 5. Normalized variancgz\‘jP of the (a) shaking and (b) pumping elements of
[ZNp(w)], for 5}( = 5]:) = 6M =0.1

4.4. Discussion

As already noted, in the parametric approach, a model esiiatrioduced by con-
sidering heterogeneous Lamé’s parameters fields only inuadesl volume of soil
under the foundation, rather than everywhere in the laydan the reference problem.
This error has influence on the shaking elemeniZafw)], but little on the pump-
ing element, due to the location of the heterogeneous voluméhe nonparametric
approach, there is no such difference between the elementedel errors are taken
into on all terms of the impedance matrix.

Itis therefore reasonable to assess that the pumping etewfdioth models of the
impedance matrix represent comparable physical probletmg this is not the case
for the shaking elements. It is then proposed to identifydispersion parametedx,
op, anddy; on the values of the correlation coefficients of the pumpilegnent, or
such that the following cost function is minimized

€= ”g;F;ump_ gpNLFmp”za [10]

where the notations used are obvious generalizations dditiou[9]. Other identifi-
cation methods, more appropriate for uncertainty quaatifio, are currently investi-
gated, and will be discussed elsewhere.

For simplicity, we present only results of the identificataf the dispersion param-
eters with the additional simplification thét = o0p = dy. In that case, the inverse
problem can be solved simply by sampling the parameter gfiadenensional here)
and solving one problem for each sample. A more completetifittion process
would require the independent identification of each disiperparameter, as well as
the concomitant identification of the mean model of the ingmeg matriZq(w)]. In
that case, more complex sampling procedures will be negesHae results obtained
for the threel, that were considered are presented in Figure 6.
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Figure 6. Normalized variances fdZp(w)| (dashed lines), as in Figure 3, fdr, = 5
m (lowest variability),L. = 10 m, andL. = 20 m, and corresponding correlation
coefficients fofZnp(w)] (solid lines), withix = dp = dy = 0.15 (lowest variability),
5}( = 6D = 5M = 0.2, andéK = 5]3 = 51\4 =0.3

5. Conclusion

Two approaches were presented in this paper for the modefiageference ran-
dom problem. The parametric approach, appropriate for th@eting of data uncer-
tainties, was shown to introduce a model error by the digetidn of the random
mechanical parameters fields. However, on the example dbthrelation embedded
in a layer of random soil on a rigid bedrock, this model eremmas to have little effect
on the shaking element of the impedance matrix, and moreeoputhmping element.

The nonparametric approach, accounts for both model earmtglata uncertain-
ties. It is based on the mean model of the impedance matrixhioh a large model
error is introduced by comparison with the reference mod&h the example pre-
sented here, it was shown to yield more balanced levels adhitity for the shaking
and pumping elements of the impedance matrix than for thanpetric approach.
Finally, a novel method was proposed for the identificatibthe dispersion param-
eters of the nonparametric method, based on results forumping element of the
impedance matrix with the parametric approach.

In a forthcoming paper, we will present results using morprapriate iden-
tification schemes, based in particular on the works of (Ar2907; Arnstet
al., 2007; Soize, 2005), and with the simultaneous identificatf the dispersion
parameters and of the mean model of the impedance matrix.
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