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ABSTRACT. As corrosion effects can lead to catastrophic consequences in naval structures, 
methods to take it into account are a source of concern. Its variability in time and space, in 
addition to the consideration of random and temporal character of material behaviours, 
environmental conditions and loads, requires adapted strategies from mechanical and 
reliability points of view. In this paper, we propose a 2D non-linear finite element mechanical 
approach modelling local decreases of the safe thickness of the structure, avoiding successive 
re-meshing. A time-variant reliability analysis of a corroded plate submitted to a stochastic 
load is carried out to validate the propounded strategy. The reliability analyses are post-
treated in a time-variant way by the PHI2 method, whose two existing formulations are 
compared in terms of stability and convergence speed. 
RÉSUMÉ. Prendre en compte les effets de la corrosion sur les structures navales dès la 
conception peut permettre d’éviter des conséquences catastrophiques. Que ce soit pour la 
corrosion, les données matériaux ou les conditions environnementales, une variabilité 
temporelle et spatiale peut apparaître. Ceci nécessite des stratégies adaptées à la fois pour 
les aspects fiabilistes et mécaniques. Ce papier présente une approche adaptée aux éléments 
finis 2D avec prise en compte du comportement non linéaire des matériaux. Celle-ci a pour 
but de permettre une modélisation de la perte d’épaisseur locale en évitant des remaillages 
successifs. Une analyse fiabiliste fonction du temps d’une plaque corrodée soumise à un 
chargement stochastique est menée pour valider la stratégie proposée. Elle est effectuée via 
la méthode PHI2, dont deux formulations sont comparées. 
KEYWORDS: time-variant reliability, stochastic load, non-linear simulations, finite element, 
corrosion. 
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1. Introduction 

As a consequence of its huge effects on naval structures, corrosion is one of the 
most shortening factors of their life expectancy. Its time and space evolution can be 
viewed as a function of various parameters, whose randomness due to environmental 
conditions is to be considered. A classical finite element approach to study corrosion 
effects relies on re-meshing strategies to represent local or global loss of thickness. 
However, such an approach can bias or slow down reliability computations due to 
numerical approximations done during the transfer of information between meshes. 
To overcome this issue, we propose to adopt a mechanical approach developed for 
2D problems, avoiding successive re-meshing and allowing to model continuously 
the local or global decreases of the safe thickness classically used (Dunbar et al., 
2004) and considering a random corrosion kinetic inspired by (Guedes Soares et al., 
1999) and (Paik et al., 2003). This approach is thus compatible with finite element 
analysis taking into account materials with non-linear behaviour, which have to be 
considered for realistic design of naval structures, coupled with reliability methods. 

Loads induced by sea-swell can be considered as stochastic phenomena. An 
appropriate representation of such a stochastic process can be obtained by the EOLE 
method (Li et al., 1993). To perform the time-variant reliability analysis, two 
versions of the PHI2 method, (Andrieu-Renaud et al., 2004) and (Sudret, 2005), are 
considered. This method, based on the out-crossing approach and making use of the 
system reliability analysis as introduced by (Hagen et al., 1991), is of interest as it 
allows the use of time-invariant reliability tools such as FORM (First Order 
Reliability Method). As an extension of the feasibility study lead in (Cazuguel et al., 
2006), the time-variant reliability analysis of a corroded plate with elasto-plastic 
behaviour submitted to a stochastic load is presented to validate our approach. 

2. Time-variant reliability methods 

2.1. Time-variant reliability problem 

Let X(t,ω) denote the set of random variables used in the mechanical problem, t 
being the studied time and ω standing for the outcome in the space of outcomes Ω. 
The time-dependent limit-state function G(t, X(t,ω)) divides the space of outcomes in 
two areas: the safe domain G(t, X(t,ω)) > 0 and the failure domain G(t, X(t,ω)) ≤ 0. 
The boundary between this two domains G(t, X(t,ω)) = 0 is called the limit-state 
surface. A time-invariant reliability analysis corresponds to assess: 

( ) ( )( )( )0,,, ≤= ωTTGprobTifP X  [1] 

This instantaneous probability of failure Pf,i differs from the cumulative 
probability of failure Pf,c, which corresponds to the following assessment: 
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( )( )( )0,,assuch  ],,0[),0(, ≤∈∃= ωτττ XGTprobTcfP  [2] 

In this paper, Pf,c is assumed to be defined with respect to the probability of first 
out-crossing. Thus, when the limit-state function G decreases on [0,T], then: 

( ) ( ) TifPcfP ≤∀= τττ ,,0,  [3] 

In other cases, a different approach has to be considered. The most common one 
relies on the computation of the out-crossing rate which can be defined by: 
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The mean number of out-crossings, corresponding to the integral in the time 
interval of the out-crossing rate, gives the upper bound of Pf,c: 

( ) ( ) ∫ ++≤≤





≤≤

T

dttifPTcfPtifP
Tt 0

)(0,,0,)(,0
max ν  [5] 

2.2. The PHI2 method 

The PHI2 method considers the assessment of the probability in [4] as a two 
component parallel system analysis. If FORM is used, two analyses give the 
coordinates of the tangent hyper-plane to the limit-state surface and the classical 
reliability products such as the reliability index β at times t and t + ∆τ (Figure 1). 
They are lead by the Abdo-Rackwitz algorithm associated with a Newton-Raphson 
line search. The correlation ρGG between the two events A = {G(t, X(t,ω)) > 0} 
and B = {G(t+∆τ, X(t+∆τ,ω)) ≤ 0} is obtained thanks to the unit normal vectors α: 

)().(),( ττρ ∆+−=∆+ ttttGG αα  [6] 
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Figure 1. Evolution of the reliability products during a time step ∆τ 
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Introducing the repartition of the binormal law Φ2, the first order evaluation of 
the out-crossing rate by the PHI2 method follows: 

( ) ( ) ( ) ( )( )
τ

τρτββν
∆

∆+∆+−Φ
=+ tttt

t GG
PHI

,,,2
2  [7] 

In this expression, the choice of ∆τ is crucial; discussions on it are developed in 
(Andrieu-Renaud et al. 2004). To facilitate this choice, the method has been recently 
improved in (Sudret 2005) by reconsidering the formulation of [4]. By introducing 
the following quantity: 

( ) ( )( ){ } ( )( ){ }( )0,, 0,, Prob ≤∆+∆+∩>=∆ ωττωτ ttGttGft XX  [8] 

Since events in [8] are apart, ft(0) = 0. [4] can thus be rewritten and leads to the 
new formulation of the out-crossing rate given in [9]. Within it, the notation “ ‘ “ is 
used to denote the derivative of function with respect to time, evaluated trough finite 
differences. φ and Φ represents respectively the normal law density and repartition 
functions. Both expressions of the out-crossing rate are compared in the sequel. 
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2.3. Methodology of the combination 

Figure 2 shows the implementation scheme of the direct combination of time-
variant reliability methods with finite element analysis. The mechanical model, 
random variables and stochastic processes are defined in PHIMECA® (PHIMECA 
2005). To compute the response of the mechanical model during the reliability 
analysis, PHIMECA® requires finite element computation (done with the finite 
element software CAST3M® (CAST3M 2004)). When convergence criteria of the 
reliability algorithm are reached, the unit normal vector α(t) and the reliability index 
β(t) are obtained. Then PHI2 method is used to compute the out-crossing rate ν+(t) 
whose integration leads to an evaluation of the cumulative probability of failure Pf,c. 
Further work on parameters optimization, either in the reliability analysis (distance 
to limit-state function, variations of the reliability index, line-search method) or in 
the finite element procedure (residual forces), is done in a second step.  
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Figure 2. Implementation scheme of the direct combination 

3. Mechanical model 

3.1. Simulation of 2D non-linear problems with a time-evolution of the thickness 

In the following, we remind briefly the main points of the so-called step-by-step 
method which variant used in CAST3M® is presented in (Cognard et al., 2004). A 
strategy to take into account thickness variations avoiding successive re-meshing is 
then introduced for a 2D model with non-linear material behaviour. 

3.1.1. Numerical resolution of non-linear problems 

Let us consider a structure, which occupies a domain Ω and M∈Ω. At each time 
t ∈ [0,Τ], the displacement Ud is given on ∂d Ω, a part of the boundary of Ω. The 
surface force ft is given on the complementary part of the boundary ∂t Ω. To 
simplify, the body force applied on Ω is equal to 0. The given data as well as the 
displacement U, the strain ε and the stress σ solutions of the problem are time-space 
functions defined on [0,T]xΩ. For quasi-static response the problem is described by: 
find U and σ, M∈Ω, t∈[0,T], verifying ∀t∈[0,T] the kinematic equation [10], the 
equilibrium equation [11] and the constitutive relations [12]: 

"regularity"+=Ω∂ dUU
d

 [10] 

( )[ ] { }0,.. *** =∈∀=Ω Ω∂Ω
Ω∂

∫ ∫ d

t

UUUdSUfdUTr tεσ  [11] 

( ) ( )( )tU t ≤= ςς ,σAε  (A, material operator) [12] 
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Such analysis is usually performed in a discrete sequence of time increments. 
Assuming that the history of the structure is known up to the time tk-1, the problem is 
to complete the strain (or displacement) and stress history for the increment [tk-1,tk]. 
A Newton type algorithm is generally used to reach the solution at tk: 

( ) ( )( ) Ω∈= MMM kkk ,,σεs  [13] 

The first stage is the integration of the constitutive relations at prescribed strain: 
sn

k verifying [10] and [11] is known, find ŝk verifying [12] and satisfying: 

k
n

k εε =ˆ  [14] 

The second stage is such that: ŝk verifying [12] is known, find sn+1
k verifying [10] 

and [11] and satisfying { }0,* =∈∀ Ω∂d
UUU : 

( ){ } ( )[ ] ( ) ( )[ ]∫∫ ΩΩ
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**
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where K is a known parameter of the algorithm. Within the framework of the 
displacement method, introducing the finite element nodal displacement q, [15] 
leads to the following global linear problem, N and B depending on the type of finite 
element used: 

qBεqNUσBσBδqKBB ⋅=⋅=Ω−Ω=⋅Ω ∫∫∫ ΩΩΩ
 ;  ; ˆ ddd kTk

n
Tk

n
T  [16] 

which can be written such that: 
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n
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k
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n NσBF  and ∫Ω Ω= di kTk

n σBF ˆ  

where δqn
k is the nodal displacement correction vector, KKnn

kk  is the stiffness matrix 
and Rn

k is the residual nodal force. Fen
k represents the external forces and Fin

k 
corresponds to the internal forces. The iterative procedure starts with s0

k, verifying 
[10] and [11]; an elastic evolution can be assumed. Iterations are stopped when a 
norm of the residual nodal force is smaller than a given tolerance. 

3.1.2. Time-evolution of thickness in 2D models 

For 2D stress plane problems, the thickness can be assumed to be equal to 1; 
therefore the integration on the body Ω is replaced by the integration on the middle 
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surface S. In order to limit the modification of the finite element procedure, one 
assumes that for such problems, z being the normal direction of the plate: 

{ }∫ ∫ ∫Ω
=Ω

S z
dSdzXdX  [18] 

Thus, in the case of a thickness variation of the plate, the contributions of the 
internal forces at each integration point computed with the classical procedure of the 
finite element code have to be multiplied by the contribution of the thickness 
variation which is known at each time tk. If the second stage of the iterative 
procedure is solved with a quasi-NEWTON type algorithm, with a constant stiffness 
matrix, the computation can be done with only taking into account the thickness 
variation in the computation of the internal forces, if the thickness near the boundary 
∂tΩ is constant. It is important to note that this procedure does not modify the 
integration of the constitutive relations. An update of the stiffness matrix with 
respect to the thickness variation and with respect to the non linear behaviour of the 
material can be used to increase the numerical performances. This strategy has been 
implemented in the finite element code CAST3M® (modifications in the iterative 
process are highlighted in bold on Figure 3). 

In the case of real naval structures, they are mostly represented by shell finite 
elements with specific thicknesses, for which this strategy could be quite easily 
extended, provided a weak corrosion depth. For such problems, with integration 
points in the thickness, it can be useful to update the global stiffness matrix (and so 
the reference thickness at each point) several times during the loading path. 

3.2. Finite element model 

Let us consider a thin corroded plate under tension T (Figure 3). Corrosion 
effects are represented by an elliptic lost of thickness in the middle of an edge of the 
plate. Exploiting symmetry (load and geometry), half of the plate was discretized by 
1800 quadrangular elements (8 nodes). It can be noted that meshes with different 
numbers of elements have been used to study the convergence of the numerical 
response. A regular fine mesh was used around the so-called corroded part for finite 
element issues induced by corrosion. 

For this example, the time-space lost of thickness is modeled with a product of a 
time function by a space function ([19], Figures 4 and 5). As first approximation 
from model described in (Guedes Soares et al., 1999) or (Paik et al., 1999), we 
consider a linear corrosion rate and a coating durability Tc = 5 years (Figure 4). For 
more complex time-space lost of thickness, a sum of products of time and space 
functions can be used to define the varying thicknesses. Moreover, such 
representations are used to describe the external loadings in finite element codes; 
thus, they are easy to use. 
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Loop on the time increments 
 Computation of the loading increment 
 Computation of the plate thickness at each integration point 
 Loop until convergence (NEWTON iterations) 
   Speed-up technique 
  Computation of the correction of the nodal displacement 
   (factorization of the stiffness matrix if first time increment) 
   backward-forward substitution 
  Integration of the constitutive law 
  Computation of the residual nodal force 
   Taking into account the thickness at each integration point 
 End of loop 
 End of loop 

 

Figure 3. Modified algorithm, studied problem, deterministic characteristic 
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The material is supposed to follow an isotropic elasto-plastic law with linear 
isotropic hardening (Young modulus E = 200GPa, Sigma yield σy = 400MPa, 
hardening modulus Kh = 32GPa). This behaviour does not depend on corrosion 
effects, but a dependence to the appearance of corrosion products can be introduced 
as in (Ouglova et al. 2005). The plate is submitted to two kinds of loads (Figure 6): 

– a quasi-constant load represented by a linear increase from 0 to 800N until t = 
1 year, then a constant landing at 800N until t = 15 years 

– a stochastic gaussian process which mean value is the quasi-constant load 
described previously. To represent this stochastic load, we adopted in this paper the 
so-called Expansion Optimal Linear Estimation (EOLE) method. With this method, 
a scalar Gaussian process X(t,ω) can be approximated through its mean value mX(t) 
and a sum of products of polynoms Pi(t) and independent standard gaussian 
variables standard ( )ωξi  (15 retained in our case). EOLE leads to [20]. It is 
computed by a Matlab routine presented in (Sudret et al., 2000), modified to obtain 
directly the second term of [20] in a file used in the time-variant reliability analysis. 

∑
=

+=
r

i
iiX tPtmtX
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)().()(),( ωξω  [20] 
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Figure 7 presents the influence of corrosion effects on cumulative plastic strain 
for times t = 10 years and t = 15 years for a quasi-constant load. 

 

0

0,2

0,4

0,6

0,8

1

0 5 10 15

Time (years)

f(t
)

f(t)

  
0

100

200

300

400

500

600

700

800

900

0 5 10 15

Time (years)

Lo
ad

 (N
)

Mean of the process

A probable trajectory

 

Figure 4. Time evolution 
of corrosion  f(t) 

Figure 5. Space 
function  (mm) of the 
corroded plate  g(M) 

Figure 6. Mean and probable 
trajectory of the stochastic 
process 

4.  Reliability analysis 

As presented in Section 2.3, the method retained for this study is a direct 
combination between time-variant reliability and non-linear finite element analysis. 
Sensitivity analyses of each parameter of the mechanical model were performed, 
which lead to the consideration of the randomness of 6 variables (table 1). It can be 
noted that the choice of relatively simple PDF used in this example is done uniquely 
for numerical convenience. These 6 random variables have to be added to the load 
randomness which can be considered in two ways: random variable or stochastic 
process. These two ways are tested in the sequel. The failure condition is such that 
the maximal cumulative plastic strain pmax(t) exceeds a threshold pth. The associated 
limit-state function Gε is thus expressed as: 

( ) ( )tpptG th max−=ε  with ( ) ( )τ
τ

,
Plate,

max MpSuptp
tM ≤∈

=  [21] 

Plastic strain is physically irreversible, so pmax(t) can only increase during time. 
Increase of pmax(t) implies decrease of Gε and, as a consequence, the equality 
between cumulative and instantaneous probabilities of failure [3]. This property is 
particularly interesting with respect to feasibility assessment of the cumulative 
probability of failure within the framework of modelling decreases of the safe 
thickness with finite element mechanical model, in the case of materials with non-
linear behaviour. Confirming or not this property will help to highlight the 
requirements of such a combination. 
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t = 10 years t = 15 years 
Plate thickness (mm) 

   

Cumulative plastic strain 

   

Figure 7.  Plate thickness and induced plastic strain 

Table 1. Random variables distributions and parameters 

Type Variable Distrib. Mean St-dev. 
½ ellipsis small axis a (mm) Normal 0.5 
½ ellipsis main axis b (mm) Normal 2.5 
Maximal corrosion depth Cmax (mm) Normal 0.5 

10% Corrosion 

Durability of coating Tc (years) Normal 5 20% 
Cumulative plastic strain threshold pth Normal 1.E-2 10% Material Initial yield stress σy (MPa) Normal 400 5% 
Random load T (N) Normal 800 5% 

Load Stochastic load 
Mean 800 N, st-d. 5% 

)(ωξ i  Normal 0 1 

4.1. Reliability results considering random load 

In order to compare the efficiency of the two PHI2 formulations, let us first 
consider a random load. This means that we only deal with 7 random variables, 
which leads to a 3 hours computation time for a time-invariant reliability analysis on 
a Pentium IV 3Ghz with 1 Gb RAM. The out-crossing rates obtained for the two 
PHI2 formulations for various time steps are integrated in time using the trapezoidal 
rule to compute the cumulative probability of failure Pf,c (Figures 8 and 9). It has to 
be compared with the instantaneous probability of failure Pf,i, which is the 
theoretical result according to [3]. To evaluate accuracies, we use an error estimator 
defined as: 
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This error estimator for both formulations is represented (Figure 10) for various 
values of the time-step at t = 14.5 years. This emphasizes issues on the choice of the 
time-step for the old PHI2 formulation already observed in previous studies. Its 
stability domain (where the finite difference used is accurate) is narrow. In contrary, 
the new PHI2 formulation reveals accurate even for large time step, and remains 
stable when decreasing it. With this consideration, the new PHI2 method is retained 
to deal with the time-variant reliability analysis considering the stochastic load. 
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Figure 8. Evolutions of 
Pf,c and Pf,i  with the old 
PHI2 formulation 

Figure 9. Evolutions of 
Pf,c and Pf,i  with the 
new PHI2 formulation 

Figure 10. Error 
estimation on assessment 
of Pf,c (t = 14,5 years) 

4.2. Reliability results considering stochastic load 

As presented in Section 3.2, 15 gaussian variables are required to represent 
efficiently the stochastic process under consideration with the EOLE method. This 
multiplies nearly by 3 the computation cost but is a better approximation of real in-
service loads. Indeed, peaks that appear in time evolution of the stochastic load have 
a huge influence on reliability (Figure 11), by leading to locally increase the loading, 
especially in the corroded area. While comparing cumulative and instantaneous 
probabilities of failure (Figure 12), we can remark a slight over-estimation of the 
first one. Several points influencing the numerical response have been studied: 

– the precision of the temporal discretization can be insufficient to accurately 
evaluate gradients involved in the out-crossing rate [9] in case of a stochastic load; 

–  the stochastic process correlation length can be adjusted with corrosion 
kinetic;  

– such models which lead to nearly constant loadings over a time interval can 
generate evolutions of the cumulative plastic strain which depend on the precision 
on the residual forces used to stop the iterative process in the non-linear finite 
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element simulation (a precise simulation strongly increases the computational time). 
Solutions allowing to overcome those difficulties are in progress. 
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Figure 11. Reliability index considering 
a random or a stochastic load 

Figure 12.  Probabilities of failure 
considering  a stochastic load  

5. Conclusion 

This paper presents an application of the combination of time-variant reliability 
methods with non-linear finite element analysis. The issue of corrosion of naval 
structures is treated through the example of a corroded plate submitted to a 
stochastic load. The propounded approach allows to take into account the loss of 
thickness induced by corrosion for 2D models, without using re-meshing techniques, 
in the case of material with non-linear behaviour. Furthermore this strategy is 
compatible with stochastic phenomena treatment. 

Both existing formulations of the PHI2 method are compared to deal with time-
variant reliability, the newest showing more accurate results. Moreover, the stability 
of these results with respect to the time step is emphasized. As it only requires time-
invariant reliability tools, this method is really interesting for practical purposes. 

Difficulties of such a combination are highlighted when stochastic processes are 
involved. Interferences between numerical approximations in the non-linear finite 
element code and in the time-variant reliability methods have to be mastered to 
ensure accurate results. When guidelines for results accuracy will be drawn, the 
presented methodology will be well suited to deal with multiple corrosion sites. 
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