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ABSTRACT. In the frame of contact issues between 3D deformable bodies with non-matching 
finite element discretizations of possibly very different mesh sizes, a quasi-symmetric 
formulation is proposed to obtain satisfactory results whichever body is selected as master or 
slave. This approach is not based on usual mortar elements in order to avoid the creation of 
an additional integration surface. It draws its inspiration from a symmetric treatment of the 
contact conditions, where the formulation is made compatible by replacing the Lagrange 
multiplier of the master body by the projection of the slave one. Numerical results are 
obtained within the FORGE3® finite element software. Numerous 3D test cases numerically 
show that this approach actually solves the main issues of contact between deformable 
bodies, in a rather simple way. 
RÉSUMÉ. Dans le cadre des problèmes de contact entre corps déformables 3D ayant des 
discrétisations éléments finis incompatibles avec éventuellement des tailles de mailles fort 
différentes, nous proposons une formulation quasi symétrique permettant d’obtenir 
d’excellents résultats quel que soit le choix du corps esclave et du corps maître. Cette 
approche ne repose pas sur l’utilisation d’éléments de mortier habituels afin d’éviter la 
création d’une nouvelle surface d’intégration. Elle s’inspire plutôt d’un traitement 
symétrique des conditions de contact, où la formulation est rendue compatible en remplaçant 
le multiplicateur de Lagrange du corps maître par la projection de celui de l’esclave. Les 
résultats numériques sont obtenus au sein du logiciel FORGE3® sur de nombreux cas tests 
3D. Ils montrent que cette approche résout de manière simple les principales difficultés du 
contact entre corps déformables. 
KEYWORDS: contact, deformable bodies, non-matching meshes, contact elements, mortar 
elements. 
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1. Introduction 

Contact between deformable bodies gives rise to issues that are both simple, in 
terms of principle, and complex, in terms of practical solutions. They arise after the 
finite element discretization of antagonistic bodies. A quick and basic analysis shows 
that it is not possible to symmetrically enforce the non-penetration conditions in the 
general case, that is when the interface meshes are not matching. In fact, a perfectly 
symmetric formulation turns to be over-constrained: the interface becomes artificially 
stiff and locked (Chenot et al. 2002; El-Abbasi et al. 2001b; Puso et al. 2004a). All 
recent studies converge toward a non-symmetric treatment of contact, where one body 
is regarded as the master, which imposes the contact condition, while the other body is 
regarded as the slave, which undergoes it. In order to properly discretize the contact 
conditions, it is necessary that the slave body be much finely distretized than the master 
body, which is not possible to fulfil, for instance with an assembly of numerous 
contacting bodies or when the contact interfaces continuously evolve during non-steady 
problems. In the extreme case, that is when the master body is much finely discretized 
than the slave one, the finite element formulation diverges (Chenot et al. 2002; El-
Abbasi et al. 2001b; Hild 1998): the smaller the finite element size of the master 
interface, the worse the finite element solution. 

To solve this issue, most recent studies have utilised the frame of mortar 
elements. It allows properly dealing with incompatible contact interfaces and taking 
into account possible relative over-refinements of the master body by enriching the 
contact interface (Baillet et al. 2003; Ben Dhia et al. 2002; El-Abbasi et al. 2001a; 
Hild 2000; Puso et al. 2004a; Puso et al. 2004b). Most proposed formulations can 
easily be integrated into 2D software, however at the price of a significant increase 
of the computational cost. In 3D, the definition of the mortar elements turns to be 
much trickier (Fernandez 2004; Puso et al. 2004a; Puso et al. 2004b), particularly in 
the most general cases where the contact interface is broken up into several non-
closely related pieces that are continuously evolving with time. 

In this paper, a significant variant of the over-mentioned formulations is presented. 
It was first envisaged in (Ben Dia et al. 2001) in the Arlequin framework, and applied 
to metal forming problems in (Fourment et al. 2003). It can alternatively be regarded as 
an extension of the symmetric contact formulation that has been developed by several 
authors (see for instance (Habraken et al. 1998)) but that is only suitable when the ratio 
between the antagonistic bodies discretizations is very large. In this new formulation, 
the over-constraint issue of the symmetric formulation is avoided by refraining from 
defining an undesired Lagrange multiplier on the master body, as it is done with usual 
master/slave or mortar approaches. This multiplier is then replaced by a projection of 
the slave body multiplier. This formulation turns to be easy to implement into 2D as 
well as 3D finite element codes (Section 3 of this paper). Theoretically developed for 
an integrated (facet-to-facet) contact formulation, it can easily be extended to nodal 
(node-to-facet) formulation that is utilized in some commercial packages (Section 4 of 
this paper). It allows obtaining nice numerical results for reference test problems 
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proposed in literature (El-Abbasi et al. 2001b; Hild 1998) or for more qualitative ones 
(Section 5 of this paper). 

2. Problem equations 

Two elastic bodies a et b are contacting (see Figure 1). For ,i a b= , iu  is the 
displacement field, ( )iuε  the linearized strain tensor  [1], ( )iuσ  the stress tensor 
with iK  the fourth order tensor of the Hooke’s law  [1]. 

( ) ( )1
2

t
i i iu u uε = ∇ +∇    and   ( ) ( )i i iu uσ ε= K  [1] 

 

Figure 1. Contacting bodies 

Volume forces if  are applied on iΩ . Its surface is divided into T
iΓ , on which 

surface forces iT  are applied, CΓ  the contact surface without friction (for sake of 
simplicity only). The balance equations are given in  [2] and the boundary conditions 
on the contact surface in  [3] : 

( )( )
( )

i

T
i

0, on 

, on 
i i

i i i

div u f

u n T

σ Ω

σ Γ

 + =


=
 [2] 

( ) ( ) C0 with . 0 on t
i i i i ix u u u n nδ Γ≤ = − =  [3] 



910     REMN – 17/2008. Giens 2007 

where in  is the outward normal to iΩ  and ( )xδ  is the distance function between a 

and b, which is negative when there is penetration. ( )xδ  is linearized into ( )a bh u ,u  

by using the initial value 0
abδ  of the distance function  [4], and the weak forms of the 

mixed balance and contact equations are then written in  [5]. 

( ) ( ) 0 C, . . 0, on a b a a b b abh u u u n u n δ Γ= + − ≤  [4] 

( ) ( ) ( )
( ) ( )
( ) ( )

( ) ( )

0

0 0

T C * *i i i a a b
* *
b a , b

C

* * * * *
j i j i i j i i j i j

i a ,b
h u h u ,u

h u h u u

a b

u , u : u dw f .u dw T .u ds h u ds

* , * h u ,u ds

Ω Ω Γ Γ

Γ

σ ε λ

λ λ λ

=
=

=

  
  ∀ − − − =  
  


∀ ≤ − ≤



∑ ∫ ∫ ∫ ∫

∫
 [5] 

where λ  is the Lagrange multiplier of the mixed problem, which is identified to the 
contact normal stress, ( )n n .nσ σ= . The inequality of  [5] provides the weak form of 
the unilateral contact equation: 

( )0 0
C

a b* , * h u ,u ds
Γ

λ λ∀ ≤ − ≤∫  [6] 

The key point of contact treatment is based on an accurate integration of the 
discretized Lagrangian term of the mixed problem (El-Abbasi et al. 2001a): 

( ) ( )
C

a bb ,u h u ,u ds
Γ

λ λ= ∫  [7] 

The problem  [5] is then discretized with iso-parametric (or quasi-iso parametric) 
finite elements ( )h h h

i ix ,u ,λ  using shape functions k
iN , for ,i a b= : 

( ) ( ) ( ) ( )h k k h k k
i i i i i i i

k k

x , x x x N x ; u x u N xΩ∀ ∈ = =∑ ∑  [8] 

( ) ( )C h k k

k

x , x N xΓ λ λ∀ ∈ =∑  [9] 
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3. Quasi-symmetric formulation 

After finite element discretization, the two surfaces C
aΓ  and C

bΓ  are not similar, 

so that it is necessary to define on which surface ( )h hb ,uλ  should be integrated. 
Contrary to most of usual mortar elements approaches (Baillet et al. 2003; Ben Dhia 
et al. 2002; El-Abbasi et al. 2001a; Hild 2000; Puso et al. 2004a; Puso et al. 2004b), 
we wish to avoid introducing a new integration surface, which can be very tricky to 
build in 3D (Fernandez 2004; Puso et al. 2004a; Puso et al. 2004b) and to only use 
the available discretized surfaces C

aΓ  and C
bΓ . 

3.1. Usual master/slave formulation 

In the usual master/slave formulation, ( )h hb ,uλ  is integrated on a single 

surface, C
aΓ , the slave body surface, while C

bΓ  is the surface of the master body 
which imposes its geometry, so hλ  is only interpolated on C

aΓ   [11]: 

( ) ( )1
C
a

h h h h h
a a a bb ,u h u ,u ds

Γ

λ λ= ∫  [10] 

( ) ( )C h k k
a a a a

k

x , x N xΓ λ λ∀ ∈ =∑  [11] 

In practice, it is tried hard to select as slave body the one which is more finely 
discretized, in other words the body which will provide the more accurate integration 
of ( )1 ,h

a hb uλ . When the two bodies are similarly discretized, it is equivalent to 

integrate on C
aΓ  or C

bΓ , and both integrations produce similar results. 

3.2. Symmetric formulation 

If the slave body is discretized in a much coarser way than the master, which is 
sometimes inevitable, then the integration of ( )1 ,h

a hb uλ  is not satisfactory. 
Consequently, the contact condition is very poorly taken into account. In this case, it 
can be judicious to integrate ( )h hb ,uλ  symmetrically on both contact surfaces 

(Habraken et al. 1998), which requires interpolating hλ  on both C
aΓ   [11] and C

bΓ : 
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( ) ( ) ( )2
1

2
C C
a b

h h h h h h h h
a a b b b ab ,u h u ,u ds h u ,u ds

Γ Γ

λ λ λ
 
 = +
 
 
∫ ∫  [12] 

( ) ( )C h k k
b b b b

k

x , x N xΓ λ λ∀ ∈ =∑  [13] 

( )2
h hb ,uλ  allows integrating ( )h hb ,uλ  with accuracy in each zone of the 

contact interface where one of the bodies is more finely discretized than the other. In 
fact, by considering that the contribution of the less discretized body is negligible, it 
results into using everywhere the best discretization. However, if the discretizations 
of C

aΓ  and C
bΓ  are similar then ( )2

h hb ,uλ  introduces too many contact conditions, 
and the formulation proves to be over-constrained (Chenot et al. 2002; El-Abbasi et 
al. 2001b), resulting into artificially stiffening of the contact interface. 

3.3. Quasi-symmetric formulation 

In order to adapt to all kind of situations, these two approaches have to be 
combined. A symmetric master/slave formulation has to be built. The master/slave 
formulation is characterized by the interpolation of hλ  on the slave body only  [11], 
and the symmetric formulation is characterized by the integration of ( )h hb ,uλ  on 

the two surfaces C
aΓ  and C

bΓ . Their combination results into replacing, in  [12], h
bλ  

by an approximation h
bλ  that is calculated from h

aλ  only. The simplest 

approximation that comes to mind is the orthogonal projection ( )h h
b aπ λ  of h

aλ  on 
C
bΓ . ( )h hb ,uλ  is then calculated as follows: 

( ) ( ) ( ) ( )3
1

2
C C ha b b

h h h h h h h h h
a a a b b a b ab ,u h u ,u ds h u ,u ds

Γ Γ λ

λ λ π λ
 
 = + 
 
 
∫ ∫  [14] 

The utilized finite element discretizations suggest to interpolate ( )h h h
b b aλ π λ=  

with the interpolation functions bN  of h
bλ , and to use the nodal values of ( )h h

b aπ λ  
for this interpolation: 

( ) ( )( ) ( )( )( ) ( )C h h h h h k k
b b b a b a b b

k

x , x x x N xΓ λ π λ π λ∀ ∈ = =∑  [15] 
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These ( )( )h h k
b a bxπ λ  values are calculated in the simplest way, from the values of 

h
aλ  at ( )h k

a bxπ , the orthogonal projection of the nodes k
bx  of C

bΓ  on C
aΓ : 

( ) ( )( ) ( ) ( ) ( )with
k

a

C h h h h k h h l l k
b b a a b b a b a a a

k l f

x , x x N x x x NΓ λ λ π π ξ
∈

∀ ∈ = =∑ ∑  [16] 

where k
af  is the facet of C

aΓ  containing node k
bx , and k

aξ  is the barycentric 
coordinate of k

bx  on k
af , which is given by the inverse interpolation of  [8]. So, 

( ) ( ) ( )
k

a

C h l l k k
b b a a a b

k l f

x , x N N xΓ λ λ ξ
∈

 
 ∀ ∈ =
 
 

∑ ∑  [17] 

3.4. Discretized Quasi-symmetric contact equation 

The discretized form of the quasi-symmetric contact equation results from the 
discretization of the weak form  [6], or else from the differentiation of ( )3

h h
ab ,uλ  

with respect to k
aλ : 

( ) ( ) ( ) ( ) ( )
 t.q. 

0
l'C Caa b

C k ' h h k' l ' l ' h h
a a a b a a b b a

l' f k '

k ' , N x h u ,u ds N N x h u ,u ds
Γ Γ

Γ ξ
∋

∀ ∈ + ≤∑∫ ∫  [18] 

It can be noticed that the first part of equation  [18] provides the usual 
master/slave contribution, while the second part enriches the formulation with an 
additional term that makes it possible to take into account the contact analysis of b 
with a. This new contribution can be dominant if the master body is more finely 
discretized than the slave. From a practical standpoint, it is remarked that this 
formulation requires two contact analyses, in the same way as the symmetric 
formulation and the usual mortar elements formulations. It also results into an 
increase of the bandwidth of the discretized contact equations, proportionally to the 
addition of contributions from the master body contact analysis. 

4. Nodal (node-to-facet) contact formulation 

When a node-to-facet formulation is used, as it is the case in the frame of the 
present numerical implementations within the FORGE3® software, the Lagrange 
multiplier h

aλ  is not continuously interpolated as in  [9], in order to exactly impose 
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the contact condition in each node of the mesh. In this nodal formulation, the 
interpolation functions of h

aλ  could be regarded as Dirac functions that are defined 
at the nodes only (or by piece-wise functions on the dual mesh). The usual 
master/slave  [10], symmetric  [12] and quasi-symmetric  [14] formulations presented 
above are then written as follows: 

Usual master/slave:   ( ) ( )1
C
a

h h k k k
a a a b

k

b ,u h u ,u
Γ

λ λ
∈

=∑  [19] 

Symmetric:   ( ) ( ) ( )2
1

2
C C
a b

h h k k k l l l
a a b b b a

k l

b ,u h u ,u h u ,u
Γ Γ

λ λ λ
∈ ∈

 
 = +
 
 
∑ ∑  [20] 

Quasi-symmetric:   ( )
( )

( )( )( ) ( )3
1

2
C
a

C
b

k k k
a a b

kh h
a h h l l l

b a b b a

l

h u ,u

b ,u
x h u ,u

Γ

Γ

λ

λ
π λ

∈

∈

 +
 
 =
 
 
 

∑
∑

 [21] 

( )3
h h
ab ,uλ  requires calculating ( )( )h h l

b a bxπ λ , the value of ( )h h
b aπ λ  at node l

bx , 

which is only possible by continuously extending the definition of h
aλ . This is done 

using the simplest and more natural extension, the finite element interpolation 
utilized in previous sections  [11], which provides, using previous notations of  [16]: 

( )( ) ( )
l

a

C h h l k k l
b b a b a a a

k f

l , x NΓ π λ λ ξ
∈

∀ ∈ =∑  [22] 

and then:   ( ) ( ) ( ) ( )3
1

2
C C l
a b a

h h k k k k k l l l
a a a b a a a b a

k l k f

b ,u h u ,u N h u ,u
Γ Γ

λ λ λ ξ
∈ ∈ ∈

  
  = +
  

  
∑ ∑ ∑  [23] 

The discretized quasi-symmetric nodal unilateral contact condition is written as: 

( ) ( ) ( )
 t.q. 

0
C l
b a

C k k k l l l
a a b a a b a

l f k

k , h u ,u N h u ,u
Γ

Γ ξ
∈ ∋

∀ ∈ + ≤∑  [24] 

As in the integrated formulation, and even more clearly, it is checked that the 
first term of  [24] is the usual contact condition at the nodes of the slave body, while 
the second term is a contribution of the nodes of the master body, weighted by the 
interpolation functions of the slave body. 
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5. Numerical results 

5.1. Convergence analysis 

       

Figure 2. Examples of non-matching meshes utilized for the squeezed elastic bars 

 
Figure 3. Squeezing error versus the number of degrees of freedom for matching 
(compatible) and non-matching (incompatible) meshes, with the usual (MS std) and 
quasi-symmetric (QS) formulations 

Two identical elastic bars are squeezed between two rigid dies under plane 
deformation conditions (Hild 1998). The contact between the bodies is perfectly 
sticking. The problem solution is calculated on a reference mesh, which is four times 
finer than the finest studied mesh. The error on the squeezing force (see Figure 3) is 
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calculated for several matching and non-matching meshes (see in Figure 2 the most 
extreme cases) of increasing number of degrees of freedom, with the usual 
(master/slave) and quasi-symmetric formulations. With matching meshes, both 
formulations provide exactly the same results, while with non-matching meshes, the 
quasi-symmetric formulation systematically provides better results. However, for this 
not very severe case where the incompatibility between the meshes is low, all results 
are almost similar. 

5.2. Patch test 

Figure 4 shows another squeezing test proposed in (El-Abbasi et al. 2001b) with 
two specific meshes of piled up cubes under uniform boundary conditions that are 
imposed on the upper cube. The diagram of Figure 5 summarizes the obtained results 
in the elastic case, with an imposed pressure (case n°1) or an imposed displacement 
(case n°2), and in the rigid plastic Newtonian case, with an imposed pressure (case 
n°3) or an imposed displacement (case n°4), with the usual and quasi-symmetric 
formulations. With the quasi-symmetric formulation, the error is systematically two 
times smaller, and the quality of the interface fields much higher. 

 

Figure 4. Contact patch test from (El-Abbasi et al. 2001b) with interface meshes 

0

0.5

1

1.5

2

2.5

Error

1 2 3 4

Test

QS contact
Std MS contact

 

Figure 5. Relative error on the normal stress field transmission for the contact 
patch test , with the usual (MS std) and quasi-symmetric (QS) formulation 
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5.3. Contact between deformable cubes 

In the example of Figure 6, the squeezed cubes are meshed with either identical 
or strongly dissimilar meshes. With the usual formulation, the vertical velocity field 
exhibits a satisfactory continuity at the interface with matching meshes, and when the 
slave cube is more finely meshed. On the other hand, when the master cube is more 
finely meshed, the continuity condition is only locally satisfied, and the resulting 
velocity field is globally quite erroneous. With the quasi-symmetric formulation, the 
results are almost identical whichever cube is more finely meshed, which so 
perfectly justifies the quasi-symmetric name of the formulation. 

maste
r

slave slave

maste
r

sla
ve

master
master
master

sla
ve

Matching meshes Finer slave mesh

Finer master mesh Finer master mesh & QS
 

Figure 6. Isovalues of the vertical velocity field. Up-left: matching meshes. Up-
right: finer slave mesh. Down: finer master mesh with the usual (left) and quasi-
symmetric (right) formulations 

6. Conclusions 

This paper suggests an alternative to mortar elements for the treatment of contact 
between deformable bodies with non-matching meshes. Rather than improving the 
interpolation spaces of the displacement fields on the contact interface, as it is done 
with the mortar approach, it is preferred to adjust the interpolation fields of the 
contact multipliers in the frame of a symmetric formulation. From a practical 
standpoint, this new formulation turns to be simpler to implement into finite element 
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software. On the other hand, the whole of performed numerical applications shows 
that the obtained results have the same quality as with mortar elements, and that the 
qualifier of quasi-symmetric is well justified. Applications to more complex 3D 
metal forming have been carried out and will be presented in a forthcoming paper. 
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