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ABSTRACT. The numerical simulation of composite forming permits to envisage the feasibility 
of a process without defect but also to know the directions of the reinforcements after 
shaping. These directions condition strongly the mechanical behaviour of the final textile 
composite structure. In addition, the angles between warp and weft yarns influence the 
permeability of the reinforcement and thus the filling of the resin in the case of a liquid 
moulding process. The forming of composite reinforcement can be made on a single ply or 
simultaneously on several plies. In this paper the different approaches for the textile 
reinforcement forming simulation are described. A three node element with arbitrary 
directions of the yarns with regard to the element sides is presented and used for the 
simultaneous hemispherical forming of three layers. 
RÉSUMÉ. La simulation numérique de la mise en forme des composites permet d’analyser la 
faisabilité d’un procédé et ses défauts, mais aussi de déterminer les directions des renforts 
après la mise en forme. Ces directions conditionnent fortement le comportement mécanique 
de la pièce composite en service. La mise en forme peut concerner un seul pli ou bien 
plusieurs plis pouvant être mis en forme simultanément. Dans ce travail, les différentes 
approches actuellement utilisées pour la simulation de la mise en forme des renforts tissés 
sont décrites. En particulier un élément triangulaire à trois nœuds dont les directions des 
mèches sont quelconques vis-à-vis des côtés de l’élément est présenté et utilisé pour le 
formage hémisphérique simultané de trois plis. 
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1. Introduction 

A significant effort currently relates to the modeling and the simulation of large 
strains of composite woven reinforcement. The forming process of woven 
reinforcements is essential for the manufacturing of textile composites. For example, 
the first stage of the RTM process (Resin Transfer Moulding) consists of making a 
dry textile preform before resin injection. In the draping of preimpregnated or in the 
forming of CFRTP (Carbon Fibre Reinforced Thermo-Plastic), the matrix is present 
but is not hardened and the composite deformation is led by that of the 
reinforcement. The composite forming process exploits the relative movement of 
fibres made possible by the absence of the cohesion of the matrix. The woven textile 
reinforcements are particularly effective in the case of non developable geometries 
because of the interlacing of the warp and the weft. It is difficult (often impossible) 
to obtain this type of geometry with unidirectional reinforcements. A simulation tool 
makes it possible not only to determine the feasibility of a process, to detect the 
possible defects, but also to know the directions of the reinforcements after 
processing, which is essential for calculations. 

The alternative to the geometrical methods (the fishnet algorithm) for woven 
reinforcement forming [1,2] consists of a mechanical analysis of the fabric 
deformation subjected to the boundary conditions prescribed by the forming process. 
This requires a model of the woven reinforcement, its mechanical behavior and a 
numerical method, which is generally the finite element method. The mechanical 
behavior of fabrics is complex due to the interactions of the yarns related to the 
weave. It is a multi-scale problem. The macroscopic behavior is closely related to 
the interactions of the yarns on a mesoscopic scale (scale of the woven unit cell) and 
on a microscopic scale (scale of fibres constituting the yarns). Although there has 
been much work done in the field, there is no globally accepted model to describe 
the principal aspects of the mechanical behavior of fabrics. 

2. Continuous approach 

A first family of models is obtained by homogenizing the mechanical behavior of 
the meso-structure and by assuming the fabric is an anisotropic continuum [3-5]. For 
analyses of large strains, the finite element codes frequently use the elastic rate 
constitutive equations (hypoelastic laws):  

∇ =σ C: D   ( )T Td
. . . . . .

dt

•∇ = = + − 
 
 

σ Q Q σ Q Q σ Ω Ωσσ
               

[1] 

andσ D are respectively the Cauchy stress tensor and the strain rate tensor. ∇σ is the 

objective derivative of σ  associated with the rotation Q .The classical incremental 
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scheme of Hughes and Winget [6] for stress update is built starting from 
Equation [1]:  

[ ] n 1 / 2n 1 n n 1 / 2
ii i i

n 1 n n 1/ 2

ee e e
++ +

+ += + ∆          σ σ C ε  [2] 

with     [ ] n 1 / 2 n 1 / 2
i i

n 1 / 2

e e
t+ +

+∆ = ∆  ε D  [3] 

For a fibrous medium, the constitutive tensor C  is oriented by f  the fibre 

direction. f  is a material direction. Let { }ie  denotes the orthonormal reference 

basis obtained from the initial reference basis rotated by Q . f is in general not fixed 

in { }ie since it is a material direction. The initial fibre direction 0f is transformed by 

F  (the gradient tensor) into 1=f f , while { }ie  is rotated by Q . To treat this 

situation, characteristic of the fibrous media, two approaches were developed within 
the framework of the hypoelastic formulations presented above. The first one [4,5] 
uses the classical objective derivative of Green Naghdi which is used in some finite 
element codes such as ABAQUS. All of the calculations are performed in the 
reference basis rotated by the rotation of the polar decomposition. The constitutive 
operator is obtained in this reference frame from its specific form in the reference 
frame of the fibers by a basis change. The second approach [7][8] consists of using 
another objective derivative defined from the rotation of the fibre. It can be shown 
that in certain cases, the second approach is preferred. 

3. Discrete approach 

On the other hand, certain approaches describe woven fabrics by entirely discrete 
models. Each fibre or yarn is modelled by a straight or curved beam (or other type of 
finite element) and the contacts are managed or replaced by springs [9][10][11][12]. 
Taking into account the simplicity of each component, the complete woven structural 
deformation can be calculated. Nevertheless, the numerical effort required by this 
approach is very consuming and limits the complexity of the possible local 
modelling. 

4. The semi-discrete approach 

This approach is detailed in this paper. Particularly a new three node triangle 
composed of woven meshes of unspecified direction with respect to the edges of the 
element is presented. 
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4.1. Loads on a woven unit cell. Interior virtual work 

In the present approach the textile composite reinforcements under consideration 
are composed of a discrete number of woven unit cells such as shown on Figure 1. 
The unit woven cell on Figure 1 is a plain weave cell for simplicity but this unit 
woven shell can be any type (twill, satin…). The diameter of the fibres constituting 
the textile (usually carbon, glass or aramid) is very small (5 to 7 µm for carbon, 10-
20 µm for aramid, 5-25 µm for glass) [13]. This diameter is extremely small in 
comparison to their length in case of continuous fibres. Consequently the main 
loading that can be applied to these fibres is a tensile load in the fibre direction. The 
yarns are made of thousands of fibres. These fibres can slide relatively and the 
tensile stiffness is still much larger than the other rigidities. (The textile 
reinforcement under consideration is dry i.e. with no matrix).  

 

Figure 1. Unit woven cell submitted to tension and in plane shear 

The loads on this unit cell are assumed to result in two tensions T11 and T22 in the 
warp and weft directions f1 and f2 and a torque Cs f3 which is due to the internal 
actions from warp yarn on weft yarns in reaction to in plane shear (f3 is perpendicular 
to f1 and f2) . Because the yarns are composed of many fibres with a very small 
diameter, the shear stiffness is small and the torque Cs too. Nevertheless, it will be 
seen that it is important to consider this in-plane shear behaviour because it plays a 
significant role in some cases and especially in wrinkle development which is an 
important aspect in draping simulations. 

From these definitions of the loads on a unit woven cell, the interior virtual work 
in a textile reinforcement in a virtual displacement field η, can be written: 



Composite reinforcements forming      923 

( ) ( ) ( )
ncell ncell

p p 11 p p p 22 p p p

int 1 2 s
p 1 p 1

W ( ) T L T L C11 22 
= =

η = ε η + ε η + γ η∑ ∑  [4] 

where ncell is the number of unit woven cell of the domain Ω under consideration, 

( )11 ε η  et ( )22 ε η are the linear axial strain in the warp and weft directions f1 and f2 

in the virtual field η. ( )γ η  is the angle change between warp weft direction in the 

virtual field η. L1 and L2
 are the length of the unit cell in warp and weft direction. pA 

means that the quantity A is considered for the cell number p.  

It has been shown by experiments that the tensions are reasonably independent of 
the shear angle [14]. As the tensile behaviour is biaxial it will be in the form 
T11(ε11, ε22), T22(ε11, ε22). It will also be assumed that the shear couple does not 
depend on the axial strain and will be in the form Cs(γ). This is probably less true 
[15-17] but there is not enough available data and models concerning the influence 
of tensions on shear stiffness for it to be taken it into account.  

For a given composite reinforcement these material data can be identified either 
by experiments [14][18-21] or by mesoscopic analyses i.e. 3D F.E. simulations of 
the deformation of the woven unit cell [22][23]. 

4.2. Three node semi-discrete finite element 

Although most forming processes are quasi-static, the simulations of material 
forming processes are often made within explicit dynamic approaches [24]. Within a 
finite element approximation, the dynamic equation in the set of degrees of freedom  

n n ext int+ = −Mu Cu F F  [5] 

is integrated in time using an explicit scheme. M and C are mass and damping 
matrices, un is the single column matrix of the degrees of freedom (three 
displacement components per node in the global frame). Fext and Fint are single 
column matrix of the components of the exterior and interior nodal loads. In the case 
of textile reinforcements, where the interior virtual work is in the form [4], the nodal 
interior loads are such as: 

( ) ( ) ( ) ( )
nelem nelem ncelle nelem

T e p p 11 p p p 22 p p p eT e

n int int 1 2 s n int

1 e 1 p 1 e 1

W T L T L Cη
11 22 

= = =

= η = ε η + ε η + γ η =∑ ∑∑ ∑F η F

 [6] 

The superscript e denotes that the quantity is considered for the element e. The 
nodal interior loads Fint is the assembly of the elementary nodal interior loads e

intF . In 
an explicit scheme, the computations at the element level only require the 
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computations of these elementary nodal interior loads. For simplicity of the 
presentation the elementary virtual interior load is split in tensile and shear parts: 

e te se

int int intW ( ) W ( ) W ( )η = η + η  [7] 

( ) ( )
ncelle

te eT te p p 11 p p p 22 p

int n int 1 2
p 1

W ( ) T L T L11 22 
=

η = = ε η + ε η∑η F  [8] 

( )
ncelle

se eT se p p

int n int s
p 1

W ( ) C
=

η = = γ η∑η F  [9] 

 
4.2.1. Geometry of the three node finite element made of woven cells 

The three node triangle shown Figure 2 is composed of ncelle woven cells such 
as described in Section 4.2. As usual, the “natural” material coordinates (or 
coordinates in the reference element) ξ1, ξ2 are defined along the sides of the 
element. These coordinates have the following values at the nodes of the triangle : 
M1(0,0), M2(1,0), M3(0,1). The displacement u and the position x of a point P within 
the element are interpolated from the values at node: 

3 3

i i i i
i 1 i 1

u(P) N u(M ) x(P) N x(M )
= =

= =∑ ∑  [10] 

 
With     N1= 1 - ξ1 - ξ2   N2 = ξ1  N3 = ξ3 [11] 
 
 

 
  

Figure 2. Three-node finite element made of unit woven cells  

a2 

a1 
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The material coordinates r1, r2 are defined along the warp and weft directions 
(Figure 2). r1 is equal to zero on M1M3 and is equal to 1 in M2. r2 is equal to zero on 
M1M2 and equal to 1 in M3. 

Denoting a1=M1A and a2=M1B (Figure 2), the coordinates ξ1, ξ2 and r1, r2 are 
related  

1 1 1 1

2 2 2 2

1 b 1 br r 1

a 1 a 11 abr r

−ξ ξ
= =

− −ξ ξ

   
      

 [12] 

 
The material vectors k1, k2 are defined from r1, r2: 

 

1 1

x
k

r

∂
=

∂
 2 2

x
k

r

∂
=

∂
    and consequently   k1=AM2     k2=BM3  [13] 

 
4.2.2. Tensile elementary nodal interior load 

Denoting kα (α = 1 or 2) the contravariant vectors associated to kα i.e. such as  

k .kα α

β β= δ  [14] 

 
The virtual displacement gradient can be expressed in the warp and weft frame: 

 

s 1
( ) k k k k

2 r r
α β

β αα β

∂η ∂η
∇ η = ⋅ + ⋅ ⊗

∂ ∂
 
 
 

 [15] 

 
Consequently 

( ) ( )( )s

2

k
( ) f f

r k
α

α ααα α

α

∂η
ε η = ∇ η ⋅ ⋅ = ⋅

∂
 [16] 

 
the elementary tensile virtual work can be written : 

 
p p

ncelle
te eT te p 11 p p 22 p1 2

int n int 1 22 21 2
p 1 1 2

k k
W ( ) T L T L

r rk k=

∂η ∂η
η = = ⋅ + ⋅

∂ ∂

   
   
   

∑η F  [17] 

 
Denoting iη the components number i (i=1 to 3) of the virtual displacement η in 

the global frame and i1 i 2 i3, ,η η η  the values of these components at nodes M1, M2, 
M3, accounting for the interpolation [10], 

 



926     REMN – 17/2008. Giens 2007 

[ ][ ]Ti i
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Consequently 

p pncelle
te eT te p p 11 p p p 221 2

int n int 1ij 1 2ij ij2 2
p 1 1 2

L L
W ( ) B T L B T

k k=

η = = + η
 
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with  
 
 B1i1= (a1-1) k1i  B1i2 = k1i  B1i3= - a1k1i                [20] 
 
 B2i1 = (a2-1) k2i  B2i2 = - a2k2i B2i3 = k2i                 [21] 
 

The elementary nodal tensile interior loads are determined. Because of the linear 
interpolation, the strain interpolation terms Bαij are very simple and constant in the 
element. The strains and the tensions are constant in the element, consequently: 

( )te 11 221 2
int 1ij 11 22 2ij 11 222 2ij

1 2

L L
F ncelle B T ( , ) B T ( , )

k k
= ε ε + ε ε

 
 
 

 [22] 

 
REMARK — in Equation [22], ncelle can be non-integer accounting for unit woven 
cells crossing the boundary of the element 

The angle variation between the warp and weft directions in the virtual field 
( )γ η is given by the gradient of the virtual displacement: 

( ) ( )2 1

1 2( ) f f f fγ η = ∇η ⋅ ⋅ + ∇η ⋅ ⋅  [23] 
with: 

1 2
1 21 2

1 2 1 2

1 2

k k k k
f , f , f , f

k k k k
= = = =  [24] 

 
The expression of the components of the virtual displacement gradient [15] and 

Equation [18] gives the interpolation of the virtual angle variation ( )γ η  

2 11 2 2 1

1ij 3ij 4ij 2 ij ij ij ij2 1

1 1 2 2

k kk k k k
( ) B B B B B

k k k kk k
γγ η = ⋅ + + + ⋅ η = η

 
  
 

 [25] 
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with: 
 

B3i1 = (a2-1) k1i  B3i2 = - a2k1i B3i3 = k1i                 [26] 
 

B4i1= (a1-1) k2i  B4i2= k2i  B4i3 = - a1k2i   [27] 

B1ij, B2ij have been given in Equation [20] and [21].  

Bγi1, given by Equation [25] is constant in the three node finite element, therefore: 

( )se

int ij sij
F ncelle B C ( )γ= ⋅ γ⋅                                                                         [28] 

5. Draping on a circular table  

The draping of an initially plane square textile sheet over a circular table is 
considered (The mesh is composed of 2×100×100 triangles). The proposed approach 
based on the three node element give a satisfactory shape after draping that involves 
extensive wrinkling (Figure 3a). It can be seen that these wrinkling are well 
described by the membrane model. If some bending stiffness would be added, the 
wrinkling would be globally similar but they would be less numerous and larger as 
the bending stiffness increases. The draping is due to the weak shear stiffness and 
possible large warp weft angles variations.  

If the in plane shear stiffness is neglected, the draped shape is shown Figure 9b. 
The draping is obtained but there is no wrinkle because the shear angle can be 
infinitely large as it is the case in the corners of the sheet.  

Figure 3. Fabric sheet draped over a circular table with stiffness (a) woven tensile 
and shear stiffness, (b) null shear stiffness and (c) isotropic shear stiffness 

This solution is close to those that would be obtained by a kinematical model that 
appears to be unsuitable in this case. Finally Figure 9c shows the deformed shape 
obtained considering an isotropic behaviour of the sheet. The draping is not 
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obtained. It could be for instance a paper sheet that is very difficult to drape on a 
circular table. That shows the very important role of the in plane shear stiffness in 
draping/forming of membrane. A textile can be shaped on a double curved surface 
because there are possible large rotations between warp and weft fibres and in plane 
shear is very weak. In the case of an isotropic membrane that is not possible. 

6. Three-ply forming simulation 

 

Figure 4. Geometry of the tools in a hemispherical deep drawing of a textile 

 
 

Figure 5. Deformed shape and distortion of the weft and warp for the central ply 
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Figure 5 shows the result of the simulation of the simultaneous forming of three 
plies respectively at ±45°, 0-90°, ±45°. The geometries of the hemispherical punch, 
die and blank holder are shown on Figure 4. The mesh of each ply is regular and is 
made of 20 x 20 x 4 triangles. It is the same mesh for each ply. The difference comes 
from the orientation of vector k1 , k2 (following the yarn orientations). This is a 
strong advantage of the three node element proposed in that paper in comparison to 
the elements where the yarns have to be directed by the sides of the elements 
[22][25].The variations of warp-weft angles obtained give a maximum value of 46° 
(Figure 5). This is close to the locking angle in the shearing of the reinforcement and 
the start of the appearance of wrinkles in the strongly sheared zone. We can note in 
this example that the differences in orientations between the plies lead to great 
slippage between the layers. The deformed state of the stack depends on this friction 
between the plies which is an important point for multiply forming [26].  

7. Conclusions 

Composite reinforcement forming simulations is a field which undergoes many 
developments. Different approaches exist and mainly differ according to the scale at 
which the modelling is made. The semi-discrete three node finite element proposed 
in this paper is made of woven unit cells in biaxial tensions and in plane shear. This 
element is efficient because it is simple and close of the mechanical behaviour of 
woven materials. The membrane assumptions (no bending stiffness) used in the 
present approach lead to wrinkles when the shear angles are very large (for instance 
in the corners of the cube on which a fabric is draped in example 4.2). Nevertheless 
the shape and the number of those wrinkles depend on the bending stiffness of the 
fabric. The next step in the improvement of the element will be to take into account 
the bending rigidity. 
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