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ABSTRACT. A non-uniform warping beam theory including the effects of torsion and shear 
forces is presented. Based on a displacement model using three warping parameters 
associated to the three St Venant warping functions corresponding to torsion and shear 
forces, this theory is free from the classical assumptions on the warpings or on the shears, 
and valid for any kind of homogeneous elastic and isotropic cross-section. This general 
theory is applied to analyze, for a representative set of cross-sections, the elastic behavior of 
cantilever beams subjected to torsion or shear-bending. Numerical results are given for the 
one-dimensional structural behavior and the three-dimensional stresses distributions; for the 
stresses in the critical region of the built-in section, comparisons with three-dimensional 
finite elements computations are presented. The study clearly shows when the effect of the 
restrained warping is localized or not. 
RÉSUMÉ. Une théorie de gauchissement non uniforme prenant en compte les effets de la 
torsion et des efforts tranchants est présentée. Basée sur un modéle cinématique utilisant trois 
paramètres de gauchissement associés aux trois fonctions de gauchissement de torsion et 
d’efforts tranchants de St Venant, la théorie, qui s’affranchit naturellement des hypothèses 
classiques sur les gauchissements ou les cisaillements, est valable pour toute section 
homogène élastique et isotrope. Cette théorie générale est appliquée pour analyser le 
comportement élastique de la torsion ou de la flexion-simple de poutres consoles et pour 
différents types de section. Les résultats numériques portent sur le comportement 
unidimensionnel de la poutre et sur la distribution tridimensionnelle des contraintes ; les 
contraintes au droit de la zone critique de l’encastrement sont comparées à celles résultant de 
calculs par éléments finis tridimensionnels. L’étude permet de préciser quand l’effet du 
gauchissement empêché est localisé ou pas. 
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1. Introduction

In general case of loading and boundary condition, the warping is non-uniform
along the axis of a beam. This leads to a beam mechanical behavior that may be
enough different from that predicted by St Venant beam theory (SV-BT) (Ladevèze
et al., 1998) or other theories which are restricted to uniform warping. Further, con-
cerning St Venant’s principle, the effect of the critical region where the warping is re-
strained, is not always localized to that region. To better describe the warping effects,
high order beam theories have been proposed; they have generally been performed to
study, separately, the effects of torsional warping (Vlasov, 1961; Kim et al., 2005) and
shear force warping (Wang et al., 2000; Dufort et al., 2001). These theories are based
on displacement models (ξ) including a warping (w) of the following shape:

ξ(x,X) = v(x) + θ(x) ∧X + w(x,X) x with w(x,X) = η(x) ψ(X)

where, x is the unit vector of the beam axis, X the in-section vector position,
(v,θ) the cross-sectional displacements, η the warping parameter and ψ a warping
mode associated to torsion or to one of the shear forces; (vectors are highlighted in
boldface characters). In each case, ψ is supposed to represent the corresponding SV-
warping-function, which is considered as the reference to describe the natural warping
of a cross-section (CS). Further, η may be independent or linked to the cross-sectional
strains, which can reduce the number of degrees of freedom (for the torsion, η is taken
as the twisting rate (e.g.(Vlasov, 1961)), and for the shear-bending η is taken as the
cross-sectional shear strain (e.g. (Dufort et al., 2001)).

Non-uniform warping theories agree for the structural behavior of the beam in the
case of bi-symmetrical-CS. There is also an agreement about the expression of the
additional axial stresses due to warping. However, the situation is not so clear for
the shear stresses because these ones are intimately associated to the choices of the
warping mode and the warping parameter (independent or not). Also, there is not
an agreement concerning the effect of the non symmetry of the CS. In most of the
works, for non-symmetrical-CS, if the bending moments refer to the centroid while
the torsional moment refers to the shear center, torsional and bending effects remain
uncoupled for non-uniform warping theories as they were in classical beam theories.
However, on an other side, (Kim et al., 2005) has shown that a (new) flexural-torsional
coupling is induced by the non-uniformity of the warping.

In order to obtain a beam theory valid for any CS and able to highlight all these
aspects, we propose a beam theory based on the following warping model

w(x,X) = ηx(x) ψx(X) + ηy(x) ψy(X) + ηz(x) ψz(X)

using three independent warping parameters (ηx, ηy, ηz) associated to three warp-
ing functions (ψx, ψy, ψz) which are “exactly” the SV-warping-functions correspond-
ing to torsion and shear forces. This model, that could be considered as the most
general one, leads to a non-uniform beam theory (denoted herein by NUW-BT) free
from the classical assumptions on the warping functions or on the shear distributions
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(e.g. Vlasov assumptions for thin-walled profiles). Starting from of the model dis-
placement, the theory is derived using, as classical, the virtual work principle. In the
present paper, the description of the NUW-BT will be restrained to its key points; how-
ever, one can find the theoretical developments in (El Fatmi, 2007c; El Fatmi, 2007b).
It should be noted that the numerical applications of the NUW-BT need, for a given
cross-section, to first compute all its characteristics: the cross-sectional constants
and the SV-warping-functions. This is achieved in this study by using the soft-
ware tool designated by SECOPE which is available within the finite elements code
CASTEM. SECOPE has been developed conforming to the numerical method pro-
posed by (El Fatmi et al., 2004) to compute the complete three-dimensional (3D)
SV-solution, within the frame of the exact beam theory established by (Ladevèze et
al., 1998). To illustrate the NUW-BT, the applications are devoted to the analyzes
of cantilever beams subjected to torsion or shear-bending, and for different kinds of
sections.

2. Non-uniform warping theory
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Figure 1. The reference problem

The reference problem shown in Figure 1 is a 3D equilibrium beam problem. The
beam is of section S and length L. Slat is the lateral surface and S0 and SL are the
extremity sections. y and z are the inertia unit vectors of the CS. The material consti-
tuting the beam is characterized by the Young’s modulus E and the shear modulus G
(or the Poisson’s ratio ν). The beam is in equilibrium under1 surface force densities
H0 and HL acting on S0 and SL, respectively.

Let X=GM and X=CM the in-section vectors that refer to the centroïde G
and to the shear center C of the section, respectively. The displacement model is the
following:

ξ(v,θ,η) = v(x) + θx(x)x∧X + (θy(x)y + θz(x)z)∧X + [ηi(x) ·ψi(X)]x [1]

where ηiψi is a sum using the repeated indices convention with i ∈ {x, y, z},
(v,θ) are the cross-sectional displacements, ηi (η=(ηx, ηy, ηz)) the warping parame-
ters, and ψi the SV-warping-functions corresponding to torsion and shear forces. The

1. This is conform to the original SV-problem, and for the sake of simplicity we consider the
same conditions; for other loadings and boundary conditions, see (El Fatmi, 2007a; El Fatmi,
2007b).
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beam theory associated with this displacement, parametrized by (v,θ,η), is derived
by the virtual work principle. Let us introduce first ξ̂ = ξ(v̂, θ̂, η̂) denoting a virtual
displacement and ε̂ = ε(ξ̂) the corresponding strain tensor. With γ̂=v̂′+x ∧ θ̂ and
χ̂=θ̂

′
((.)′ expresses the derivative with respect to x), the non zero components of ε̂

can be written:

ε̂xx=γ̂x+zχ̂y−yχ̂z+η̂′iψi ;
[

2ε̂xy
2ε̂xz

]
=γ̂yy+γ̂zz+χ̂x(x∧X)+η̂i∇ψi [2]

σ being the stress tensor, the internal virtual work is Wi= −
∫
L

〈σ : ε(ξ̂)〉dx,
where the compact notation 〈(·)〉 denotes

∫
S
(·) dS. Using the expression of the virtual

deformations (Equation [2]), Wi takes the form:

Wi = −
∫

L

(R · γ̂ + M · χ̂ + Mψ · η̂′ + M s · η̂) dx

=
∫

L

(
R′ · (v̂ + x ∧ θ̂) + M ′ · θ̂ + (M ′

ψ −M s) · η̂
)
dx

−
[
R · v̂ + M · θ̂ + Mψ · η̂

]L
0

[3]

where

R = r(σ · x) Mψ = 〈σxxψi〉xi
M = m(σ · x) M s = 〈σxyψi,y + σxzψ

i
,z〉xi xi ∈ {x,y, z} [4]

This defines the internal forces R,M ,Mψ and M s. R=(N,T y, T z) and
M=(Mx,My,Mz) are the classical resultant and moment of the stress-vector (σ ·x):
(N,T y, T z) are the axial and the shear forces, Mx is the torsional moment refer-
ring2 to the shear center C, whereas (My,Mz) are the bending moment referring to
the centroid G. The new ones (Mψ,M s), are called3 the bimoment vector and the
secondary internal force vector, respectively. The components of Mψ are denoted
(Mx

ψ ,M
y
ψ,M

z
ψ) and those of M s by (Mx

s , T
s
y , T

z
s ), because Mx

s is homogeneous to
a moment, and (T ys , T

z
s ) are homogeneous to forces. The external virtual work is

We=
∫
S0

H0 · ξ̂ dS+
∫
SL

HL · ξ̂ dS. Using Equation [1], We takes the form:

We = P 0 · v̂0 + C0 · θ̂0 + Q0 · η̂0 + PL · v̂L + CL · θ̂L + QL · η̂L [5]

where (P I=〈HI〉;CI=m(HI); QI=〈Hx
I ψ

x〉x+〈Hx
I ψ

y〉y+〈Hx
I ψ

z〉z) define,
for the 1D theory, the external actions associated to the external surface force den-
sity HI , with I ∈ {0, L}.

2. It is common, for non symmetrical cross-section (in order to uncouple torsional and bending
effects) to express the bending moments referring to the centroid while the torsional moment is
referred to the shear center.
3. It is usual, in non-uniform torsional warping theories, to call Mx

ψ the bimoment, and Mx
s

the secondary torsional moment. By analogy, we introduce the bimoment vector Mψ and the
secondary internal force vector Ms.
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Thanks to the principle of virtual work, Equations [3-5] provide the equilibrium
equations and the boundary conditions:

R′ = 0
M ′+x ∧R = 0

M ′
ψ-M s = 0

x = 0 : {R,M ,Mψ}0 = -{P 0,C0,Q0}
x = L : {R,M ,Mψ}L = {PL,CL,QL} [6]

Let D=(Dσ,Dτ ) denote the generalized strain vector and T =(T σ,T τ ) the cor-
responding generalized force vector defined by:

Dσ=(γx, χy, χz, η′x, η
′
y, η

′
z) Dτ=(χx, ηx, γy, ηy, γz, ηz)

T σ=(N,My,Mz,Mx
ψ ,M

y
ψ,M

z
ψ) T τ=(Mx,Mx

s , T
y, T ys , T

z, T zs ) [7]

The 1D elastic constitutive relation can be written T =ΓD where Γ defines the
structural rigidity operator. Using the matrix notation, the elastic strain energy for the
1D model of the beam is given by W 1D

el (D,D)= 1
2

∫
L
[D]t[Γ][D]dx. Besides, for the

3D problem, ε denoting the strain tensor associated to the displacement ξ(v,θ,η)
(Equation [1]), and using Hooke’s law, the beam elastic strain energy can be written
as

W 3D
el (ε,ε) =

1
2

∫

L

〈Eε2xx + 4G(ε2xy + ε2xz)〉dx [8]

Identifying the strain energiesW 3D
el andW 1D

el allows to derive the rigidity operator

Γ. This identification shows that Γ can be written Γ=
[

Γσ 0
0 Γτ

]
and leads to the

uncoupled relations T σ=ΓσDσ and T τ=ΓτDτ . The rigidity operators Γσ and Γτ

are associated to the axial stress and the shear stresses, respectively. Using the SV-
warping functions properties (see details in (El Fatmi, 2007c; El Fatmi, 2007a), Γσ

and Γτ reduce to:

Γσ = E




A 0 0 0 0 0
Iy 0 0 0 0

Iz 0 0 0
Ixxψ Ixyψ Ixzψ

Iyyψ Iyzψ
Izzψ



sym

[9]

Γτ = G




Ix J − Ix zcA −zcA −ycA ycA
Ix − J −zcA zcA ycA −ycA

A Ay −A 0 0
A−Ay 0 0

A Az −A
A−Az



sym

[10]
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with Ix=Iy+Iz+A(y2
c+z2

c ). (A,Ay, Az, Iy, Iz, J, yc, zc) are the classical cross-
sectional constants (the area, the reduced areas, the moments of inertia, the torsional
constant, and the components of the shear center C, respectively) and Iijψ = 〈ψiψj〉
define the cross-sectional warping constants and the warping matrix noted Iψ . The
expressions of the strain (Equation [2]) and the inverse of the constitutive relations
(Equations [9-10]) allow to express the normal and shear stresses with respect to the
generalized stresses as follows:

σnuwxx =

σsv
xx︷ ︸︸ ︷

N

A
+
My

Iy
z − Mz

Iz
y

+
Mx
ψ

κσ

[
((Iyyψ Izzψ -Iyzψ

2)ψx+(-Ixyψ Izzψ +Ixzψ Iyzψ )ψy+(Ixyψ Iyzψ -Ixzψ Iyyψ )ψz)
]

+
My
ψ

κσ

[
((-Ixyψ Izzψ +Ixzψ Iyzψ )ψx+(Ixxψ Izzψ -Ixzψ

2)ψy+(-Ixxψ Iyzψ +Ixyψ Ixzψ )ψz)
]

+
Mz
ψ

κσ

[
((Ixyψ Iyzψ -Ixzψ Iyyψ )ψx+(-Ixxψ Iyzψ +Ixyψ Ixzψ )ψy+(Ixxψ Iyyψ -Ixyψ

2)ψz)
]

with κσ = Ixxψ Iyyψ Izzψ -Ixxψ Iyzψ
2-Ixyψ

2
Izzψ +2Ixyψ Ixzψ Iyzψ Ixzψ

2Iyyψ

[11]

τnuw =

τsv

︷ ︸︸ ︷
Mxτx + T yτy + T zτz

+
Mx
s

κτ

[
(A-Ay)(A-Az)(Ixτx-x ∧X)-A2(y2

c (A-Ay)+z2
c (A-Az))τx

−zcA(A-Az)(Ayτ y-y)+ycA(A-Ay)(Azτ z-z)
]

+
T ys
κτ

[
-zcA(A-Az)(Jτx-x ∧X)

+((Ix-J)(A-Az)-y2
cA

2)(Aτ y-y)-z2
cA

2(A-Az)τ y-yczcA2(Azτ z-z)
]

+
T ys
κτ

[
ycA(A−Ay)(Jτx − x ∧X)

-yczcA2(Ayτ y-y)+((Ix-J)(A-Ay)-z2
cA

2)(Aτ z-z)-y2
cA

2(A-Ay)τ z
]

with κτ = (Ix-J)(A-Ay)(A-Az)-A2(y2
c (A-Ay)+z2

c (A-Az))

[12]

where σsvxx and τ sv are the axial and the shear stresses of SV-solution (τx, τy, τz

are the St-Venant-shears associated to unit torsional moment and shear forces, respec-
tively). This result makes clear the additional contribution of the new internal forces
Mψ and M s induced by the non-uniformity of warping.
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3. Comments

– Equilibrium equations (Equation [6]), constitutive relation T =ΓD (Equation [9-
10]) and boundary conditions on S0 and SL form the 1D problem that defines the
NUW-BT.

– For a cantilever beam submitted to shear-bending or torsion, the warping is re-
strained (η=0) for the built-in section, and free (Mψ=0) in the other extremity; the
warping is then non-uniform along the span.

– Due to warping, torsional and bending effects are coupled in the present NUW-
BT, even if the torsional moment refers to the shear center C whereas the bending
moments refer to the centroid G. For an arbitrary-CS this coupling effect is related
to the three coupling components (Ixyψ , Ixzψ , Iyzψ ) of the warping matrix and to the co-
ordinates (yc, zc) of C. This coupling appears clearly in the constitutive relations
(Equation [9-10]) and in the expressions of the stresses (Equations [11-12]). For
bi-symmetrical-CS, one can show that (Ixyψ =Ixzψ =Iyzψ =yc=zc=0) and the torsional-
flexural coupling vanishes.

– The lateral surface Slat of the beam is free of loading. In Equation [12], the
contribution of M s to the shear is expressed with the SV-shears (τx, τ y, τ z) and
with the supplementary terms (x ∧X), (y) and (z). The SV-shears naturally vanish
at the free edge of the section but the supplementary terms violate the "no shear"
boundary conditions at the edge. Thus, for this theory founded on the displacement
model (Equation [1]), the result on the shear distribution over the section is not quite
satisfying.

– The application of the NUW-BT needs to previously know, for any given CS, all
its constants (A, Ay , Az , Iy , Iz , J , yc, zc) and in particular its SV-warping-functions
(ψx, ψy, ψz) and shears (τx, τ y, τ z). In such conditions, it is worth to note that we
have just to compute the six scalars of the warping matrix Iψ, and for the stresses, the
closed form results (Equations [11-12]) can be directly used without any additional
computation.

– One can find in (El Fatmi, 2007a), the conditions for which the warping parame-
ters can be linked to the classical cross-sectional strains, allowing to provide simplified
versions of the present NUW-BT where the degrees of freedom are reduced.

4. Numerical applications

A representative set of CS is considered: solid-CS, thin-walled open/closed-CS,
symmetric or not. The sections are denoted S1,S2, S3 and S4; their dimensions are
(h× h/2), the thickness for the thin-walled sections is h/20 and the elastic constants
are E=200GPa and ν=04. The SV-warping-functions, computed by SECOPE, are

4. ν is here chosen equal to zero just to be conform to the displacement model 1 which neglects
the in-plane deformation due to Poisson’s effects in the section. However, one can show that
this theory may be used with ν 6= 0, but using the good values of G ( E

2(1+ν)
), Ay and Az .
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depicted in Figure 2. To illustrate the NUW-BT, the applications are devoted to the
numerical analyzes of cantilever beams subjected to torsion or shear-bending (Fig-
ure 3-(a)-(b)). Numerical results are given for the 1D-structural behavior5 and also
for the 3D-stress distributions close to the built-in section: the stress predictions of
the NUW-BT are compared to those obtained by 3D finite elements computations
(3D-FEM). We give hereafter some significant results and one can find more detailed
results in (El Fatmi, 2007b). In the following, ((·)3D , (·)1D and (·)sv will denote
quantities related to 3D-FEM, NUW-BT, and SV-BT, respectively.

Figure 2. SV-warping-functions corresponding to torsion and shear forces

Figure 3. Cantilever beams subjected to torsion or shear-bending

Torsion. The beam is subjected to a unit tip torque C=1, and the aspect ratio L
h=

10. The two diagrams of Figure 4 depict, for S1,S2,S3, the distributions along the
beam axis of the normalized 1D-quantities θx

θsv
L

and ηx

ηx(L) , respectively. The rotation

θx is normalized by the SV-rotation of the end section θsvL =CLGJ . Except the region

5. It should be noted that the 1D-solution for the bi-symmetrical-CS are obtained analytically,
but for the non-symmetrical-CS, A 1D-FEM has been used.
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very close to the built-in section, the structural behaviors of solid-CS (S1) and closed-
CS (S2) are similar with that of SV-solution. However, for an open-CS (S3), warping
effect is not localized and extends from the built-in section to the end of the beam.

Table 1. Comparison between 3D-FEM ((.)3D) and NUW-BT ((.)1D) results on the
extrem values of the axial stresses in the built-in section

σ3D
xx (×h−2) σ1D

xx (×h−2)
∣∣∣σ

1D
xx −σ3D

xx

σ3D
xx

∣∣∣.100

S1 29.104 20.690 28.91
S2 34.714 43.702 25.89
S3 1499.8 1234.0 15.10

Table 1 compares 3D-FEM and NUW-BT results on the extreme values of the axial
stress in the built-in section (S0): qualitatively, the values of the axial stresses are of
the same order of magnitude.

Figure 4. Torsion: variations of twisting and warping along the span

Figure 5 depicts, for S1 and S3 and by columns (a,b,c,d): (a)- the shear distribution
|τ |3D on the built-in section S0, indicating the values of the shear for two important
points A and B of the section; (b)-the shear distribution |τ |1D on S0, with the values
of the shear for the same points A and B; (c)- the variations, starting from S0, of the
shears |τ |3D and |τ |1D normalized by |τ |sv for the particular point A where |τ |sv
is maximum; (d)- the SV-shear distribution |τ |sv , with the values of the shear for
the same points A and B. For the solid-CS (S1), in the built-in section, the extreme
values of the shear are lower than those of St Venant |τ |sv , and of the same order of
magnitude with those of the axial stresses due to the restrained warping (see Table 1).
In contrast to S1, for the open-CS (S3), the shear distribution in the built-in section is
really different from that of St Venant and the magnitude order of the extreme values
of the shear becomes negligible. More important, in the critical section, compared to
the axial stress due to the restrained warping (see Table 1), the shear is negligible. For
the torsion, these results allow to conclude that:
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– the behaviors of the solid-CS and the closed-CS are similar: SV-solution is suf-
ficiently precise to evaluate the twisting angle, but for the stress predictions close to
the critical section, the restrained warping must be taken into account;

– in contrast, for an open-CS, SV-solution is no longer sufficient, warping effect is
not localized and it is necessary to take into account the non-uniformity of the warping
for both structural behavior and stress predictions.

Figure 5. Torsion of cantilever beams: shears distributions

Shear-bending of a short beam. The cantilever beam is subjected to a tip transver-
sal force (P=1), and the aspect ratio L

h is chosen to be equal to 2.5. Figure 6 depicts,
for S1, S2, S3, the distributions along the beam axis of the normalized warping ηy

ηy(L) .
The warpings effects remain very localized close to the built-in section ( even if the
case of the solid-CS (S1) is a little different). It should be noted that the solution of
the 1D-problem may be obtained in a closed form and the expression of the deflection
is:

vy(L)=

vsv
y (L)︷ ︸︸ ︷

PL3

3EIz
+

PL

GAy

(
1− A−Ay

A

tanh(KyL)
KyL

)
with Ky =

√
GAy
EIyyψ

A−Ay
A
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Figure 6. Shear-bending: variations of warping along the span

The simulations for the three sections and an aspect ratio L
h ≤ 2.5, have shown

that vsvL represents 99% of the total deflection vy(L). Table 2 compares 3D-FEM and
NUW-BT results on the extreme values of the axial stresses in the built-in section.
The results indicate that, for a short beam (L=2.5h), axial stresses σwxx due to (the
restrained) warping becomes important and may reach 50% of the axial stresses σsvxx
due to flexure.

Table 2. Shear-bending: comparison of the axial stresses due to warping and flexure

3D-FEM σ3D
xx σsvxx

(
σ3D
xx

)w (σ3D
xx )w

σsv
xx

%
S1 34.306 30.000 4.306 14.35
S2 122.720 87.234 35.486 40.68

NUW-BT σ1D
xx σsvxx

(
σ1D
xx

)w (σ1D
xx )w

σsv
xx

%

S1 33.346 30.000 3.346 11.15
S2 135.909 87.234 48.675 55.77

∣∣∣σ
1D
xx −σ3D

xx

σ3D
xx

∣∣∣%
S1 2.80
S2 10.75

For the shear-bending, the structural behaviors of the three kinds of cross-section
are similar, and the effect of the non-uniformity of the warping is very localized close
to the critical section. The evaluation of the deflection can be done with SV-BT, and
do not need a non-uniform warping theory. However, for a short beam and close to
the critical section (as a built-in one), the stress prediction (especially the axial stress)
must take into account the effect of the restrained warping, and use a non-uniform
warping theory.

Flexural-torsional coupling. This coupling occurs for non-symmetrical-CS. Table
3 concerns the channel-CS (Figure 3-(c)) studied by (Kim et al., 2005): for θx(L),
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the results are similar for the three theories (Vlasov-BT, Kim-BT6, NUW-BT) and its
magnitude is 90% lower than for uniform theory (SV-BT). The transversal displace-
ment due to the flexural-torsional coupling computed by the present theory and that
of Kim are very close. Both Kim-BT and NUW-BT find out a torsional-flexural cou-
pling related to the non-symmetry of the cross-section but with different approaches.
Kim-BT is built on a mixed approach (kinematic and static assumptions) and is writ-
ten for thin-walled open/closed cross-sections, whereas NUW-BT is based on a fully
kinematic approach and is supposed to be valid for any cross-section.

Table 3. Coupling-effect: twisting angle θx and lateral displacement vz

SV-BT Vlasov-BT Kim-BT NUW-BT
θx(L) 43.330 4.119 4.236 4.203
vz(L) - - 2.163 2.369
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6. Kim-BT, written for open/closed thin-walled cross-section, is built on a mixed approach
using the Hellinger-Reissner principle. This approach considers a kinematic model similar to
that of NUW-BT, but where only the torsional warping function is considered, and introduces
(thin-walled) Vlasov assumptions for the shear.




