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ABSTRACT. Macroscopic descriptions of instability pattern formation can be predicted by generic 
amplitude equations of Ginzburg-Landau type. A variant of this approach is presented, that 
permits to account for the coupling between local and global instabilities. The mean field and 
the amplitude of the fluctuations are governed by similar equations. The resulting model is a 
generalized continuum, where the macroscopic stresses are Fourier coefficients of the 
microscopic stresses. This new double scale description of cellular instabilities is applied to 
beam on an elastic foundation and to 3D nonlinear elasticity. We shall also discuss the 
behaviour of these new continuum models after a finite element discretisation. 
RÉSUMÉ. L’évolution des instabilités spatio-temporelles peut se décrire macroscopiquement 
par des équations d’amplitude génériques de type Ginzburg-Landau. On établit une variante 
de cette approche, qui permet de prendre en compte des couplages entre instabilités locales 
et globales. Le champ moyen et la fluctuation obéissent à des équations similaires. Le modèle 
final est un milieu continu généralisé, où les contraintes macroscopiques sont des coefficients 
de Fourier de la contrainte microscopique. Cette nouvelle approche à deux échelles des 
instabilités cellulaires est présentée sur deux exemples : poutre sur fondation élastique et 
élasticité non linéaire 3D. On montrera également comment ces nouveaux modèles continus 
se comportent après une discrétisation par éléments finis.  
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1. Introduction 

In many cases of instability, the modal wavelength is very short, when compared 
with the size of the domain. Membrane wrinkling (Diaby et al, 2006) or thermo-
convective instabilities (Wesfreid et Zaleski, 1984) are typical examples of these 
cellular instabilities. Such instabilities occur during the process of thin metal sheets 
by rolling, where the plastic deformation in the bite induces compressive residual 
stresses. These stresses generate sheet wrinkling, as depicted in Figure 1, which 
releases the compressive stresses and can affect the rolling process. 

 

    

Figure 1. Wrinkling patterns at bite exit 

Such phenomena can be modelized, either by direct simulations or by bifurcation 
analyses according to the Landau-Ginzburg theory. The first approaches are 
expensive if the local and global lengths are very different. Because they are based 
on restrictive assumptions on the response of the system, the second ones are limited 
to the vicinity of the bifurcation threshold.  

A new approach is sketched in this paper. The model is a generalized continuum 
and the unknown fields include at least the mean value and the envelope of the 
fluctuations. The discretization of this model will also be studied.  

2. Classical bifurcation analyses 

The bifurcation theory allows to describe the evolution of a field  
nRU ⊂Ω∈xx    ),(  as a function of a scalar parameter λ from a singular 

state 00   ),( λxU . In the case of a symmetric bifurcation and of a single 

mode )( 1 xU , the bifurcated branch is parametrized by the amplitude of the 
deviation that is a real number denoted by a in the sequel:  
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In the case of a cellular instability, the amplitude )( xa  is complex to account 

for phase shift and it can vary slowly to account for amplitude modulations. The 
amplitude is governed by Landau-Ginzburg equation. For instance, let us consider a 
2D case and let us assume that the pre-bifurcation state does not vary in the x-
direction and that the bifurcation mode is harmonic in this direction. As it is well 
known, the states just after bifurcation are described by the formulae below, 
where q is the critical wavenumber, a  is the complex conjugate of a  and 

21   , αα are scalar numbers )1( 2 −=i  
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The latter analysis relies on a multi-scale asymptotic approach, where the 

amplitude is assumed to vary slowly when compared with iqxe . For more details, see 
(Segel, 1969, Newell et al, 1969) for application to the Rayleigh-Bénard convection 
problem and to (Damil et al, 1986) for the buckling of long plates.  The Landau-
Ginzburg Equation [3] does not depend on the considered model and it is generic for 
any system having a « x→-x »symmetry (Iooss et al, 1989, Damil et al, 1992). The 
amplitude is only a multiplier of the bifurcation mode.  

Another multi-scale approach is proposed in this paper, where slowly varying 
amplitudes are Fourier coefficients of the starting problem’s unknowns.  

3. Generalized continuum media deduced from a two scale Fourier analysis  

We study phenomena such that the response of the system is the sum of a slowly 
varying mean field and a fluctuation that is nearly periodic in one spatial direction. 
As shown in Figure 2, at least two slowly varying functions are needed to model the 
phenomenon.  

In this part, a general method is presented to deduce the equations satisfied by 
these slowly varying fields. All the unknowns of the models are sought in the form of 
Fourier series, whose coefficients vary slower than the harmonics:   

.)()( ∑+∞

−∞=
=

m
miqx

m exUxU      [4] 
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The present approach allows easily to describe the coupling between local and 
global buckling (Sridharan et al, 2001) or sandwich plates (Léotoing et al, 2002) or 
to predict the influence of wrinkling on the response of membranes (Diaby et al, 
2006, Wong et al, 2006). The current work is motivated by the prediction of flatness 
defects at the exit of a rolling-mill. 

 
Figure 2. At least two macroscopic fields are necessary to describe a nearly 
periodic response: the mean field and the amplitude of the fluctuation  

3.1. First starting model: a nonlinear beam  

The proposed method is first applied to a classical nonlinear beam model which 
rests on an elastic foundation, where the constitutive law of the foundation is 
( 3

3)( vCCvvg +=− ). The unknowns of the whole model are the axial displacement 
)(xu , the deflection )( xv and the normal force )(xn : 
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3.2. The associated generalized continuum 

One aims to establish a new macroscopic model, whose unknowns are the 
Fourier coefficients )( xUm . Let us remark that coefficients of the harmonic 0 are 
real while other ones are complex, which doubles the number of degrees of freedom. 
The macroscopic model can be deduced from the microscopic one [5] simply by 
identifying the Fourier coefficients in each equation. Of course, the Fourier 
coefficients )(xUm are assumed to be constant over a period.  

As an example, we first express the model obtained by considering only three 
terms in [4]: 1110    ,   , UUCURU =∈∈ − . The coupling of all the harmonics is 
given in (Damil et al ,2006). The macroscopic model for the mean field is obtained 
from the harmonic 0 in each equation: 

 

Mean field +amplitude 

       Mean field  
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These equations look like the initial model, but nonlinearities induce some 

coupling between the mean field and the amplitude of the fluctuations. For instance 
the last term in [6-b] is positive and thus implies an elongation. If the beam is in 
compression, a local instability )(1 xv can occur. In this case, the last term of [6-b] 
decreases the compressive stress. Hence this model permits a macroscopic 
description of the stress release due to local buckling in compressed thin sheets.  

The equation governing the evolution of the fluctuation is obtained in the same 
way. If one supposes that the horizontal forces do not fluctuate ( )()( 0 xfxf = ), one 
establishes that the membrane stress and the horizontal displacement at order 1 are 
zero 0)(   ,0)( 11 == xuxn . The equation for the fluctuation is then:  
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Equation [8] is similar with the initial bending Equation [5-c]. There is a new 

coupling between mean fields and fluctuations. In particular a compressive 
macroscopic stress )( 0 xn  can lead to local buckling, due to the second term in [8].  

This Equation [8] is of 4th order. But if the assumptions of the asymptotic 
approach are applied: 

 

)(    ),(    ),( 01 ελλεε OOvO
dx
d =−== , [9] 

 
one recovers the second order Landau-Ginzburg equation. Hence the proposed 
method is consistent with the asymptotic approach. One can consider [8] as a 
modified Landau-Ginzburg equation, that accounts from the starting model. But in 
the solution of [8], one can find boundary layers and rapidly varying responses that 
are cancelled in the asymptotic approach.    
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3.3. Analysis of an eigenvalue problem 

To explain the nature of extended continuum introduced so far, consider the 
linear buckling problem of a long beam on a foundation, subjected to a uniform 
compression λ−=)( xn . One studies a non dimensional model, which is 

equivalent to choose 1   ,1 == CEI . The bifurcation point 0 λ and the mode )(xv are 
solutions of the linearized form of [5-c]: 
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In this example, analytical solutions are known. Disregarding boundary conditions, 
the smallest eigenvalue is 2 0 =λ and the corresponding eigenmodes are 

ixexv −=)( and ixexv −=)( . The critical wavenumber is 1=q .  

We limit ourselves to the harmonic 1, i.e. to a simplified version of Equation [8]. 
Hence the associated extended model is:  

.011

2

1

4

=+





 ++






 + vvi

dx
dvi

dx
d λ  [11] 

 
Because this model is linear, one checks easily that the Equations [10] and [11] 

are equivalent, via the relation ixexvxv )()( 1= . Hence [11] has the same 

eigenvalue 20 =λ and the corresponding modes are 1)( 1 =xv , that is slowly 

varying, and ixexv 2
1 )( −= , that is varying rapidly and therefore is not consistent 

with the assumptions below. So, the generalized continuum model contains some 
slowly varying solutions, as expected, but it contains also other very oscillating 
solutions. Note that the latter ones are dropped by the asymptotic approach. Indeed, 
if the rules [9] are applied to Equation [11] and if it is truncated at order ε , one gets 
the linearized Landau-Ginzburg equation, that is: 

 

.0)2(4 12
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2
=−+ v

dx
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One remarks that the solutions of [12] are varying slowly if the parameter λ  is 

close to its critical value. Hence the Landau-Ginzburg approach is able to select the 
adequate solutions, according to an asymptotic criterion. In Part 4, we shall try to 
drop the oscillating solutions by discretising the model [11] by a coarse finite 
element mesh. In other words, the asymptotic low-pass filter will be replaced by a 
numerical one.  
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3.4. Extension to 2D and 3D elasticity. Analysis of the constitutive law  

Let us now apply the same procedure in nonlinear elasticity with a linear stress-
strain law. With the notations of (Cochelin et al, 2007), the 2nd Piola-Kichhoff stress 
{ }  s  and the Green-Lagrange strain{ }  γ  are related by a linear relationship, while 

the strain is related to the displacement gradient{ } θ by a quadratic relationship:  

{ } [ ]{ } { } [ ]{ } [ ]{ }.   )(
2
1                  ,      θθθγγ AHDs +==  [13] 

 
We seek nearly periodic responses that vary rapidly in one direction. This 

characteristic direction and the period are described by a wave vector 3R∈q  that is 
assumed to be given. In practice, this vector comes from a linear stability analysis. 
Thus the vector{ } )( xΛ , which includes displacement vector, its gradient, strain 
and stress tensors, is sought in the form of a Fourier series, whose coefficients 
{ } )( xmΛ  are varying slowly. For simplicity, we keep harmonics up to level 2:   
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The latter procedure is applied to the constitutive law [13]. So we get a 

constitutive law for harmonic 0 (real number) and two constitutive laws for 
harmonics 1 and 2 (complex number), all these equations being coupled:  
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Thus a generalized continuum model has been defined, that is a sort of 

superposition of several continua. Like every field of the model, the displacement is 
replaced by a generalized displacement that includes five Fourier coefficients 
for [ ]2,2−∈m . The constitutive law [15,16,17] can be merged in the following way:  
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where the generalized stress{ }  S , the generalized strain{ }  Γ and the generalized 

displacement gradient { }  Θ  also include five Fourier coefficients. Note that the mth   
component of the displacement gradient is not the gradient of the mth component of 
the displacement, to account for rapid oscillations: in the same way the spatial 

derivative had been replaced by iq
dx
d + in the 1D case. The rule defining the 

Fourier components of a gradient vector is the following:   
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3.5. Extended principle of virtual work  

One has obtained a constitutive law [18] for the extended elastic continuum that 
is similar to the initial one [13], but with a larger number of unknowns. In the same 
manner, we will define the principle of virtual work for the extended continuum. The 
previously defined technique with slowly varying Fourier coefficients can be applied 
to the equation of the balance of forces. The weak form of those equations is then the 
extended principle of virtual work. This weak form can also be deduced directly 
from the principle of virtual work of the initial problem, by using Parseval’s identity.   
(Damil et al, 2006). The deduced principle of virtual work involves the Fourier 
coefficients of the stress and strain:  
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where, for simplicity, the boundary terms have been omitted. The left hand side of 
[20] involves Fourier coefficients of stress and strain, i.e. macroscopic stresses and 
strains. One sees that the extended principle of virtual work has the same shape as in 
the initial model  
 

{ }{ } { }{ } .                Ω=ΩΓ ∫∫
ΩΩ

dFUdS tt δδ   [21] 

It can be established that the Equations [18] [21] come from the stationarity of 
the following potential energy: 
 



A generalized continuum approach for local instabilities      953 

{ }[ ]{ } { }{ } .         )(  )( 
2
1)( Ω−ΩΓΓ= ∫∫

ΩΩ

dFUdUDUUP tgentgen
 [22] 

4. Discretisation and numerical tests 

4.1. Finite element discretisation 

Because the generalized continuum model has the same form as the initial model, 
it can be discretized with the same set of shape functions. In the initial model, the 
displacement and its gradient can be related to nodal variables via two interpolation 
matrices [ ] [ ]GN    ,  : 
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When applying this discretization principle to the generalized displacement and 
to the generalized gradient, one gets interpolation formulae similar to [23]. The first 
matrix, that interpolates the generalized displacement is block diagonal, since all the 
components are interpolated in the same way. The second matrix interpolates the 
displacement gradient and it is slightly more complicated because of the derivation 
rule [19]. The coupling between micro and macro scales appears at this level, via the 
wavenumber matrix [ ]Q  :  
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4.2. Numerical evaluation in a 1D eigenvalue problem 

Let us consider the linear beam buckling problem (see Section 3.3), described by 
the Equation [10], with a length π100=L and with clamped boundary conditions. 
The beam length is large, in such a way that the instability mode has about 50 cells. A 
direct analysis of [10] requires at least 400 Hermite finite elements. This direct analysis 
established that the first mode is a modulated oscillation, the amplitude having a 
sinusoidal shape. Incidentally, the Landau-Ginzburg equation, when associated with a 
Dirichlet boundary condition, predicts correctly this sinusoidal shape.   

The equation of the macroscopic model [11] has been solved by the same 
interpolation principle, but with twice the number of degrees of freedom, because the 
envelope is described by a complex number.  The mode is depicted on Figure 3a, 
with two macroscopic elements and assuming that )( 1 xv and its derivative are zero 
at both ends. This mode has not the expected sinusoidal shape, but Figure 3b shows 
that one comes near to this shape with ten macroscopic elements. However there are 
small differences with the reference solution near boundaries, because of boundary 
layer effects quoted in Section 3.2. Nevertheless a correct solution cannot be 
obtained with a very fine mesh. For instance with 100 macroscopic elements, one 
gets very oscillating solutions as predicted in Section 3.3.    
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a) Two macroscopic finite elements (b) Ten macroscopic finite elements. 

The envelope has the true sinusoidal 
shape, with boundary effects   

Figure 3. Beam of length 100 π.. The envelope v1 and its derivative are zero at the 
ends 

However it is not necessary that the envelope and its derivative are set to zero at 
the boundary, even if these conditions are satisfied by the unknown )( xv of the 
initial problem. As in many asymptotic approaches, the assumptions [4] are not 
necessarily valid up to the boundary. To solve this problem, it should be possible to 
apply the macroscopic model inside the domain, to apply the starting model near the 
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boundary and to match the two solutions. One can also hope that the macroscopic 
model is more or less exact everywhere, as it is usual for instance in the 
homogenization theory. Let us consider clamped boundary conditions and assume 
that fluctuations  
 

( ) )sin()()cos()()(Re 111 qxxvqxxvexv IRiqx −=  [26] 
 

vanish at 0 =x , as well as its derivative. This implies that the real and imaginary 
parts of the envelope satisfy the two following boundary conditions:   
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If, in addition, the approximation [9] is taken into account, it appears that the 

amplitude )(1 xv vanishes at the end, but the derivative does’ nt. In the numerical 
experiment we now assume that )(1 xv is zero, but no longer the derivative. As shown in 
Figure 4, the sinusoidal shape is recovered with a single macroscopic element. This 
implies that the macroscopic mesh is not related with the microscopic wavelength and 
the boundary conditions of the macroscopic model have to be settled carefully.  
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Figure 4. Clamped beam of length 100 π. The envelope v1 is zero at the boundary. 
The sinusoidal shape is recovered with only one macroscopic element 

5. Conclusions 

A two scale approach to predict quasi-periodic instabilities has been presented, 
leading to a generalized continuum. The so defined macroscopic stresses are Fourier 
coefficients of the microscopic stress. Clearly, this approach is interesting when the 
modal wavelength is small with respect to the macroscopic wavelength. It seems 
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much more manageable than Landau-Ginzburg methods, especially for 
discretization. The choice of boundary conditions for the macroscopic model is not 
an obvious task.  We have not discussed here the number of harmonics to be 
accounted for; but at least five ones qq 2 , ,0 ±±  are required to recover the Landau-
Ginzburg equation.  
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