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ABSTRACT. In the context of structural optimization, we propose two natural extensions of the 
level set method for the design of compliant mechanisms. Two new objective functions are 
introduced, well suited to the automatic design of compliant mechanisms, and a strategy for 
the design of mechanisms adapted to multiple loads is proposed. This work is illustrated with 
several numericals examples. 
RÉSUMÉ. Dans le cadre de l’optimisation de structures élastiques, nous proposons deux 
extensions naturelles de la méthode des lignes de niveaux qui peuvent s’avérer utiles aux 
concepteurs de micromécanismes. Nous introduisons une nouvelle fonction-coût, inspirée 
d’un critère d’optimisation largement utilisé dans le domaine de la conception de 
mécanismes, ainsi qu’une stratégie pour traiter le cas de mécanismes adaptés à plusieurs 
chargements (multichargement). Ce travail est illustré de quelques exemples numériques. 
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1. Introduction

A compliant mechanism is a single-body structure, which uses its elastic defor-
mations to achieve a given action. Wide range of uses for compliant mechanisms
include smart structures, semi-invasive medical surgicaldevices and micro-electro-
mechanical-systems (MEMS).

There are essentially two classes of numerical methods for the design of compliant
mechanisms: the kinematic synthesis approach based on the traditional rigid-body
kinematics ((Howellet al.,, 1994), (Howell„ 2001)) and the topology optimization
method for continuum structures ((Ananthasureshet al.,, 1994), (Freckeret al.,, 1997),
(Sigmund„ 1997)). The method proposed in this work belongs to the second category.
It is based on the level set method.

In the late 80’s, Osher and Sethian introduced the level set representation for nu-
merically tracking fronts and free boundaries (Osheret al.,, 1988). It is now widely
used in various applications. The level set method has recently been introduced in the
topology and shape optimization field (see (Allaireet al.,, 2002), (Allaireet al.,, 2004),
(Allaire et al.,, 2005c), (Wanget al.,, 2003), (Wanget al.,, 2005)) and has become very
popular because of its ability to handle arbitrary objective functions and state equa-
tions, and also for its great efficiency and versatility.

Basically, the level set method revisits the classical shape optimization techniques
– based on the shape derivative – using the level set representation on a fixed mesh. It
avoids most of the flaws of the classical gradient methods: the numerical instabilities
and the computational difficulties related to the remeshingof the shapes at each step
of the boundary variation algorithms are cancelled. Moreover, the level set method is
very easy to implement en 3d. But the well known advantages ofthe classical methods
are preserved: the capability to use almost any constitutive equation and any objective
function.

One remaining flaw, still present in the genuine level set method, is the possibility
of the algorithm to be “trapped” into local minima and to be unable to find the “good”
topology, starting from any initial shape: for this reason,the method is frequently
described as not being a fully topological method, and as very sensitive to initial
guesses (which is actually almost the same argument). This remark is mathemati-
cally founded, but not completely fair from a numerical point of view: our numerical
experience shows that, as soon as the initial structure is “rich enough” topologically
(i.e. there are enough initial holes), the solutions obtained do not depend on initializa-
tion. Moreover, it has been shown in (Allaireet al.,, 2005b) that the coupling with the
topological gradient is very effective, making these critics almost irrelevant.

In this paper we concentrate on the new objective function introduced to compute
optimal compliant mechanisms, and we will not discuss some details of the method
that can be found in the references cited. The method is described in the framework
of linearized elasticity, although it is obvious that largedeformations are likely to
occur in actual compliant mechanisms, and nonlinear elasticity should be used in real
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applications. Just remember that the method presented herecan be easily extended to
nonlinear models (cf. (Allaireet al.,, 2004)), as soon as efficient solvers for the direct
problem are available.

Compared to the basic level set method proposed in (Allaireet al.,, 2004), we add
two significant extensions, quite natural to introduce, butthat could be very useful to
the actual conception of compliant mechanisms:

1) new cost functions:we introduce a new objective functions in variational form
that is well suited to the computation of the shape derivative that is to be computed in
our algorithm. It can be compared to a widely used objective function, usually written
in a vector or discrete form: the mechanical advantage (MA) which is maximizing
the ratio between the output and input forces. Our integral formulation can handle,
without modifications, multiple input and output ports;

2) multi-loads: We show that our formulation can deal with multiple loads cases,
where the same structure is designed to be able to reach a given target displacement
through different input ports and forces.

2. Analysis of optimal synthesis of compliant mechanisms

2.1. Setting of the problem

Let Ω ⊂ R
d (d = 2 or 3) be a bounded open set occupied by a linear isotropic

elastic material with Hooke’s law denoted byA. The boundary ofΩ is made of two
disjoint parts∂Ω = ΓN ∪ ΓD, with Dirichlet boundary conditions imposed onΓD,
and Neumann boundary conditions onΓN . All admissible shapesΩ are required to be
a subset of a working domainD ⊂ R

d. We denote byf the vector-valued function of
the volume forces and byg that of the surface loads. The displacement fieldu in Ω is
the solution of the linearized elasticity system







−div (Ae(u)) = f in Ω,
u = 0 onΓD,

(Ae(u))n = g onΓN ,
[1]

wheree(u) = 1
2 (∇u+ ∇uT ) is the strain tensor.

The shape optimization problem is formulated as a minimization problem
inf

Ω admissible
J(Ω), whereJ(Ω) is an objective function chosen to evaluate the perfor-

mance of the mechanism. In the context of compliant mechanism optimization, many
fitness functions are useful, that lead to different optimaldesigns. The most used in
the literature are available in our numerical implementation of the level set method:
mechanical advantage (MA), geometrical advantage (GA), work ratio (WR) (or me-
chanical efficiency ME) and a least square error criterion (for details, see (Allaireet
al.,, 2004), (Allaireet al.,, 2005a), (Wanget al.,, 2005), (Jouveet al.,, 2007)). Only
one of them will be described bellow.
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The basic problem in compliant mechanism design consists insynthesizing a
mechanism topology that transfers an input to a desired mechanical output in an
energy-efficient way. There are two design objectives to be met simultaneously when
designing a compliant mechanisms: (i)flexible enough to satisfy the kinematic re-
quirementsand (ii)stiff enough to support external loads. These design objectives are
usually antagonist. The input to the compliant mechanism can be a prescribed force
or a prescribed displacement. In this paper, the input is assumed to be a prescribed
forceFin =‖ ~Fin ‖.

Figure 1 illustrates a schematic monolithic compliant mechanism, with a fixed
boundary subsetΓD. At the input portωin, an input forceFin is applied, while the
displacement magnitudeuout at the output portωout is computed and projected onto
a given direction indicated by the vectorlout. The displacement over the output port
ωout in a specified directionlout can be used as a measure for the intended flexibility
in a compliant mechanism (see (Saxenaet al.,, 2000)).

~Fin

Mechanical constraint

~lout

Desired displacement

ωin

ωout

Figure 1. A schematic monolithic compliant mechanisms with input force and output
displacement

In this paper we illustrate our approach with one particularobjective function, that
can be related to the Geometrical Advantage (GA) classically used in the literature.
The main difference lays in the “continuous” formulation, necessary for the computa-
tion of the shape derivative. The objective is to obtain a structure that maximises the
displacement at the output port in a specified direction. This can be formulated by the
following minimization problem

J(Ω) = −
1

|ωout|

∫

Ω

χout(x)(lout(x), u(x)) dx [2]

whereχout is the characteristic function associated to the output port(s).

2.2. Sensitivity analysis using the shape derivative

The level set method is mixing two basic ingredients: the classical shape sensi-
tivity analysis and the level set representation. To find a solution to the optimization
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problem, we need to find the variation of the objective function with respect to a vari-
ation of the design variables. The sensitivity of boundary perturbations is measured
by the shape derivative. In the litterature, there exist many pioneering work on shape
sensitivity analysis. In the present study, the shape sensitivity analysis detailed in
(Céa„ 1986)(Allaireet al.,, 2002) is adopted to derive the shape derivatives by using
the well-known approach of Murat and Simon (see (Muratet al.,, 1976)).

After computation we find the expression for the shape derivative of the objective
function (2), measuring the variations ofJ with respect to infinitesimally small varia-
tions of the boundary∂Ω of Ω characterized by a vector fieldθ (the boundary of∂Ω
being assumed to be smooth enough):

J
′

(Ω)(θ) =

∫

∂Ω

( 1

|ωout|
(lout, χoutu) +Ae(p).e(u)

)

θ.n ds

−

∫

ΓN

(

f.p+
∂(g.p)

∂n
+Hg.p

)

θ.n ds, [3]

wheren andH are respectively the exterior normal vector and the mean curvature,
andp is the adjoint state, supposed to be smooth,i.e. p ∈ H2(Ω)d, defined as the
solution of the adjoint problem











−div (Ae(p)) =
1

|ωout|
χoutlout onΩ,

p = 0 in ΓD,
(Ae(p))n = 0 in ΓN ,

[4]

2.3. Shape representation by level set method

In the level set method, the boundary of a solid structure is not explicitly computed,
but rather implicitly represented as the zero level set of a scalar fieldψ(x), defined
over the whole reference domainD, which is called the level set function. If the solid
region isΩ ⊂ D, then, following the idea of Osher and Sethian (Osheret al.,, 1988),
Ω and∂Ω are implicitly described through the zero level set ofψ by







ψ(x) = 0 ⇔ x ∈ ∂Ω ∩D (on the boundary)
ψ(x) < 0 ⇔ x ∈ Ω (inside the region)
ψ(x) > 0 ⇔ x ∈ (D\Ω̄) (outside the region)

[5]

The outward unit vectorn normal to the boundary∂Ω is obtained byn = −∇ψ/|∇ψ|
and the mean curvatureH is given bydiv(∇ψ/|∇ψ|). During the optimization pro-
cess, the shapeΩ(t) is going to evolve according to a pseudo time parametert ∈ R

+,
which corresponds to the down stepping parameter of a classical gradient method.
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Doing variations of the shape in the direction of the shape gradient amounts to solve
the following Hamilton-Jacobi transport equation (see. (Osheret al.,, 1988), (Allaire
et al.,, 2004) for details),

∂ψ

∂t
+ V |∇ψ| = 0 in D,

∂ψ

∂n
= 0 in ∂D. [6]

whereV (x, t) is the normal velocity of the shape’s boundary, computed using the
shape derivative given by formula (3).

The basic idea of the method is to avoid the actual computation of the zero level set
and the explicit description of the domainΩ, allowing to make all the computations
using the same mesh of the whole computational domainD. In this spirit, the elasticity
system governing the stateu (as well as the adjoint statep) is extended to the whole
domainD using the so-called “ersatz material” approach. More precisely we define
an elasticity tensorA∗(x) over the whole domainD. A∗ is equal toA in Ω and to
the weak materialεA inD\Ω̄, mimicking holes. The constantε must be chosen small
enough, such that the problem (1) is approximated with a goodaccuracy, but not too
small to avoid numerical instabilities.

2.4. Numerical algorithm

We use the level set algorithm, proposed in (Allaireet al.,, 2002)(Allaireet al.,,
2004). It is an iterative algorithm, structured as follows:

1) initialization of the level set functionψ0 corresponding to an initial guessΩ0.
Typically, Ω0 is the full domainD perforated by a periodic distribution of circular
holes;

2) iteration until convergence, fork ≥ 0:

a) computation of the stateuk and the adjoint statepk through two linear elas-
ticity problems (1) posed inΩk;

b) deformation of the shape by solving the transport Hamilton-Jacobi equation
(6). The new shapeΩk+1 is characterized by the level set functionψk+1 solution
of (6) after a time step∆tk starting from the initial conditionψk(x) with velocity
Vk = −vk computed in terms ofuk andpk. The time step∆tk is chosen such that
J(Ωk+1) ≤ J(Ωk);

3) from time to time, for stability reasons, we also reinitialize the level set function
ψ by solving











∂ψk

∂t
+ sign(ψk−1)

(

|∇ψk| − 1
)

= 0 in D × R
+

ψk(t = 0, x) = ψk−1(x) in D

which admits the signed distance to the zero level set as a stationary solution.
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The Hamilton-Jacobi equation (6) is solved by an explicit upwind scheme on a
Cartesian grid with a time stepping satisfying a CFL condition (see e.g. (Sethianet
al.,, 2000) and (Allaireet al.,, 2004) for details).

3. Numerical results

The numerical examples presented in this section address three different issues:

1) multiple inputs or outputs ports,

2) multiple loadings,

3) three dimensional case.

In all these computations, it is assumed that the constitutive material has a Young’s
modulusE0 = 1 and the weak material has a Young’s modulusE1 = εE0, with
ε = 10−2. The Poisson’s ratio isν = 0.3 in both phases. Remark that the actual value
of the Young’s modulusE0 is not relevant since our model is the linear elasticity.

3.1. Multiple input and outputs ports cases

The following examples demonstrate the applicability of the method to treat mul-
tiple input/output ports problems.

3.1.1. Classical force inverter

The first case is a very classical test, described for examplein (Sigmund„ 1997).
An horizontal force is applied on the input zone and we are looking for a maximal
displacement on the output port in the opposite direction. The mechanism is allowed
be clamped on two zones on the left edge where a Dirichlet boundary condition is
imposed (cf. Figure 2a). The optimal solution and its deformed state are presented on
Figures 2b-c.

(a) �
�
�
�

�
�
�

�
�
�

~Fin ~lout

(b) (c)

Figure 2. Force inverter. (a): design domain and specifications of theproblem, (b):
optimal solution, (c): deformed configuration
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3.1.2. Multiple output ports

The next example shares the same reference domain, boundaryconditions and
input port with the previous one. The direction of the force is in the opposite direction.
Two output zones are defined and the target displacement is shown on Figure 3a. The
final shape of this force inverter and its deformed shape are presented on Figures 3b-c.

(a)

��
��
��

��
��
��

��
��
��
��

~Fin

~lout

~lout (b) (c)

Figure 3. Force inverter with two output ports. (a): design domain andspecifications
of the problem, (b): optimal solution, (c): deformed configuration

An important remark can be done about the Dirichlet boundaryconditions. They
are imposed on a fixed partΓD of the boundary ofD, but the final optimized structure
has no reasons to include entirelyΓD. If a better solution can be found with only a part
of GammaD included in∂Ω, the algorithm can find it. The two following examples
illustrate this behaviour.

The first example has the same specifications than the previous one (Figure 3),
but ΓD is now wider, covering almost the whole boundary ofD. Figure 4 shows the
optimized solution. Notice that only a small part ofΓD belongs to the boundary of the
optimal structure.

(a)

~Fin

~lout

~lout (b) (c)

Figure 4. Force inverter with two output ports and more flexibility on the choice of the
location of the Dirichlet boundary conditions. (a): designdomain and specifications
of the problem, (b): optimal solution, (c): deformed configuration

The last example of this section has the same input/output ports and boundary con-
ditions than Figure 4 but the target displacement has different directions on the two
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output ports (Figure 5a). The expected structure has no reason to be symmetric, and
the computed solution is in fact non-symmetric (Figure 5b).This example demon-
strates the ability of the algorithm to find complex topologies and solutions far from
the common mechanical intuition.

(a)

~Fin

~lout

~lout (b) (c)

Figure 5. Force inverter with two output ports. (a): design domain andspecifications
of the problem, (b): optimal solution, (c): deformed configuration

3.2. Single and multiple loads case

The method can also handle multiple loads cases, where a single structure is op-
timal for different external forces. In the example bellow,three loadings are defined.
The solution has to be optimal for each of the loading case (see (Allaireet al.,, 2005c)
for details in an other context). The design configuration and the loadings are shown
on Figure 6. The optimal solution and its deformed configuration for each of the three
loading cases are displayed on Figures 7a-d.

��
��
��
��

~wout

Resulting
displacement

~F
1
in

~F
2
in

~F
2
in

~F
3
in

~F
3
in

Figure 6. Design problem specifications for the multiple loads force inverter
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(a)

(b) (c) (d)

Figure 7. Force inverter with three loads: (a): final design, (b): deformed configu-
ration for the first loading, (c): deformed configuration forthe second loading, (d):
deformed configuration for the third loading

Figure 8. Three-dimensional micro-gripper: applied forces and boundary conditions
(circles on the nodes submitted to Dirichlet boundary conditions)



Compliant mechanisms design by level set 967

3.3. Three dimensional case

The method can be applied to three-dimensional cases with nomodifications. The
implicit representation of the shapes is particularly adapted to the 3d problems since
it avoid remeshing.

As an example we have optimized the tridimensional gripper presented on Fig-
ure 9. The design domain is a parallelepiped of dimension0.5 × 0.5 × 1. Due to
symmetries, the computation can be performed on a quarter ofthe domain, reducing
the computational cost. The gripper is clamped at its 4 lowercorners and is pulled
horizontally and symmetrically on 2 small zones in the middle of 2 edges of the lower
face (see Figure 8). The objective function (i.e. ωout andℓout) is chosen to allow the
jaws (situated in the middle of the top face of the cube) to close when the forces are
applied.

Figure 9. Three-dimensional micro-gripper: optimized design and deformed configu-
ration
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