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ABSTRACT. In the context of structural optimization, we propose two natural extensions of the
level set method for the design of compliant mechanisms. Two new objective functions are
introduced, well suited to the automatic design of compliant mechanisms, and a strategy for
the design of mechanisms adapted to multiple loads is proposed. This work is illustrated with
several numericals examples.

RESUME. Dans le cadre de [’optimisation de structures élastiques, nous proposons deux
extensions naturelles de la méthode des lignes de niveaux qui peuvent s’avérer utiles aux
concepteurs de micromécanismes. Nous introduisons une nouvelle fonction-coiit, inspirée
d'un critéere d’optimisation largement utilisé dans le domaine de la conception de
mécanismes, ainsi qu’une stratégie pour traiter le cas de mécanismes adaptés a plusieurs
chargements (multichargement). Ce travail est illustré de quelques exemples numériques.
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1. Introduction

A compliant mechanism is a single-body structure, whichstiseelastic defor-
mations to achieve a given action. Wide range of uses for tianmtpmechanisms
include smart structures, semi-invasive medical surgiesices and micro-electro-
mechanical-systems (MEMS).

There are essentially two classes of numerical methodbéaésign of compliant
mechanisms: the kinematic synthesis approach based omatfidanal rigid-body
kinematics ((Howellet al., 1994), (Howell, 2001)) and the topology optimization
method for continuum structures ((Ananthasureishl., 1994), (Freckeet al., 1997),
(Sigmund,, 1997)). The method proposed in this work belonghé second category.
Itis based on the level set method.

In the late 80’s, Osher and Sethian introduced the leveleggesentation for nu-
merically tracking fronts and free boundaries (Osétal., 1988). It is now widely
used in various applications. The level set method has tigdegen introduced in the
topology and shape optimization field (see (Allatal., 2002), (Allaireet al., 2004),
(Allaire et al., 2005c), (Wangt al.,, 2003), (Wanget al., 2005)) and has become very
popular because of its ability to handle arbitrary objexfinctions and state equa-
tions, and also for its great efficiency and versatility.

Basically, the level set method revisits the classical stgggimization techniques
— based on the shape derivative — using the level set repagieenon a fixed mesh. It
avoids most of the flaws of the classical gradient methodsntimerical instabilities
and the computational difficulties related to the remeskifine shapes at each step
of the boundary variation algorithms are cancelled. Moegothe level set method is
very easy to implement en 3d. But the well known advantagéseatlassical methods
are preserved: the capability to use almost any consitetiuation and any objective
function.

One remaining flaw, still present in the genuine level setogtis the possibility
of the algorithm to be “trapped” into local minima and to beble to find the “good”
topology, starting from any initial shape: for this reastiee method is frequently
described as not being a fully topological method, and ag sensitive to initial
guesses (which is actually almost the same argument). €hiank is mathemati-
cally founded, but not completely fair from a numerical gahview: our numerical
experience shows that, as soon as the initial structuréds &nough” topologically
(i.e. there are enough initial holes), the solutions obtainedadaepend on initializa-
tion. Moreover, it has been shown in (Allaie¢ al., 2005b) that the coupling with the
topological gradient is very effective, making these csitalmost irrelevant.

In this paper we concentrate on the new objective functitnedtuced to compute
optimal compliant mechanisms, and we will not discuss so#taild of the method
that can be found in the references cited. The method isifleskcin the framework
of linearized elasticity, although it is obvious that largeformations are likely to
occur in actual compliant mechanisms, and nonlinear elgsthould be used in real
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applications. Just remember that the method presentedheige easily extended to
nonlinear models (cf. (Allairet al., 2004)), as soon as efficient solvers for the direct
problem are available.

Compared to the basic level set method proposed in (Aliied., 2004), we add
two significant extensions, quite natural to introduce,that could be very useful to
the actual conception of compliant mechanisms:

1) new cost functions:we introduce a new objective functions in variational form
that is well suited to the computation of the shape deriedthat is to be computed in
our algorithm. It can be compared to a widely used objectivetion, usually written
in a vector or discrete form: the mechanical advantage (MAictvis maximizing
the ratio between the output and input forces. Our integnah@llation can handle,
without modifications, multiple input and output ports;

2) multi-loads: We show that our formulation can deal with multiple loadsesas
where the same structure is designed to be able to reachratgirget displacement
through different input ports and forces.

2. Analysis of optimal synthesis of compliant mechanisms
2.1. Setting of the problem

Let Q ¢ R? (d = 2 or3) be a bounded open set occupied by a linear isotropic
elastic material with Hooke’s law denoted By The boundary of) is made of two
disjoint partso? = I'y U I'p, with Dirichlet boundary conditions imposed &,
and Neumann boundary conditionsog. All admissible shapeQ are required to be
a subset of a working domai ¢ R¢. We denote by the vector-valued function of
the volume forces and hythat of the surface loads. The displacement field 2 is
the solution of the linearized elasticity system

—div (de(uw)) = f in,
u = 0 onlp, (1]
(Ae(u))n g only,

wheree(u) = (Vu + Vu®) is the strain tensor.

The shape optimization problem is formulated as a minirozatroblem

inf _ J(Q),whereJ(Q) is an objective function chosen to evaluate the perfor-
o admissible . . o
mance of the mechanism. In the context of compliant mechaagimization, many

fithess functions are useful, that lead to different optidedigns. The most used in
the literature are available in our numerical implemenotabf the level set method:
mechanical advantage (MA), geometrical advantage (GAjkwatio (WR) (or me-
chanical efficiency ME) and a least square error criterion ¢etails, see (Allairet
al.,, 2004), (Allaireet al., 2005a), (Wanget al., 2005), (Jouveet al., 2007)). Only
one of them will be described bellow.
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The basic problem in compliant mechanism design consistyitthesizing a
mechanism topology that transfers an input to a desired amécal output in an
energy-efficient way. There are two design objectives to besimultaneously when
designing a compliant mechanisms: f{gxible enough to satisfy the kinematic re-
quirementsand (i) stiff enough to support external loadEhese design objectives are
usually antagonist. The input to the compliant mechanismbeaa prescribed force
or a prescribed displacement. In this paper, the input israsd to be a prescribed
force Fy, =|| Ein |-

Figurel 1 illustrates a schematic monolithic compliant natém, with a fixed
boundary subsdf,. At the input portw;,,, an input forcer;,, is applied, while the
displacement magnitude,,; at the output pord,.; is computed and projected onto
a given direction indicated by the vecty,;. The displacement over the output port
woyt IN @ specified directioi,,; can be used as a measure for the intended flexibility
in a compliant mechanism (see (Saxenhal., 2000)).

Mechanical constraint

' Desired displacement

Figure 1. A schematic monolithic compliant mechanisms with inputd@nd output
displacement

In this paper we illustrate our approach with one particalgective function, that
can be related to the Geometrical Advantage (GA) clasgicaéd in the literature.
The main difference lays in the “continuous” formulatioecessary for the computa-
tion of the shape derivative. The objective is to obtain acitire that maximises the
displacement at the output port in a specified directions Tan be formulated by the
following minimization problem

J() = —ﬁ /Q ot (2) (lout (), u()) da 2]

wherey . is the characteristic function associated to the outpu{gor

2.2. Sensgitivity analysis using the shape derivative

The level set method is mixing two basic ingredients: thesital shape sensi-
tivity analysis and the level set representation. To findlat&m to the optimization
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problem, we need to find the variation of the objective fumeivith respect to a vari-
ation of the design variables. The sensitivity of boundagytyrbations is measured
by the shape derivative. In the litterature, there existyn@aneering work on shape
sensitivity analysis. In the present study, the shape ®dhsianalysis detailed in
(Céa, 1986)(Allaireet al., 2002) is adopted to derive the shape derivatives by using
the well-known approach of Murat and Simon (see (Metal., 1976)).

After computation we find the expression for the shape divivaf the objective
function (2), measuring the variations $fwith respect to infinitesimally small varia-
tions of the boundargs? of {2 characterized by a vector fiett(the boundary o2
being assumed to be smooth enough):

J(Q)(0) = /aQ (L(lout,xofu‘tu) + Ae(p).e(u))&n ds

|wout|

— /F (f,er%Jng.p)@.nds, (3]

wheren and H are respectively the exterior normal vector and the meavature,
andp is the adjoint state, supposed to be smoath, p € H?(Q)?, defined as the
solution of the adjoint problem

. 1
—div (A@(p)) = 7Xoutlout OnQu
|Wout| [4]
p= 0 in FD,
(Ae(p))n=0 inTx,

2.3. Shaperepresentation by level set method

In the level set method, the boundary of a solid structureigxrplicitly computed,
but rather implicitly represented as the zero level set ofadas fieldy(x), defined
over the whole reference domaih which is called the level set function. If the solid
region is2 C D, then, following the idea of Osher and Sethian (Ogteal., 1988),
Q andof2 are implicitly described through the zero level set/dby

Y(x)=0 < x€dQNnD (onthe boundary

Y(r) <0 & zeQ (inside the regioh [5]

P(r) >0 & x€(D\Q) (outside the region
The outward unit vector normal to the boundar§(} is obtained by = — V) /| V)|
and the mean curvatud is given bydiv(Vi/|V|). During the optimization pro-
cess, the shage(t) is going to evolve according to a pseudo time parameteR ™,
which corresponds to the down stepping parameter of a cldsgiadient method.
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Doing variations of the shape in the direction of the shap&lignt amounts to solve
the following Hamilton-Jacobi transport equation (seesh@et al., 1988), (Allaire
et al., 2004) for details),

o oY

E—i—V\VMzOlﬂD,%:OmE)D. [6]
whereV(z,t) is the normal velocity of the shape’s boundary, computedgutie
shape derivative given by formula (3).

The basic idea of the method is to avoid the actual computafithe zero level set
and the explicit description of the domaily allowing to make all the computations
using the same mesh of the whole computational dorailm this spirit, the elasticity
system governing the state(as well as the adjoint stagg is extended to the whole
domain D using the so-called “ersatz material” approach. More gedgiwe define
an elasticity tensod* () over the whole domai. A* is equal toA in © and to
the weak materiat A in D\Q, mimicking holes. The constaatmust be chosen small
enough, such that the problem (1) is approximated with a gmadracy, but not too
small to avoid numerical instabilities.

2.4. Numerical algorithm

We use the level set algorithm, proposed in (Allagteal., 2002)(Allaireet al.,
2004). Itis an iterative algorithm, structured as follows:

1) initialization of the level set functio, corresponding to an initial guesk.
Typically, Q is the full domainD perforated by a periodic distribution of circular
holes;

2) iteration until convergence, faér> 0:

a) computation of the statg, and the adjoint statg, through two linear elas-
ticity problems|(1) posed if;;

b) deformation of the shape by solving the transport Hamiltacobi equation
(6). The new shap&,.; is characterized by the level set functign.; solution
of (6) after a time step\¢;, starting from the initial condition)y(z) with velocity
Vi = —uv, computed in terms of,;, andp,. The time stepAt; is chosen such that
J(Qr1) < J();
3) from time to time, for stability reasons, we also reifitia the level set function
¥ by solving

% +sign(¥r-1) (Ve —1) =0 inD x R*

wk(t:O,I) :ibk_l(x) inD
which admits the signed distance to the zero level set agiarsay solution.
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The Hamilton-Jacobi equation (6) is solved by an explicitvimul scheme on a
Cartesian grid with a time stepping satisfying a CFL cowndit{see e.g. (Sethiast
al.,, 2000) and (Allaireet al.,, 2004) for details).

3. Numerical results

The numerical examples presented in this section address different issues:

1) multiple inputs or outputs ports,
2) multiple loadings,
3) three dimensional case.

In all these computations, it is assumed that the constitutiaterial has a Young's
modulusEy = 1 and the weak material has a Young’s modulis = ¢Fy, with

e = 10~2. The Poisson’s ratio i8 = 0.3 in both phases. Remark that the actual value
of the Young’s modulug, is not relevant since our model is the linear elasticity.

3.1. Multiple input and outputs ports cases

The following examples demonstrate the applicability @& thethod to treat mul-
tiple input/output ports problems.

3.1.1. Classical force inverter

The first case is a very classical test, described for examg®igmund, 1997).
An horizontal force is applied on the input zone and we ar&itgpfor a maximal
displacement on the output port in the opposite directidme mechanism is allowed
be clamped on two zones on the left edge where a Dirichlet deyncondition is
imposed (cf. Figure|2a). The optimal solution and its defedratate are presented on
Figures 2b-c.

-1 - —

(@ = (b) (©)

Figure 2. Force inverter. (a): design domain and specifications ofgireblem, (b):
optimal solution, (c): deformed configuration
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3.1.2. Multiple output ports

The next example shares the same reference domain, boucmiaditions and
input port with the previous one. The direction of the fore@ithe opposite direction.
Two output zones are defined and the target displacementiansbn Figuré 3a. The
final shape of this force inverter and its deformed shaperasepted on Figurés 3b-c.

Lout

ool

T

(a) & =0 (b) A ()

Figure 3. Force inverter with two output ports. (a): design domain apecifications
of the problem, (b): optimal solution, (c): deformed confagion

An important remark can be done about the Dirichlet boundanditions. They
are imposed on a fixed pdr, of the boundary of), but the final optimized structure
has no reasons to include entir&ly;. If a better solution can be found with only a part
of Gammap included indf2, the algorithm can find it. The two following examples
illustrate this behaviour.

The first example has the same specifications than the peevioe (Figure 3),
butT'p is now wider, covering almost the whole boundarylaf Figure 4 shows the
optimized solution. Notice that only a small partltf belongs to the boundary of the
optimal structure.

(©

Figure 4. Force inverter with two output ports and more flexibility dvetchoice of the
location of the Dirichlet boundary conditions. (a): desidamain and specifications
of the problem, (b): optimal solution, (c): deformed confagion

The last example of this section has the same input/outptg pnd boundary con-
ditions than Figuré 4 but the target displacement has diffiedirections on the two
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output ports (Figurel5a). The expected structure has nomgasbe symmetric, and
the computed solution is in fact non-symmetric (Figure 5blis example demon-
strates the ability of the algorithm to find complex topokgyand solutions far from
the common mechanical intuition.

Tou

@) (b) (©)

Figure 5. Force inverter with two output ports. (a): design domain apecifications
of the problem, (b): optimal solution, (c): deformed confagion

3.2. Single and multiple loads case

The method can also handle multiple loads cases, where k& sitngcture is op-
timal for different external forces. In the example belldhree loadings are defined.
The solution has to be optimal for each of the loading case (&kaire et al., 2005c¢)
for details in an other context). The design configuratiod @ loadings are shown
on Figuré 6. The optimal solution and its deformed configarefor each of the three
loading cases are displayed on Figures 7a-d.

in in

Resulting

J displacement

T F‘:{

Figure 6. Design problem specifications for the multiple loads foroeerter
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(@)

(b) (c) (d)

Figure 7. Force inverter with three loads: (a): final design, (b): defed configu-
ration for the first loading, (c): deformed configuration fttve second loading, (d):
deformed configuration for the third loading

Figure 8. Three-dimensional micro-gripper: applied forces and baany conditions
(circles on the nodes submitted to Dirichlet boundary ctiods)
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3.3. Threedimensional case

The method can be applied to three-dimensional cases withaatifications. The
implicit representation of the shapes is particularly addo the 3d problems since
it avoid remeshing.

As an example we have optimized the tridimensional grippesgnted on Fig-
ure[9. The design domain is a parallelepiped of dimen8§ién< 0.5 x 1. Due to
symmetries, the computation can be performed on a quartkeatomain, reducing
the computational cost. The gripper is clamped at its 4 laveeners and is pulled
horizontally and symmetrically on 2 small zones in the médafl 2 edges of the lower
face (see Figurel8). The objective functidm(w,,; and/,;) is chosen to allow the
jaws (situated in the middle of the top face of the cube) teelwhen the forces are
applied.

Figure 9. Three-dimensional micro-gripper: optimized design anfbdeed configu-
ration
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