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solver is adapted to the solution of the discrete mixed Arlequin problems obtained by using 
the Finite Element Method. Enlightening numerical results are given. 
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1. Introduction

The design of mechanical structures such as the multiperforated turbine blade (see
Figure 1) submitted to thermomechanical loads is rather complex. For the latter and
from a numerical point of view, the main difficulty relies on the discrepancy between
involved scales.

Figure 1. Multiperforated turbine blade

Mono-modeling domain decomposition-like methodologies, qualified as micro-
macro approaches were developed to tackle this complexity (see e.g. (Ladevèze et
al., 1999), (Feyel et al., 2000)). Mono-model local-global and enrichement meth-
ods were also developed for the same purpose (see e.g. (Fish, 1992; Strouboulis et
al., 2000)). In this paper, we suggest to use the multi-model Arlequin framework
(Ben Dhia, 1998; Ben Dhia, 1999) and particularly its mixed version that has been an-
alyzed theoretically ((Ben Dhia et al., 2001; Ben Dhia, 2006) and assessed practically
(e.g. (Ben Dhia et al., 2002; Ben Dhia et al., 2005)) as a tool able to introduce with
an enhanced flexibilty merely any kind of alteration in a given sound model. This is
basically achieved by superposing and gluing a local patch containing the alteration to
the global sound model, while partitioning the energies in the superposition zone and
stressing the appropriate model. Formally, the Arlequin framework can be used in a
straightforward manner to take into account by several patches several alterations of a
structure. However, one has to address the discrete (here in the finite element sense)
alterations separation issue. This issue is herein studied numerically for a very simple
1D model: a parametric study is carried out to show that when the alterations can be
separated by patches whose free part size contains the alterated coarse elements, then
accurate Arlequin results are obtained. As a matter of fact, this methodology, when
combined to the finite element or any other discretization method leads to a mixed
algebraic system. For an efficient solution of this system, a preconditioned and par-
allel multi-domain solver of FETI-type (see the paper by Farhat and Roux (Farhat et
al., 1991)) is adapted to this mixed system, implemented and tested. Our first numer-
ical results show the effectiveness of the global methodology.

An outline of the paper is the following. We first recall the continuous mixed
mono-patch Arlequin formulation for a model elasticity problem. In Section 3, this
formulation is used to calculate an elastic bar whose uniform Young’s modulus is
alterated first in one localised zone, second in two localised zones. The precondioned
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iterative solver used to solve the discrete Arlequin problems is given in Section 4. Its
parallel implementation is detailed in Section 5 and assessed in Section 6 through a
3D numerical test.

2. Arlequin formulations

For the sake of simplicity, we consider a static linearized elasticity problem defined
in a polyhedral domain Ω0. We let Γ, f , ε(v) and σ(v) respectively denote the
clamped part of the boundary ∂Ω0, the applied density of body forces, the linearized
strain and stress tensors associated to the displacement field v by the Hooke’s law.

To alterate the structure occupying Ω0 according to the Arlequin framework, we
consider a local polyhedral domain Ω1 whose intersection S01 with Ω0 is not empty.
To clarify and simplify the notations, it will be assumed that Ω1 is a subdomain of Ω0

and that the clamped part Γ is in ∂Ω0. We let S01
g denote the gluing zone supposed

to be a non zero measured subset of the superposition zone S01 such that ∂Ω0 is
included in ∂S01

g . The complementary free zone is denoted by S01
f . To model the

gluing forces, we can use the "natural" energy scalar product analyzed in (Ben Dhia et
al., 2001), for which there are established nice mathematical and numerical properties.
As a matter of fact, as mentioned in (Ben Dhia et al., 2005) (see also (Ben Dhia,
2006) for a further insight), any equivalent scalar-product generates both a well-posed
mathematical problem and an easy-to-implement numerical gluing operator. In order
to perform the Arlequin method, we use here the most physical one of them ( a kind of
volume rigidity of glue). This operator, defined below, is a pure elastic energy-based
scalar product.

With these elements, the Arlequin mono-patch problem can be written as follows.

Find (u0, u1, λ01) ∈W 0 ×W 1 ×W 01
g ;

∀v0 ∈W 0,

∫

Ω0

α0 σ(u0) : ε(v0) + C(λ01, v0) =

∫

Ω0

β0f.v0 [1]

∀v1 ∈W 1,

∫

Ω1

α1 σ(u1) : ε(v1) − C(λ01, v1) =

∫

Ω1

β1f.v1 [2]

∀µ ∈W 01
g , C(µ, u0 − u1) = 0 [3]

where αi and βi, for i = 0, 1, respectively denote two positive weight parameter
functions whose sum is equal to 1 and where:
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W 0 = {v0 ∈H1(Ω0) ; v0 = 0 on Γ} [4]

W 1 = H1(Ω1) [5]

W 01
g = H1(S01

g ) [6]

C(λ01, v) =

∫

S01
g

σ(λ01) : ε(v) [7]

Notice here that rigid body motions for λ01 have to be handled for stability reasons
(see (Ben Dhia et al., 2001))

Now, by using the finite element method while following the recommandations for
the choice of compatible spaces given in ((Ben Dhia et al., 2001)), one can derive and
solve mixed discrete finite element Arlequin problems.

In the continuous framework, the generalization to a finite number of patches is
straightforward, as far as these patches are geometrically separate. Indeed, one has
basically to couple each local model defined in each patch to the underlying global
model exactly in the manner described above. This procedure can for instance be used
to formulate an Arlequin problem for the multi-perforated blade shown in Figure 1.
Finite element discretisations of the obtained problem can also be formally derived
and solved. However, in the discrete finite element framework, the accuracy of the
numerical results becomes dependent not only of the separation of patches hypothesis,
but also of the link between the diameter (say df ) of S01

f of a patch and the global mesh
size (say H). In a previous work (Ben Dhia et al., 2006), stress intensity factors were
calculated for an Arlequin 2D problem in which one cracked patch was super-imposed
to a sound plate. It has been numerically observed that accurate stress intensity factors
are obtained when df is of the order of H .

In the following section, we investigate further this geometrical aspect of the Ar-
lequin method and examine numerically the case of a multi-patched simple structure.

3. Analysis of an elastic bar with one and two inclusions

In a first step, we consider a linear elastic bar whose length l0 = 18 and Young’s
modulus is E1 = 1 except in a localised zone (x1a = 6.4 and l1a = 0.2) where a much
more low young’s modulus E2 = 10−3 is considered to simulate a 1D inclusion. The
bar is submitted to a uniform "volume" load f = 1. The problem is solved in a
standard manner and a reference solution is derived. Then, by using the Arlequin
framework, a local patch whose free zone contains and is centered on the inclusion, is
superposed to a global bar model with a homogeneous young modulus E1 = 1. Finite
element Arlequin problems are then derived with a coarse global mesh not fitting the
interface heterogeneity and a local fine mesh, fitting the interface heterogeneity. The
discrete Arlequin solutions are calculated by choosing the weight parameters α1 and
β1 associated to the patch quite near from 1.
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In a second step, the same procedure is followed for the computation of the solu-
tions of a bi-alterated elastic bar. The two problems are represented in Figure 2.
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Figure 2a. A single alteration Figure 2b. A double alteration

3.1. A bar with a single alteration

The displacement fields are represented in Figure 3a and the relative discrete L2

error with respect to the free zone size is ploted in Figure 3b for different sizes of the
coarse mesh H . We denote h the size of the patch mesh.
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Figure 3a. The displacement solutions Figure 3b. Relative discrete L2 errors
with H = 1, h = 0.01, l1 = 3, l1f = 2.9 versus the the size of S01

f

A noticable numerical result here is the following: to achieve a good accuracy
for the Arlequin solution, the free zone has at least to include the alterated coarse
elements (of course as far as the coarse mesh is sufficiently fine to give a good solution
for the non alteratd bar).

3.2. A bar with two inclusions

The case of a bi-alterated bar is considered now. Two scenarii are investigated
here. In the first scenario, the two alterations are taken into account by a unique re-
fined patch. Many numerical simulations not reported here show exactly the same
tendancy for the numerical solutions than in the previous sub-section: the Arlequin
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solutions are accurate, by comparison with the reference classical solution, when the
free domain of the patch includes all the alterated coarse elements. A representative
result is shown in Figure 4. For the second scenarii, two refined patches have been
considered, each of them containing a single alterated zone (see Figure 2b). The same
conclusion holds for this second scenarii: the Arlequin solution is accurate as far as
the two patches are seperate and each free zone of them contains the coarse elements
containing the associated alterated zone (see Figure 5). Moreover, the size of the dis-
crete mixed Arlequin problem is smaller in this second scenario than in the former.
Observe however that when the two alterations are near from each other, by compar-
ison with the coarse mesh size, the use a single patch containing the two alterations
of two patches may lead to a non accurate solution. Two practical possibilities can be
used in this case. Either define a single refined patch containing the two alterations
leading us to the first scenario or refine locally the coarse mesh (a solution that misses
flexibility !). A transition patch could also be introduced.
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Figure 4. Arlequin/reference solutions for a bi-alterated bar with H = 2, h = 10−2,
l1 = 4, l1f = 3.8, x1a = 8.4, x2a = 9.4, l1a = l2a = 0.2
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Figure 5. Arlequin/reference solutions for a bi-alterated bar with H = 1, h = 10−2,
l1 = l2 = 1.6, l1f = l2f = 1.2, l1a = l2a = 0.2
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To optimize the Arlequin methodology performances as a computational tool of
multi-alterated structures, an efficient iterative solver adapted to the solution of the
linear mixed Arlequin problems by parallel machines is developed. This solver is
obtained by a straightforward adaptation of the FETI method (Farhat et al., 1991).

4. Iterative computational strategy

We here focus on solving [1]-[3] by means of the FEM. To this end, we let (ϕ i
0),

(ϕ j
1 ) and (ϕ k

g ) denote the finite element basis functions of W h0
, W h1

and W 01
hg

which are finite element subspaces of W 0, W 1 and W g . The vectors U 0, U1 and
Λ respectively stand for the coordinates of uh0

, uh1
and λ01

hg
in these bases. The FE

discrete Arlequin problem derived from [1]-[3] is equivalent to the following linear
system:





K0 0 CT
0

0 K1 −CT
1

C0 −C1 0









U 0

U 1

Λ



 =





F 0

F 1

0



 [8]

where Ki, F i and Ci are the rigidity matrices, the force vectors and the coupling
matrices.

Techniques for solving linear systems can be broadly divided into direct and iter-
ative. Direct methods are robust and reliable with a predictable CPU time. However
they require a global data struture that grows rapidly with the problem size. Further,
direct solvers are not scable to massively parallel systems with thousands of proces-
sors. Iterative methods, on the other hand, usually scale well with increasing numbers
of processors. Thus, we propose here an iterative strategy in order to treat linear mul-
tipach Arlequin problem with optimal efficiency.

In the simplest case, when both K0 and K1 are non-singular we can write:

U 0 = K−1
0 (F 0 −CT

0 Λ) [9]

U 1 = K−1
1 (F 1 + CT

1 Λ) [10]

Substituting these in (C0U 0 − C1U 1) = 0, we obtain a condensed problem on
the gluing zone which is written

(C0K
−1
0 CT

0 + C1K
−1
1 CT

1 )Λ = (C0K
−1
0 F 0 − C1K

−1
1 F 1) [11]

or with obvious notations for A and d

AΛ = d [12]

The system [12] can be solved for Λ. Once Λ is obtained, the displacements U 0

and U 1 can be obtained by substituting for Λ in Equations [9] and [10]. The objective
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of iterative strategy is to solve by a Krylov algorithm the condensed problem, defined
in our case on the gluing zone instead of the original problem [8]. As a matter of
fact, the convergence of the condensed problem, based on a Conjugate Gradient
(Krylov) method can be improved through the use of preconditioning techniques. As
the matrice A of our condensed problem is homogeneous to a stiffness, the natural
preconditioner has to be homogeneous to an inverse of a stiffness matrice. The
mechanically driven preconditioner we suggest for A is defined as an inverse of the
coupling operator, namely K−1

c . This preconditioner is mecanically consistent and is
referred to as a flexibility matrice.

Planing step: At each iteration k, Λ
k is fixed, we

– solve U 0 and U1,
– compute the residual AΛ

k − d (ie: C0U 0 − C1U 1),
– choose the descent direction by the residual vector.

In most problems however, not all the stiffness matrices associated to the patches
will be non-singular, that is, the Arlequin methodology will likely produce some
"floating" patches. In these cases, the solution process described above will break
down, and a special adaptation of the computational strategy is required to handle the
local singularities. Several solutions can be used. We detail two of them:

(i) The penalty method consists in regularizing the system [8] by adding a penalty
coupling term to prevent the infinitesimal rigid movements of floating patches.
(ii) According to FETI vision (Farhat et al., 1991), a general solution can be written.
For the simplified case considered here, it reads:

U 1 = K+
1 (F 1 + CT

1 Λ) + R(1)α [13]

R(1)T
(F 1 + CT

1 Λ) = 0 [14]

where K+
1 is a pseudo-inverse of K1, R(1) represents the rigid body modes of Ω1

and R(1)α indicates a linear combination of these modes. Combining the equations
[10],[13],[14] we obtain the condensed problem as follows:

[

AI C1R
(1)

R(1)T
CT

1 0

]

[

Λ

α

]

=

[

C0K
−1
0 F 0 − C1K

+
1 F 1

−R(1)T
F 1

]

[15]

where AI = C0K
−1
0 CT

0 + C1K
+
1 CT

1 .

Till now, many implementations of the Arlequin method have been designed for
sequential codes. To lower down the solution costs we are herein interested on parallel
implementations. Several levels of parallelism can be designed: between domains
(here patches and global domain) and inside each domain. We focus on the first level
of parallelism.
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5. Parallel programming paradigm

In this section, we present a parallel programming paradigm. Knowing that
W 01

hg
⊂ W h0 |S01

g

or W 01
hg
⊂ W h1 |S01

g

, we consider for example the case
where W 01

hg
= W h1 |S01

g

. Hence, we define the restriction operator R1→c :

u ∈ W h1 |S01
g

→ W 01
hg

and the projector (interpolation) operator P 0→c : u ∈

W h0 |S01
g

→ W 01
hg

. In this case, the coupling operators can be written as C0 =

KcP 0→c and C1 = KcR1→c.

Parallel programming paradigm can be summarized as in Table1.

Table 1. Parallel programming paradigm

Global model Ω0 – Processor 1 Local model (patch) Ω1 – Processor 2

Input data : K0, F 0 and P 0→c Input data : K1, Kc, F 1, Λ0 and R1→c

output data: U 0 output data: Λ and U 1

computing coupling term KT
c Λ

receiving (KT
c Λ) term ←− ←− sending (KT

c Λ) term
solving concurrently the equilib-
rium equation

solving concurrently the equilibrium equa-
tion

K0U 0 = F 0 − P T
0→cK

T
c Λ K1U 1 = F 1 + RT

1→cK
T
c Λ

computing P 0→cU0

sending (P 0→cU 0) −→ −→ receiving (P 0→cU 0)
computing the residual
g = KcP 0→cU0 −KcR1→cU 1

receiving the residual g ←− ←− sending the residual g

REMARK. — All the processors carry out in parallel similar tasks. An additional
task is realized in the processor which is assigned for the computation of the coupling
operator Kc.

This computational strategy can be generelized for the solution of problems with
a large number of patches ("subdomains") by a large number of parallel processors.
In order to demonstrate the possibilities of the iterative and parallel strategy with and
without preconditioning, some numerical results are given in the following section.

6. Numerical experimentations

We consider a linear elastic homogeneous and isotropic cube on which we super-
impose, in the Arlequin framework, a 3D patch containing an heterogeneity. The latter
is machanically labeled inclusion. The cube is clamped on one face and submitted to
a non axial density of loads on the opposite face. The Young’s modulus is taken equal
to 2000MPa and the poisson’s ratio is equal to 0, 3. The Young’s modulus of the
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inclusion is equal to 20MPa which corresponds to heterogeneity ratio of 102 and its
Poisson coefficient is equal to 0, 3. The discrete finite element solution of this problem
is calculated by using the meshes shown in Figure 6a, with trilinear finite element
spaces. The global cube model contains 3000 d.o.f. and the patch model contains
18000 d.o.f. The computations are carried out in a parallel machine by following the
strategy described by Table 1. The deformed meshes are represented in Figure 6b.

Figure 6a. Cube and heterogeneous Figure 6b. Displacement solution
patch meshes

We first study the influence of the gluing zone thickness (respecting the Arlequin
methodology requirements) on the solver convergence. The results are shown in Fig-
ure 7 where several thicknesses, related to the patch mesh size h are considered.

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 0  100  200  300  400  500  600  700  800

L
o
g
 
o
f
 
t
h
e
 
r
e
s
i
d
u
a
l
 

Iteration number k

Sg= 1h
Sg= 2h
Sg= 3h
Sg= 4h

Figure 7. Evolution of the logarithmic residual for several size of gluing zone
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The convergence of the residual norm to 0 is clearly related to the thickness of S01
g .

The larger this parameter is , the faster is the convergence. Observe however that the
size of the interface problem increases with the thickness of the gluing zone. In our
case, the optimal choice seems to be 2h.

In a second step, the same computations are carried out by using a pre-conditioner.
The results are shown in Figure 8, by which one can conclude that, the smaller the
gluing zone thickness is, the more efficient is the preconditioner : by comparison with
the results shown in Figure 7, the number of iterations is divided by a factor 7 when
the thikness of S01

g is equal to h and by factors ranging between 3 and 4 for the other
cases. Moreover the additional preconditioner costs are lower for the small thiknesses
than for the large ones.
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7. Conclusion and perspectives

In this paper, we have numerically designed a practical Arlequin strategy that allow
us to handle multi-alterated structures with enhanced flexibility. A noticable numerical
result obtained for a model 1D elastic bar with one or two alterations is that to achieve
a good accuracy for the Arlequin solution, the free zone of a patch has at least to
include the alterated coarse elements (as far as the coarse mesh is sufficiently fine
to transmit a good solution for the non alteratd bar). Moreover, a very significant
improvement of the global solution strategy is realized by i) considering a pure energy-
based coupling operator and ii) adapting a preconditioned FETI-like solver to solve
the mixed Arlequin linear systems.
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A perspective concerning the multi-alteration modeling is the investigation of 2D
and 3D structures. Concerning the solver, its extension to several patches will be
tested and its performance will be compared to the performance of a direct solver.
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