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ABSTRACT. In this article, we set up a non-intrusive procedure that yields for strict and
highquality error bounds of quantities of interest in linear viscoelasticity problems solved by
means of the Finite Element Method. The non-intrusive feature is achieved by introducing, via
a partition of unity, enrichment functions in the solution of the adjoint problem (handbook
techniques). The resulting goal-oriented error estimation method is thus easy to implement in
a FE code and enables to consider trully pointwise quantities of interest.

RESUME. Nous présentons dans cet article une procédure permettant d’obtenir de fagon non
intrusive des bornes a la fois garanties et pertinentes de l’erreur sur des quantités locales
pour les problémes de viscoélasticité linéaire résolus par la méthode des élements finis. Le
caractére non intrusif est apporté par l'introduction de fonctions d’enrichissement, a I’aide
d’une partition de ['unité, lors de la résolution du probléeme adjoint (techniques
« handbook »). La méthode d’estimation d’erreur locale qui en découle est alors simple a
implémenter dans un code de calcul et permet de considérer des quantités d’intérét
veritablement ponctuelles.
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1. Introduction

In the widespread numerical simulations carried out nowsda major concern
remains the control of the quality of the numerical solusiobtained through approx-
imate methods. Since the 70s, effective tools have emeogeshess global discretiza-
tion error (Bab8kaet al, 2001; Ladevezet al, 2004). Today, research intensely
focuses on goal-oriented error estimatioa, assessment of the error on specific lo-
cal quantities which are relevant for design purposes. Tost mccomplished works
deal with linear static problems and give effective locabebounds (Paraschivoiu
et al, 1997; Prudhommet al, 1999; Parest al, 2006). However, very few works
on the subject are dedicated to evolution and non-lineaslenas; furthermore these
usually lead to bounds which lack reliability because theyreot guaranteed and/or
not sharp, which is a serious drawback for robust design.

In the framework of linear viscoelasticity problems desed through internal
variables and solved by means of the Finite Element Meth&(k- we introduced
in (Chamoinet al, 2007) a method that yields for strict and effective errourwabs
on local quantities. This method, which is an expansion eflihisic ones given in
(Ladeveze, 2006; Ladeveze, 2008), leans on classicalcivinatechniques (leading
to the solution of an adjoint problem), the concept of digign error and convex-
ity properties. It takes history effects into account and/nead to very sharp error
bounds provided that the adjoint problem is solved seclyrat simple but intru-
sive way of reaching such an accurate solution consistedanad refinement of the
time/space mesh being used for the adjoint problem (Chaetah 2007).

In this paper, we go a step further by setting up a non-inteusiocedure to solve
the adjoint problem precisely, in the sense that we keepangdd the discretization
parameters (mesh, operators) defined for the referenceifoalp problem (Chamoin
et al, 2008). We use for that handbook techniques (Stroubetil&., 2000) which
consist in introducing enrichment functions via the Pamitof Unity Method (PUM)
when solving the adjoint problem with the FEM. These funtsi@orrespond to lo-
cally (quasi-)exact solutions of the adjoint problem; thegy computed analytically or
numerically in a (semi-)infinite domain. As a result, we gigthaquality error bounds
at low cost without any remeshing. Furthermore, the metiadkes to consider trully
pointwise quantities of interest in space and time by usingraichment functions the
well-known and possibly infinite energy Green functions.

2. Reference problem and dissipation error
2.1. The reference problem

We consider the structur®, with boundaryof?, given in Figure 1. It is subject
over the time interval0, T'] to prescribed time-dependent mechanical sollicitations

u,, Ly F ;). We assume that this loading is zera at 0 and that its evolution with
time is piecewise linear.
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Figure 1. Structure and its environment (a), and rheological modeldud)

We choose a material with a linear viscoelastic behavionddfby the generalized
Maxwell model. The associated rheological model (Figurésigonstituted of an
assembly of: spring/damper sets. Such a material model can be easilyilbeddy
means of the generalized internal variables/éctors):

o1 €] €l
s = . e = . el = . e=e+eP
on € eb

wheree¢ ande? are respectively the elastic and anelastic part of the sitaine; =
e(u) in seti, whereaw; are the dual variables related to the Cauchy stress terispr
>i, oi = o. With these notations, the intrinsic dissipatidénf the model reads:

n

d=> Troel] =s-év.
i=1

Under the assumptions of quasi-static, isothermal andlgegurbations state, the
reference problem consists in finding a solutiens| that verifies:

— the compatibility equationsg: is kinematically admissiblez(KA);

— the equilibrium equations: is statically admissibles(SA);

— the initial conditions;

— the constitutive relations which are split into two parts:

e’ =A(s); zn:ai =0 (state equations [1]
i=1
¢? = B(s) (evolution laws. [2]

The exact solution of the reference problem, denotedeby, s...), can not usually
be reached. We thus compute an approximate solution, debgtée;,, s, ), of the
problem using the FEM associated to a backward-Euler sch&orethat, we divide
the time interval0, T'] into N time stepst, tx+1] (k =0,..., N — 1) and we inter-
polate ovel0, T'] the approximate solutiofey, x, s,x) oObtained at each time poity.
Therefore, we define the discretization eraoy — w,,.
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2.2. Computation of the dissipation error

The concept of dissipation error requires the possessiarsolution(é, §), called
an admissible solution, that should verify all the equagiohthe reference problem
except the evolution laws [2]. Such a solution can be budtrfrthe FE solution
(en, sn) computed previously, using techniques developed at LM@h@a for many
years (Ladevezet al,, 2004). Dissipation erraly; . is thus a global measurement of
the non-verification, for a given admissible soluti@p, §,), of the evolution laws. It
reads:

T
Penin) =5 [ [ at(@~ ) B (@ - Bk 13

The time functiona(t), which is positive ovef0, T'], has been added to the original
definition of the dissipation error given in (Ladevesteal., 2004); this enables to get
a weighted dissipation error that takes the history effecisountered in evolution
problems into account (Chamoset al, 2007). A first property of the dissipation
error is that it represents a global discretization errtimegor which accounts for all
sources of error (time and space discretizations in our)cas®ther property, which
is the true engine to get strict local error bounds, is tHellietweenE ;5 (é5, §,) and
the exact solutioffe;, se.); it is on the formG (s, — 8,) = E%..(én, $) whereG

is a given functional based on free energy and pseudo-paieaf dissipation.

3. The goal-oriented error estimation method

The quantities of interest we deal with may be local in spawb tame and are
dedicated to viscoelasticity problems. We only considee lg@iantities which depend
linearly on components ofor e, such as a component of the stressf the displace-
menty, of an internal variable! or of its ratec!’ at timet € [0, T']. However, the case
of nonlinear quantities of interest may not be an issue plexythat they are local.

In the framework of the extraction techniques we use, thé diep consists in
writing the considered quantity of interesin a global form:

I :/o /Q;Tr[UiéEi] dQdt = ((s,éx)) = —((¢, 35)). [4]

Then-vectorsés, andsy,, known analytically, represent the extraction functionl-F
lowing the procedure described in (Beckeal,, 2001), we then define a new problem,
calledadjoint problem which is reverse in time but remains similar to the refeeenc
problem except that the loading now consists in the preséigs= " | 55,. The
adjoint problem thus boils down to finding a soluti@n s) that verifies:

— the compatibility equationg KA-0;
— the equilibrium equations: — §y; SA-0;
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— the final conditions;
— the constitutive relations (state equations, evoluavsk? = — B(3)).

In the same way as for the reference problem, we compute alB&os0(é},, 55) and

an admissible solutiof¢y,, 5, ) for the adjoint problem. Note that the time/space mesh
used to solve the adjoint problem can be chosen independemnth the one defined
for the reference problem. The following result thus yiglgshnical details can be
found in (Chamoiret al,, 2007)):

1 o 1 B 1
|Iez — Ih — Ihh| S 2[§E3iss(eh’ Sh) + Fo(Ah)] 2 . [FQ(Ih)] 2 [5]

wherel,, (resp.I;) is the unknown exact value (resp. FE value) of the quanfity o
interestl, I is a correction term computed from the approximate solst@iboth
reference and adjoint problents, and F; are some functions known analytically,,

is a computable term that is not explicited here, apd= — B(5) — ¢}.

As a result, we obtain from [5] some strict bourggsy and&,,,;, of I.,, equal to:

1 1 1
Iy + Inp + 2[§E§iss(éh, 8n) + Fo(Ap)] 2. [Fa(@n)] 2.

REMARK. — The quantityl;, + I;;, can be viewed as a new approximation/gf.

Bounds¢;,; andés,, are sharp provided that terfh(z;,) is small enoughi.e.
when the adjoint problem is solved correctly. This can belmed by refining lo-
cally the time/space mesh used to solve the adjoint probléoavever, this intrusive
technique may lead to large modifications in a FE code, whiehdrawback. Conse-
quently, we rather set up a non-intrusive technique thatpaied in Section 4.

4. Non-intrusive approach for the solution of the adjoint problem
4.1. General framework

Usually, the loading of the adjoint problem induces soluipresenting singular-
ities or high gradients in some localized zones of the dorfaifi] x €. It is thus
difficult to represent these solutions properly with a dizedsFE discretization. We
propose here a procedure based on the handbook techniyedsbel in (Strouboulis
etal, 2000). It consists in introducing enrichment functiorig,the Partition of Unity
Method (PUM), in the set of basis functions describing therapimate displacement
field. These functions are singular solutiof@g®"¢, 5"2"4) of the adjoint problem
loading over an infinite (or semi-infinite) domain; they arsually computed ana-
lytically in time and numerically in space and constitutatadry of pre-calculated
solutions. They only depend on the quantity of interest wmred, and on the char-
acteristic coefficients of the material. However, theseeti€lgnces are quite easy to
account for due to the analytical definition of the functigtisie evolution at least)
and the linearity of the material behavior.
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Therefore, we now search a displacement field for the adpiwitlem under the
form:

nnOPUZ\/I

j=1

wherey; is the classical FE shape function associated to ripdeo” V" is the total
number of nodes enriched by the PUM aiids a displacement field to be calculated.
Note that the degrees of freedom associated to the PUM averkire the enrichment
is entirely determined; only the field” is unknown. The total solutiofe, §) then
reads:

(éa §) = (éflgl}}l](\z’ 5}13%1?4) +(e",8").
It is composed of two terms:

— an enrichment terr@gharnd, | shand ) which locally equilibrates the loading of the
adjoint problem. However, it does not verify all the boundewnditions oro$2;

—a FE term(é}, 5}, ) which can be seen as a residual solution and that enables to
verify all the boundary conditions a¥2.

We denote byQ”’UM the part of the domaif? involved in the enrichment by the
PUM

PUM. Itis splitinto a parQ{’“", such thab 7"y ¢;(M) =1 VM € QfUM,
that contains the area of the structure over which the Igadfrthe adjoint problem
is applied, and a pa®l’V™ that is the complementary part 6’V in QFUM
(Figure 2).

LTI i e nodes enriched by the PUM

PUM
- Zone £ f

: PUM
1T [ Zone Q,

,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 2. Definition of the zones introduced with the PUM

The new problem we thus have to solve consists in finding thielwal solution
(e, 8"). It retains the same structure as the original adjoint mwbéxcept that the
loading is changed,e. the equilibrium equation now reads:

/Tr[&re(g*)]dﬂ = —/ Erh‘mdﬂm.g*dﬂ
Q

oQruM
(6]
~ / Tr[epihe(w™)]d Ve [0,T] Yu* €Uy
Q?U}W

wheren,, is the outgoing unit normal vector @f2{’V . Due to the relative smooth-
ness of the residual solutiga™, §"), we can compute an accurate approximate solu-
tion (&}, 5}, ) using the FEM with the same time/space discretization agribeised for
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the reference problem. The method is called non-intrusithis sense: we reuse the
operators (factorized stiffness matrix, . ..) of the refeeeproblem and only the force
vector has to be changed. The user intervention is necessirio define the quantity
of interest; it is not required to produce the force vectoiohldepends on the enrich-
ment function and the enrichment zone. Practically, theiatlproblem is solved in
the same time as the reference problem. Eventually, we gapproximate solution
(€, 31,) of the adjoint problem, such thét;,, 5;,) = (ehind,, shand ) + (&7 57). Af-
ter computing an admissible residual solut(éi,j, §};), the bounding result [5] holds
with: i )

i =—B(5,) — ¢ = —B(5}) —¢e)”

due to the fact that the evolution laws are verified by the baon# solutions. As
regards ternd},, involved in [5], it is calculated using overintegration.

4.2. Case of pointwise quantities of interest

The extension of the non-intrusive method presented almpeintwise in space
quantities of interest is straightforward. Indeed, thedlog of the adjoint problem
(force, prestress...) being also pointwise in space indhsg, the associated hand-
book functions correspond to the well-knov@reen functions One can introduce
such functions, even though they are infinite-energy, inéoapproximate solution of
the adjoint problem as they do not appear in the expressidheoflissipation error
related to the adjoint problem. The Green functions are t&lieilated analytically in
space and time, using a method based on strain nuclei (L&¥d,) Which leads to the
calculation of Galerkin vectors that are solutions of a denfggharmonic equation. An
example of such a Green function over an infinite domain ismgin Figure 3. When
dealing with a semi-infinite domain, we use the image methati¢onsists in taking
contributions of other singular sollicitations into acov(Sneddoret al., 1964).

P ® O

@) (b) (c)

Figure 3. Spatial distribution of the stress field corresponding tapwise prestress

loading over a 2D infinite domainz/¢" (a), 5" (b), 5em (c)



988 REMN - 17/2008. Giens 2007

Even though the FE valuk, of a pointwise quantity at some point P witHihis
not always defined (due to possible discontinuities of thévdives across element
boundaries), the bounding method can be applied. Indegdafbbe rewritten as:

A A 1 A 1 N
ew — I — Inn| < 2[§E3iss(eh’ 8n) + Fo(An)] . [Fa(2n)]” (7]

wherel;, and I, are some quantities defined at any regular point P using the ad
missible solution(éy,, ;). Then, one can use the bounds/pf given by [7]. Asin

T

Section 4.1, one hag, = —B(5}) — éh’p and the calculation of the dissipation error
for the adjoint problem requires the smooth residual smh(tfz;;, §;‘1) alone.

5. Numerical results
In this section, we apply the non-intrusive error estintatieethod to a 2D prob-

lem. We consider a L-shaped structure clamped at its bassudnjelct to a prescribed
displacement/ ,(t) along its upper right edge (Figure 4).

0 2 4 6 8 10 12 14 16 18 20t

(@) (b)

Figure 4. The structure being considered (a) and its loading (b)

We assume plane stress state and take a Maxwell rheologickdirmomposed of
three spring/damper sets. The FE solution is obtained lyeatiging the structure
spatially with 100 linear quadrangle elements and dividimg time intervall0, T']
(T" = 20 s) into 20 time steps. Let us note that the calculatiori.@f used as the
reference value, is performed using a "quasi-exact" smuvbtained by means of a
very refined FE mesh @Verkill solutior?).

5.1. Afirst example

We consider the quantity of interest:

1 .
I = m/eiywdw
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wherew corresponds to one-quarter of an element of the FE meshr@-gu The
loading of the associated adjoint problem consists in a@Eess in w.
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Figure 5. Map of Field¢ el at time 7" (a), evolution in time ofx (b), and nodes
involved in the enrichment through the PUM (c)

We then introduce in the solution of the adjoint problem #pebandbook func-
tions calculated analytically in time and numerically irasp. They represent the
(quasi-)exact solution of the adjoint problem loading aveemi-infinite domain, tak-
ing the L-shape and the local traction-free conditions atoount (Figure 6).

L

@ (b) (©)
Figure 6. Map ofg/2" (a), 5,2 (b), ands’e"? (c) at time T

The enrichment functions are introduced through the PUNpatigic nodes of the
mesh which are close to the zone of application of the adjiniblem loading (these
nodes are circled in Figure 5).

We show in Figure 7 and Figure 8 the spatial distribution eld8/:7%, andg;,
(such thaty, = 1y, + 67) attimet = 7.

2 I O E L

@) (b) (©

Figure 7. Map of a7, (a), o747, (b), andaiyyyy () attime T
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@) (b) (©

Figure 8. Map of;, (), Ghy, (b), and&gzy (c)attime T

Eventually, we get the bounds:

ginf = &Lf =0.97 gsup = glsup = 1.02.

Iem exr

These results show that the non-intrusive method is vepctfle and enables to ob-
tain accurate bounds of localized quantities through théclement of only a few
nodes of the space mesh (due to St-Venant principle).

5.2. Second example: error estimation on a pointwise quantityimterest
We now consider the quantity of interest:

I=¢& (Pr

vy

where P is a point that lies within an element of the mesh (fei§y.

@)

Figure 9. Definition of Point P where the quantity of interest is defi@d and defi-
nition of Zone E (b)

(b)

The loading of the adjoint problem consists in a pointwisesfress s, (M, t) at
Point P in the fornts(¢)6(P). The enrichment functions we use, taking traction-free
boundary conditions into account, are similar to thosergine=igure 3.
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We then get the following bounds:

- Sing ; Esup

Eing = L.~ 0,96 Esup = L. 1, 04.
In addition, one can seek lower and upper boundg ofP) for any point P within a
specific local zone of interest € Q2 (Figure 9). The procedure consists in sweeping
Zone E and considering that the residual solutig 5},) of the adjoint problem does
not depend on the localization of P over E (practically, ihigerified if zone”VM is
sufficiently large). Thus only the handbook function hase@banged when sweeping
over E, and the following result yields:

=

. 1 . 1 -
|Iem(P) —Ih(P) —Ihh(P)| S 2[5 giss(ehash)‘FFO(Ah)} 2.[F2(Ih)] VPG E
We thus get the following bounds for the extremiiftr®-E of 1., over E:
Ef E
~E mn, . cE SSU -
Sinf maz,E 0.95 Ssup T ma;),E =1.05

Therefore, we are able to obtain high-quality lower and upyoeinds for the ex-
tremum of/.,. (or L°°-norm ofI,.,.) over a given zone, which constitutes useful infor-
mation for design purposes.

6. Conclusion

We presented in this paper a method that provides for smithigh-quality error
bounds of local quantities in linear viscoelasticity perbk. It is made non-intrusive
due to the fact that by using handbook techniques, the a@djoadblem is solved pre-
cisely while keeping unchanged the discretization pararsetefined for the reference
problem; only the loading has to be changed. As a result, dadling process ap-
pears in a "black-box" manner for the analyst/designertheumore, this technique
enables one to easily tackle pointwise quantities by usiree@s functions. Several
numerical tests clearly illustrated the interest and efficy of the proposed method.

In summary, this work demonstrates that reliable localrdbaunds can be ob-
tained at reasonable cost for linear evolution problemscawhich was not really
accepted by the scientific community until now. It shoulcdbdd® mentioned that the
goal-oriented error estimation method proposed here doesse the orthogonality
properties of the FE solutions. Therefore, it could coralely be applied to problems
solved by approximate methods other than the FEM,; it couldemeer be applied to
other linear parabolic problems.
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