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ABSTRACT. The perturbation theory has proved to be an efficient tool for the numerical
resolution of non-linear problems in mechanics. However, it is not suitable for singular
problems, for which the series solution is divergent. We propose to use the Borel-Laplace
series resummation method for the resolution of such a problem. The resulting algorithm is
applied to some model problems in fluid mechanics.

RESUME. La théorie de perturbation est un outil efficace pour la résolution numérique de
problémes non linéaires en mécanique. Toutefois, elle n’est pas adaptée a des problemes
singuliers, pour lesquels la solution sous forme de série formelle est divergente. Nous
proposons d utiliser numériquement la méthode de resommation de séries de Borel-Laplace
pour la résolution d’un tel probléme. L algorithme résultant est appliqué a la résolution de
problemes modeéles en mécanique des fluides.
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1. Introduction

Based on the perturbation theory (Bendwral, 1978) and a finite element
discretization, the Asymptotic Numerical Method (ANM) pets to solve many
non-linear problems in structure mechanics (Daetikl., 1990; Elhage-Husseiet
al., 2000; Dayaet al., 2001), and in low Reynolds number fluid flow simulation (Tri
et al, 1996; Cadou, 1997; Allergt al,, 2004). The efficiency of ANM, compared
to Runge-Kutta-like methods, is due to its low computati@ust. Indeed, the series
decomposition of the solution leads to a cascade of linezlslems having the same
operator. So, only one matrix has to be inverted. Moreoveordinuation procedure
can be used when the radius of convergence of the seriestsagéCochelin, 1994).
One other advantage of ANM is its ability in path followingdathe detection of bi-
furcations (Alleryet al., 2004).

ANM cannot, however, be directly applied to problems havdargingularity at the
origin. Indeed, in this case, the radius of convergencestas and the continuation
procedure cannot be performed. Usual extrapolation msthodh as Padé approxi-
mants are also inefficient. Though, a divergent series isiniotteresting. They often
appeared in astronomy problems and was used for calcuafidrey may also occur
in fluid mechanics. Consider, for instance, the linear hgatigon:

oT 0T
o [

whereT is the temperature, artcandzx are the time and space variables. If the initial
condition is

1

1—x

T(0,z) = (2]

then the formal series solution, according tés (Lutzet al., 1999)

@K 1
I(tz) = Z B (1= z)2h t*, (3]

k>0

which is divergent at any point of the domain.

Another example is the discretized unsteady Navier-Stegestions, which gov-
ern the motion of fluids. For these equations, a formal tinneselecomposition leads
to an interesting cascade of linear problem where the opredaies not change even
if a continuation procedure is performed (see appendix)ly ©ne matrix inversion
is then necessary during the whole simulation. One the dtaed, as shown in ap-
pendix, the radius of convergence decreases with the s@fidhe number of grid
points. The series is “practically” divergent, especiddly turbulent flows where the
number of grid points is generally very high.

The most promising tool to treat divergent series is the Boaplace resummation
method. This technique is a theoretical procedure develdpptially to find a secto-
rial analytic solution from a divergent series which is atfiaf solution of an equation
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(Ellis et al,, 1996; Lutzet al, 1999; Broadhurstt al,, 2000). And if the formal series
solution has a non-zero convergence radius, it can be sesmedrapolation proce-
dure. The method is based on the usual Laplace transformatid its inverse, the
Borel transformation. Its limit is that the series must be ev®y seriesi.e. must
not “diverge faster than the factorial series”. Fortungtible majority of formal series
arising from a physical problem are a Gevrey series, as pgrbyeMaillet’s theorem
(Maillet, 1903; Thomann, 2000).

In this article, we propose to adapt the Borel-Laplace remation method for a
numerical use in real mechanics problems, particularlyuid finechanics. An algo-
rithm will be built. However, in this pioneer work, the methwill only be applied
to some reduced model problems. Simplifying hypotheseslaemade. The aims
of this exploration phase are to check if the Borel-Laplassummation technique
is suitable for a numerical use, to identify the eventuabpgms and to know what
can be hoped when solving a non-reduced problem. The papdrenstructured as
follows. In Section 2, the Borel-Laplace resummation wal \ery briefly exposed.
In Section 3, the transposition of the theory into a numéadgorithm will be pre-
sented. Some numerical tests are carried out in Sectiondpgandix, an algorithm
for the resolution of the discretized Navier-Stokes equmstj based on a time series
decomposition is developped and the radius of convergermeaiuated.

2. The Borel-Laplace resummation method

A complete presentation of the Borel-Laplace resummatieoiy would require
the introduction of complex mathematical concepts. Howate mechanism is easy
to understand and, at our stage, we do not use all these dencep, they will be
skipped and we will illustrate the method through two exaespFor complementary
information, the reader can refer to the papers of Borel 91 88d Gevrey (1918) and
to more recent papers on divergent series (Bertlat, 1978; Ramis, 1991; Pham,
1999; Frucharet al,, 1999).

2.1. Two examples

To understand the mechanism of the Borel-Laplace resuramatethod, it is suf-
ficient to remark that, formally,

STk ) et dg 41
k>0

—+oo
§= E skzk:so—i—/
0

k>0

for any formal serie$ = Zskzk, since
E>0

Kl = /;oo Fe=C de. [5]
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S
If the formal series % called the “Borel transform” of the serigs- sy, can be

k>0
replaced by an analytic function at the origin and in a sectmtaining the positive

real axis such that the integral in [4] exists, we obtain aalwit function in the
right-hand side. This analytical function is asymptotitisense which will be more
precisely defined later) to the initial series at the origin.

Consider the Euler equation:

o dw
Zf— 4w =2z [6]
dz
The formal series solution of this equation is:
W= (—1)FklZF [7]
k>0

This series is divergent. A non-optimized perturbatiorthrod-based algorithm such
as ANM would not give any analytical solution.

The Borel transform of the series [7] is

Do = (-

E>0 k>0
1
This series can be extended to the analytic funcfion £ € C — {1} — s
Hence, the right-hand side of [4], appliedido gives:
+oo 1 ¢/
1—|—/ e S/*7 de. 8
A et 8]

This is an analytic function in the complex half-plane whire real part ot is pos-
itive. This function is the “sum” of the divergent series.[A]is a solution of [6] and
can be computed numerically.

In summary, from the divergent series [7], the resummat@mridprovide an ana-
Iytic function which is a solution of the Euler equation.

In the following example, we consider a problem whose sesdstion is conver-
gent. We then show that, in this case, the resummation metrotle understood as a
prolongation method.

Consider the initial value problem:

dw )
@ e =0
[9]

w(0) = 1.
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The formal series solution is:
= (—1)Fz". [10]
k>0
which is convergent inside the unity disc. The Borel transfof [10] is
(_1)k+1

i e, [11]

k>0
We recognize that it is the Taylor expansion of the function

¢ —e ¢, [12]
With this function, the right-hand side of equation [4] is

—+oo
1+/ e fe 87 de =
0

This is the analytic solution of problem [9] ii — {—1}. This function prolongs the
series [10].

1
142

(13]

In the following subsection, the resummation procedurbégeneral case is sum-
marized.

2.2. Summary of the resummation procedure

Assume that the perturbation theory gives a formal serikegisn
§= Zskzk e C[[#]] [14]
E>1

of a problem, wher€'[[]] is the space of the complex formal seriegifThe resum-
mation procedure contains three steps:

1) the first operation is the formal Borel transformation:

s=Y st €Clldl]  — B =) ret eCliell

k>1 k>0
[15]

the Borel transforniB(5) has a non-zero convergence radius i a Gevrey seriés
i.e. if there exists two constants and A such that

VEk > 1, |sk| < CAFE!;

1. Only the order 1 is considered in this article.
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2) assume that is a Gevrey series, the second operation is an extensiBis0f
if possible, into an analytic function

P: e Sa) — P eC [16]

in a (open) sectof(a) containing a half-linei, linking the origin to the infinity in
the directiora;

3) the last operation is the Laplace transform in the diogcti, which permits to
go back to the original space:

PeH, — L P(2) :/ P(&)e /% de [17]
da
where H, is the space of functions which are analytic in a vicinity offid which

can be extended into an analytic function having an expdaerbwth in a sectos,,
containing the directiod,, i.e.

Jc e R, |P(¢)] < O(e®) Ve € S, [18]

In the previouos examples,= 0 andd is the positive real half-axis.

The key idea of the Borel-Laplace resummation method istie¢asier to extend
a convergent series (here, the Borel transform) outsidednsergence domain than
to extend a divergent series (the original series) in a moptg domain.

To sum up, a formal series = Zskzk is Borel-summablén a directiona if
k>0
B(5 — sg) € H,. Its Borel sum is the function

so+ L, [B(§ — 80)} . [19]

The Borel sum [19] is analytic in the Borel disc whose one ditemis|0, % ']
(see Figure 1). It is asymptotic to the original series inftiilowing sens: a formal
seriess = Zskzk is the Gevrey asymptotic expansiofia functions in a sectorS

i>0
(at the origin) if, for all compact sub-sectdrof S, there esists two real constaidis
and A such that

k—1
s(z) — Zsjzj < CAR (k)| 2", [20]

=0

forallk e Nand allz € T.
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—_ eia

Figure 1. Borel disc in the directiom

The Gevrey expansion is a generalization of the Taylor esipanfor divergent
series. For complementary results on the existence andieméss of the Gevrey
expansion one can refer to , Benagral. (1978), Malgrangeet al. (1992), Loday-
Richaud (1991), Costin (1998), Fruchaaial. (1999).

In the following section, an algorithm for the effective nerital computation of
the Borel sum is presented.

3. Numerical algorithm

Consider the following problem:
E(s(z),z) =0

which has a formal series solutiah £ being a differential operator. A numerical
perturbation method such as ANM permits, by identificattorfind thel first terms
of the series and leads to a truncated series:
l
§l(z) = Zskzk [21]
k=0

which is an approximation of the solution aroune: 0. The ordet of [21], on which
depends the accuracy of the method, is arbitrary.

The three operations of the resummation methods are ttadsk#o a numerical
algorithm as follows.

1) The first operation, the Borel transformation, is a puaddyebraic operation and
introduces no particular problem. It gives the followingrBlatransform of(s! — s¢):

-1

B(5' — s0)(€) = ZS';; ek, [22]
k=0
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Table 1. The numerical algorithm

l

=2 st BL4(8")(2) = s0 + / P(&)e ¢/ de
k=0 da
Borel Laplace(L,)
-1 N
Ag + A1+ -+ Ay, M
B(s —so) =S ek Tpadé | P(e) = 2 18 b

1+ By + -+ By, &N2

2) The second operation consists in extending [22] into atfan which is analytic
in a direction to the infinity. It is assumed that this extenss possible. This can be
performed using the usual Padé approximant procedure Bendl., 1978; Suetin,
2002). It gives a rational approximation of [22]:

P(g) B A0+A1§+"'+An1§n1
B 1+ Bié+ -+ Bp,&ne

(23]

wheren; + ny = [ andA; andB; are the real numbers such that the Taylor expansion
of P atthe ordel is the truncated series [22]. In opposition to the origiraies [21],
the Padé approximant procedure is efficient on [22] becduisséries is convergent.

3) The last operation is the application the Laplace tramsf6, P of [23] in a
direction whereP has no pole. One property of the Padé approximants [23] s tha
it has an exponential growth at the infinity, and consequetite Laplace transform
exists. To calculate the value of the Borel sum

BL4(3") = so + Lo P

at any pointz, a Gauss-Laguerre quadrature method (Guilpin, 1999; Kr299) is
used.

Table 1 summarizes the main operations of the resummatamegdure. This algo-
rithm was integrated into a perturbation-method-basett&ocode and tested in the
next section.
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Exact solution

oo | ———————— Perturbation A

os | : —-—-— Perturbation-
resummation

Figure 2. Solutions with and without resummation

4. Numerical tests

Our long-term aim is the resolution of the Navier-Stokesatigms. However, in
this exploration phase, we only consider some model prahlérhe first example is
Equation [9]. The exact solution is

1
142

Equation [9] is not an example on which the maximum profit ef thsummation can
be made because it does not present an irregularity at thmari= 0 but it has a
quadratic non-linearity like the Navier-Stokes equations

4.1. Testson Equation [9]

In a first test, the solution given by the perturbation metalathe is compared to
the solution given by the association of the perturbatiothogand the resummation
method. The series solution is computed up to the 8-th oiderg). The direction of
the Laplace transformation is the real positive axis and3sxss points are used for
the Gauss-Laguerre integration.

The result of this first test is presented on Figure 2. It caoliserved on it that the
series solution provided by the perturbation method is ngém a good approximation
from aboutz = 0.7. When the perturbation method is combined to the resummatio
the computed solution remains very close to the exact soiati least untik = 2.5.

The first conclusion is that the above presented algorithoperational. Note
that no optimization operation such as convergence aat&lamor an optimization
of the quadrature was performed in the algorithm. The secmmdlusion is that,
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as expected, the resummation method brings a very sigrtificgorovement to the
perturbation method. In this case, the range of validity istiplied by more than 3.5.

Theoretically, the resummation method should lead to tlaetesolution until the
infinity (Subsection 2.1) but since the initial series wamtrated and no optimization
was done, numerical effects become non-negligible foilelasjues ot:.

The next test is done on the same problem [9] but this timepéraation proce-
dure is introduced in order to reach high values of

Let Res be the residue:

dw
R = —(2) + w?(2).
es(z) = - (2) +w(2)
For the comparison, two calculations are done. In the firgt, dhe perturbation
method is combined to the continuation procedweRT™CONT) and in the second,
the resummation procedure is adde@RgT+RESUM+CONT). More precisely, the al-
gorithm with resummation can be described as follows.

a. (PERT) The truncated series

l
Wl = E wkzk
k=0

is computed using the perturbation method with = w(0) = 1. This provides an
analytical approximation of the exact solution as long asftfiowing relation holds:

R
IRes(] _ 2
[t (2)]]
wheree is a small parameter arjf|| is the usual Euclidian norm. Letbe the last
computed values of for which the above relation holds.

b. (RESUM) Next, the Borel sunB Lo (') is computed. This provides an analytical
approximation of the exact solution fere [z, zg] wherez, is the last value of for
which the following relation holds:

[ Res(2)

TBLo(@) ()] = © [25]

c. (CONT) Whenz is reached, a continuation procedure is performed, thates,
run the algorithm again with, in step, wy = w(zo).

In PERT+CONT algorithm, stegb. is jumped and:y = z. The computation is carried
out up toz = 10, with [ = 8 ande = 10~2.
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Perturbation

Perturbation |

,,,,,,,,, Resummation |

< Continuation points \(— Continuation points

Y I
(6;) 5 . e ib)‘) ————

Figure 3. Approximated solutions with continuation; a) without resuation
(PERT+CONT), b) with resummation{ERT+RESUM+CONT)

Figure 3 shows the approximate solutions. Visually, thecegalution cannot be
distinguished from the computed solutions and is not piteserl_eft is the approxi-
mate solution without the resummation procedure. The boldtp (s) represent the
points where a continuation procedure is needed (the aasoisthese points corre-
spond to thezy's). Right is the approximate solution with the resummatiwace-
dure. The dashes correspond to the part of the solutionrdustan phaséd. of the
algorithm. It can be observed that the resummation proespiaongs well the solu-
tion provided by the perturbation method such that muchdesginuation steps are
needed. Indeed, only two continuation points are requoeéachz = 10 when the
resummation method is applied, against eight when it is not.

Such a result should still have much more interest in theluésa of high order
problems with ANM where the computation of the terms of thexfal series (which
needs an inversion of a matrix) has an important cost cordgaréhe resummation
procedure.

The above results corresponds to a truncation of the sdries 8. Other calcula-
tions was done witlh = 15. Table 2 compares the number of continuation points with
[ = 8 andl = 15. A very significant diminution of the number of continuatipaints
can be observed when the resummation procedure is used.

These tests on Equation [9] permitted to check that the m@gbalgorithm is func-
tional and brings a good improvement to the perturbatiorhodt In the following
tests, we consider a reduced model of the Navier-Stokediegador the simulation
of realistic fluid flows.
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Table 2. Number of continuation points for Equation [9]

=8 =15

PERT+CONT 6 points 5 points
PERT+RESUM+CONT 2 points 1 points

4.2. Reduced model of the Navier-Stokes equations

The Navier-Stokes equations (see appendix, Equation §26]jeduced using the
Proper Orthogonal Decomposition (POD) method which cémgisdecomposing the
velocity fieldu in a particular basi$®’);—; .., composed of divergent free func-
tions, and which maximizes the energy (see Lumley (196 Tpviih (1987), Aubry
et al.(1988)):

+oo

u(t,x) = 3 oi(t) ¥(a). [26]

i=1

t andx are respectively the time and space variables. The comgopieaf v will
be called thenmodes The basis functions are generally determined numeriaally
experimentally and depend on the configuration of the flow.

In practice, the decomposition [26] is truncated at an ordefThis leads to the
following reduced model of the Navier-Stokes equations:

I N i :
T Y QL +> L =Fi(t), i=1,2,...m. [27]

J,l=1 Jj=1

where@), L and F' are known tensors depending on the basis functions. A pipper
of POD is that very few modes are needed to capture almosthloéevenergy of the
flow.

In our case, the basis functions were computed numeridailgy are not presented
here but can be found in (Allery, 2002).

Equations [27] are solved using the perturbation-resunomatlgorithm
(PERT+RESUM+CONT) described above. For comparison, another calculatioh wil
be done using the usual adaptive 5-order Runge-Kutta mefffRunge-Kutta step
is chosen such that the estimated valuef the truncation error verifies the following
relation:

<e (28]

wherep = (o'); ande is the same error parameter used in [24] and [25]. Notice that
the Runge-Kutta method is of order 5 but the order of the peation-resummation
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Figure 4. Geometry of the driven cavity

method, which is defined by can be chosen arbitrarily. Moreover, while the Runge-
Kutta method gives a point by point solution, the perturdratiesummation method
provides an analytic solution.

The first test is carried out on an air flow inside a two-dimenal driven cav-
ity, represented on Figure 4. The lid velocity..; is horizontal, withU,.; =
(0.15m/s,0m/s).

[ is set to 10. The Laplace direction is the positive real aiis then assumed
that the Padé approximants have no pole on this axis). Fagnanodes: = 4 or
10) are computed. The first two modes tdirom 0 to 20 seconds are presented on
Figure 5. A projection on the basi®?); of a numerical solution of the Navier-Stokes
equations is used as a reference solution.

It can be observed on Figure 5 that the algorithBRT+CONT+RESUM gives ap-
proximately the same numerical results as the Runge-Kuwgthoa at the points where
a Runge-Kutta solution is available. The difference wita thference solution may
be essentially due to the numerical computation of the eefez solution but the POD
modelisation may also introduce some errors (truncatighegeries...). Stabilization
procedures exist (but not used here) to attenuate the PORImgdrrors. The dif-
ference with the reference solution is then independertitoperformance of our two
algorithms.

Table 3 compares the number of steps needed to reach 20, 30@sgconds for
m = 4 modes [ = 10). It shows that the perturbation-resummation method regui
much less steps than the Runge-Kutta method, about 35%olesach 100 seconds.
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Figure 5. Computed values qf* (a) ando? (b) versug
——- Reference solutions e e Runge-Kutta, ----- Perturbation-resummation

Table 3. Number of continuation steps for the driven cavity, with= 4

20 seconds 50 seconds 100 seconds

Runge-Kutta 18 steps 41 steps 80 steps
Perturbation-resummation 9 steps 24 steps 52 steps

The gain of the perturbation-resummation method increastisthe number of
modes. Indeed, as observed on Table 4 with= 10 modes, the perturbation-
resummation method requires about 42% less continuagps shan the Runge-Kutta
method to reach 100 seconds.

Table 4. Number of continuation steps for the driven cavity, with= 10

20 seconds 50 seconds 100 seconds

Runge-Kutta 29 steps 81 steps 175 steps
Perturbation-resummation 16 steps 44 steps 102 steps
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Figure 6. Geometry of the ventilated room

Since the reconstituted flows obtained from the perturbatgsummation method
and from the Runge-Kutta method are qualitatively the sdhey, are not presented
in this article but can be found in (Allery, 2002).

From the above results, it can be concluded that the pettarbeesummation
method provides an approximate solution as precise as thgigan by the Runge-
Kutta method, but with less steps. In addition, the appraté@solution is analytic.
These results also show that the perturbation-resummat&thod can be used for
the simulation of realistic problems. Finally, it can be egfed that the advantage of
the method will be more important while simulating a highergroblem such as the
discretized Navier-Stokes equations.

The last test is carried out on the flow inside the 2D ventilat®om presented on
Figure 6. This geometry is used in (Allegt al, 2005) for the study of pollution in
building field. For this geometry, the inlet and outlet haggare 0.31m. The inlet is
at 0.07m from the ceiling and the outlet at 0.07m above the.flbioe inlet velocity is
0.443m/s.

A first simulation is done until the flow is stable. Then, a m#tcloud is in-
jected. The details of the simulation can be found in (Alleryal., 2005) and will not
be reproduced here. Our interest is the comparison of tharpation-resummation
method with the Runge-Kutta method.

The flow is solved with POD, witin = 4 modes. Table 5 presents the number
of steps needed by the two methods 20, 30 and 100 secondthafiejection of the
particles. Also for this flow, the perturbation-resummatioethod requires less steps
than the Runge-Kutta method, about 44% less to reach 108decbhe reconstituted
flow can be found in (Allenet al,, 2005; Razafindralandy, 2005).
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Table 5. Number of continuation steps for the ventilated room

20 seconds 30 seconds 100 seconds

Runge-Kutta 93 steps 137 steps 397 steps
Perturbation-resummation 55 steps 78 steps 224 steps

5. Conclusion

It was shown that the Borel-Laplace resummation method eausked in a nu-
merical algorithm. Applied to a theoretical problem, it lieved to bring a really
interesting improvement as a prolongation technique tg#réurbation method. A
prolongation may considerably reduce the computationgtlwhen simulating a high
dimensional problem such as the discretized Navier-Stegaations where the com-
putation of the terms of the series requires an importanjegation time. It was also
seen from tests on reduced but realistic problems that tidir@tion of the perturba-
tion method to the resummation technique presents integeativantages compared
to the usual Runge-Kutta method. The perturbation-resumomgechnique requires
less continuation steps. So, it can be hoped that, once udeidglo dimensional prob-
lems, it will require less matrix inversions.

In this article, no comparison on the CPU has been presefitegireason is that
the Runge-Kutta method is known for a long time and has bedirop@mized. It is
not the case of the resummation technique which was usedriaaihefor the first
time. Optimizations could be brought for example in the catafion of the (vector)
Padé approximants or the Laplace transform (the direcfiart@gration, the effective
calculation of the integral, ...). In addition, all the opéons in the resummation
technique are formal. It may then be profitable to use a syimisoftware such as
Maple for the resummation step instead of a purely numegmam. This should
significantly reduce the computation errors.
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7. Appendix: Time series expansion for the Navier-Stokes emtions

In this appendix, an ANM algorithm obtained from a time seegpansion for the
discretized Navier-Stokes equations is presented. Nestiydy on the convergence
radius of the series is carried out.

7.1. Presentation of the algorithm

Consider a Newtonial incompressible fluid with, for simfilica density 1. The
motion of this fluid is governed by the Navier-Stokes equsti(in a dimensionless
form):

ou . 1
o + div(u ® u) + Vp — R—v2u=0
¢ [29]

divu =0

with the initial condition
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wheret is the time variabley the space variabley the velocity field,p the pres-
sure andRe the Reynolds number. After a suitable discretization,dtexpuations are
transformed into a matrix equation:

oU
MEJrQ(U,U)JrLU:O, [30]
with
U(t=0)="0U

whereU (respectivelyly) are the vectors containing the nodal values ahdp (resp.
uo), M the mass matrixl, = (L}); j=1,... ~, Q a vectorial quadratic operator such
that

N N
QuV,U) =3 > Quv/U", [31]
Jj=1l=1
Q = (Q},)i,ji=1.....v being a three-order tensor andis the number of grid points.
The unknown vectol/ is decomposed into a formal time series as follows:
U(t) = Uy + Urt + Ust® + -+ + Upt® + - [32]

Injecting the decomposition [32] in the matrix equation][80d identifying according
to the powers of, one obtains the following cascade of linear equations:

Order0: MU; + Q(Uy,Up)+ LUy =0

Order 1: 2MU2+Q(U0,U1)+Q(U1,Uo)+LU1 =0

[33]
k
Orderk:  (k+1)MUpi1+ Y _Q(Up,Up—r) + LU =0
r=0

This cascade of problems has the property that the equdtawesthe same matrix to

be inverted, namely/. The resolution of these equations provides an approximate
solution in the domain of validity of the series [32]. But cpaned to other algorithms

of the ANM family, the time-series decomposition presemts more very interesting
advantage: the continuation procedure does not requirintfeesion of any other
matrix becausé/ does not depend on the continuation poindg. is then inverted
only once during the computation; that presents an impbdave of computational
time. Only the second members change.

The performance of an algorithm built from this time serieg@mposition lies
however on the convergence radius of the series [32]. In fdilaivs, a analysis of
the convergence radius is done.
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7.2. Estimation of the radius of convergence

For simplification, Equation [30] is rewritten in the folldng form:

dU
& TQU.U) + LU =0,

In a vectorial form, the unknown is

U= U4LU?..., UM

The time series decomposition [32] gives, for each compblién = 1,. ..

U'(t) =Up+ Uit + Ust® + -+ UptF -+ .
The initial condition is

Uo= (U3, UZ,...,UY)".

We denote
_ i _ i
Q_z‘,j,lril%).(..,zvl(@ﬂl’ L mgllfileLJL
Up = max |U{|
i=1,...,N

the respective norms @J, L andU.

The 0-th order of [33] gives:

—Ui = DN QLU UL+ Y Lia,
j=11=1 j=1

) N N N
Ui < QY)Y Ug*+L) U
j=11=1 j=1

Uil < QN?Up? +LNU.

E = (QN?a* 4+ LNa)
wherea = max(Uyp, 1) then

\Ui| < E, i=1,...,N.

We will prove by recurrence that/}| < E* foralli = 1,..., N andk € N.

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]
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The property holds wheh = 1. Itis assumed true forall=1, ..., N andk < ko,
with ko € N. Hence, at the ordéy, of [33], one has:

N N ko N
(ko + DIUf 0l = D> Qj (ZUZ U}W> +> LU,
j=11=1 r=0 j=1
N N ko N
(ko + DIU} 11l < QY D Y E"EF"+ LY EM
j=11=1r=0 j=1

< QN?Z%*(ko +1)EF + LNE*o,

Hence,
. 1
Uyl < <QN2 + LNH—1> Eko [43]
and then, foralf =1,..., N,
Uyl < BRFL, [44]

Consequently, the property is also true for kq + 1. This proves that

\Ui| < EF, Vi=1,...,N, keN. [45]

In summary, the quantity, = 1/F whereE is defined by relation [41] is an es-
timation of the convergence radius of the series [32]. Irelases withl /N2 (or in
1/N). This convergence radius may then be very small for a higtedsional prob-
lem. For an infinite-dimensional.¢. continuous) problem, the convergence radius
may vanish (heat equation).








