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1. Introduction

Based on the perturbation theory (Benderet al., 1978) and a finite element
discretization, the Asymptotic Numerical Method (ANM) permits to solve many
non-linear problems in structure mechanics (Damilet al., 1990; Elhage-Husseinet
al., 2000; Dayaet al., 2001), and in low Reynolds number fluid flow simulation (Tri
et al., 1996; Cadou, 1997; Alleryet al., 2004). The efficiency of ANM, compared
to Runge-Kutta-like methods, is due to its low computational cost. Indeed, the series
decomposition of the solution leads to a cascade of linear problems having the same
operator. So, only one matrix has to be inverted. Moreover, acontinuation procedure
can be used when the radius of convergence of the series is reached (Cochelin, 1994).
One other advantage of ANM is its ability in path following and the detection of bi-
furcations (Alleryet al., 2004).

ANM cannot, however, be directly applied to problems havinga singularity at the
origin. Indeed, in this case, the radius of convergence vanishes and the continuation
procedure cannot be performed. Usual extrapolation methods such as Padé approxi-
mants are also inefficient. Though, a divergent series is notuninteresting. They often
appeared in astronomy problems and was used for calculations. They may also occur
in fluid mechanics. Consider, for instance, the linear heat equation:

∂T

∂t
=

∂2T

∂x2
[1]

whereT is the temperature, andt andx are the time and space variables. If the initial
condition is

T (0, x) =
1

1 − x
[2]

then the formal series solution, according tot, is (Lutzet al., 1999)

T (t, x) =
∑

k≥0

(2k)!

k!

1

(1 − x)2k+1
tk, [3]

which is divergent at any pointx of the domain.

Another example is the discretized unsteady Navier-Stokesequations, which gov-
ern the motion of fluids. For these equations, a formal time series decomposition leads
to an interesting cascade of linear problem where the operator does not change even
if a continuation procedure is performed (see appendix). Only one matrix inversion
is then necessary during the whole simulation. One the otherhand, as shown in ap-
pendix, the radius of convergence decreases with the squareof the number of grid
points. The series is “practically” divergent, especiallyfor turbulent flows where the
number of grid points is generally very high.

The most promising tool to treat divergent series is the Borel-Laplace resummation
method. This technique is a theoretical procedure developped initially to find a secto-
rial analytic solution from a divergent series which is a formal solution of an equation



Numerical divergent series resummation 433

(Ellis et al., 1996; Lutzet al., 1999; Broadhurstet al., 2000). And if the formal series
solution has a non-zero convergence radius, it can be seen asan extrapolation proce-
dure. The method is based on the usual Laplace transformation and its inverse, the
Borel transformation. Its limit is that the series must be a Gevrey series,i.e. must
not “diverge faster than the factorial series”. Fortunately, the majority of formal series
arising from a physical problem are a Gevrey series, as proved by Maillet’s theorem
(Maillet, 1903; Thomann, 2000).

In this article, we propose to adapt the Borel-Laplace resummation method for a
numerical use in real mechanics problems, particularly in fluid mechanics. An algo-
rithm will be built. However, in this pioneer work, the method will only be applied
to some reduced model problems. Simplifying hypotheses arealso made. The aims
of this exploration phase are to check if the Borel-Laplace resummation technique
is suitable for a numerical use, to identify the eventual problems and to know what
can be hoped when solving a non-reduced problem. The paper will be structured as
follows. In Section 2, the Borel-Laplace resummation will be very briefly exposed.
In Section 3, the transposition of the theory into a numerical algorithm will be pre-
sented. Some numerical tests are carried out in Section 4. Inappendix, an algorithm
for the resolution of the discretized Navier-Stokes equations, based on a time series
decomposition is developped and the radius of convergence is evaluated.

2. The Borel-Laplace resummation method

A complete presentation of the Borel-Laplace resummation theory would require
the introduction of complex mathematical concepts. However, the mechanism is easy
to understand and, at our stage, we do not use all these concepts. So, they will be
skipped and we will illustrate the method through two examples. For complementary
information, the reader can refer to the papers of Borel (1899) and Gevrey (1918) and
to more recent papers on divergent series (Benderet al., 1978; Ramis, 1991; Pham,
1999; Fruchardet al., 1999).

2.1. Two examples

To understand the mechanism of the Borel-Laplace resummation method, it is suf-
ficient to remark that, formally,

s̆ =
∑

k≥0

skzk = s0 +

∫ +∞

0





∑

k≥0

sk+1

k!
ξk



 e−ξ/z dξ [4]

for any formal series̆s =
∑

k≥0

skzk, since

k! =

∫ +∞

0

ξke−ξ dξ. [5]
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If the formal series
∑

k≥0

sk+1

k!
, called the “Borel transform” of the seriess̆− s0, can be

replaced by an analytic function at the origin and in a sectorcontaining the positive
real axis such that the integral in [4] exists, we obtain an analytic function in the
right-hand side. This analytical function is asymptotic (in a sense which will be more
precisely defined later) to the initial series at the origin.

Consider the Euler equation:

z2
dw

dz
+ w = z. [6]

The formal series solution of this equation is:

w̆ =
∑

k≥0

(−1)kk!zk+1. [7]

This series is divergent. A non-optimized perturbation-method-based algorithm such
as ANM would not give any analytical solution.

The Borel transform of the series [7] is

∑

k≥0

wk+1

k!
ξk =

∑

k≥0

(−1)kξk.

This series can be extended to the analytic functionP : ξ ∈ C − {−1} 7→
1

1 + ξ
.

Hence, the right-hand side of [4], applied tŏw, gives:

1 +

∫ +∞

0

1

1 + ξ
e−ξ/z dξ. [8]

This is an analytic function in the complex half-plane wherethe real part ofz is pos-
itive. This function is the “sum” of the divergent series [7]. It is a solution of [6] and
can be computed numerically.

In summary, from the divergent series [7], the resummation could provide an ana-
lytic function which is a solution of the Euler equation.

In the following example, we consider a problem whose seriessolution is conver-
gent. We then show that, in this case, the resummation methodcan be understood as a
prolongation method.

Consider the initial value problem:














dw

dz
+ w2 = 0

w(0) = 1.

[9]



Numerical divergent series resummation 435

The formal series solution is:

w̆ =
∑

k≥0

(−1)kzk. [10]

which is convergent inside the unity disc. The Borel transform of [10] is

∑

k≥0

(−1)k+1

k!
ξk. [11]

We recognize that it is the Taylor expansion of the function

ξ 7→ −e−ξ. [12]

With this function, the right-hand side of equation [4] is

1 +

∫ +∞

0

e−ξe−ξ/z dξ =
1

1 + z
. [13]

This is the analytic solution of problem [9] inC − {−1}. This function prolongs the
series [10].

In the following subsection, the resummation procedure in the general case is sum-
marized.

2.2. Summary of the resummation procedure

Assume that the perturbation theory gives a formal series solution

s̆ =
∑

k≥1

skzk ∈ C[[z]] [14]

of a problem, whereC[[z]] is the space of the complex formal series inz. The resum-
mation procedure contains three steps:

1) the first operation is the formal Borel transformation:

s̆ =
∑

k≥1

skzk ∈ C[[z]] 7−→ B(s̆) =
∑

k≥0

sk+1

k!
ξk ∈ C[[ξ]];

[15]

the Borel transformB(s̆) has a non-zero convergence radius ifs̆ is a Gevrey series1,
i.e. if there exists two constantsC andA such that

∀k ≥ 1, |sk| < CAkk! ;

1. Only the order 1 is considered in this article.
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2) assume that̆s is a Gevrey series, the second operation is an extension ofB(s̆),
if possible, into an analytic function

P : ξ ∈ S(a) 7→ P (ξ) ∈ C [16]

in a (open) sectorS(a) containing a half-lineda linking the origin to the infinity in
the directiona;

3) the last operation is the Laplace transform in the directionda which permits to
go back to the original space:

P ∈ Ha 7→ LaP (z) =

∫

da

P (ξ)e−ξ/z dξ [17]

whereHa is the space of functions which are analytic in a vicinity of 0and which
can be extended into an analytic function having an exponential growth in a sectorSa

containing the directionda, i.e.

∃c ∈ R, |P (ξ)| ≤ O(ecξ) ∀ξ ∈ Sa. [18]

In the previouos examples,a = 0 andd0 is the positive real half-axis.

The key idea of the Borel-Laplace resummation method is thatit is easier to extend
a convergent series (here, the Borel transform) outside hisconvergence domain than
to extend a divergent series (the original series) in a non-empty domain.

To sum up, a formal series̆s =
∑

k≥0

skzk is Borel-summablein a directiona if

B(s̆ − s0) ∈ Ha. Its Borel sum is the function

s0 + La

[

B(s̆ − s0)
]

. [19]

The Borel sum [19] is analytic in the Borel disc whose one diameter is[0, 1

c eia]
(see Figure 1). It is asymptotic to the original series in thefollowing sens: a formal

seriess̆ =
∑

i≥0

skzk is theGevrey asymptotic expansionof a functions in a sectorS

(at the origin) if, for all compact sub-sectorT of S, there esists two real constantsC
andA such that

∣

∣

∣

∣

∣

∣

s(z) −

k−1
∑

j=0

sjz
j

∣

∣

∣

∣

∣

∣

< CAk(k!)|z|k, [20]

for all k ∈ N and allz ∈ T .
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Figure 1. Borel disc in the directiona

The Gevrey expansion is a generalization of the Taylor expansion for divergent
series. For complementary results on the existence and uniqueness of the Gevrey
expansion one can refer to , Benderet al. (1978), Malgrangeet al. (1992), Loday-
Richaud (1991), Costin (1998), Fruchardet al. (1999).

In the following section, an algorithm for the effective numerical computation of
the Borel sum is presented.

3. Numerical algorithm

Consider the following problem:

E(s(z), z) = 0

which has a formal series solution̆s, E being a differential operator. A numerical
perturbation method such as ANM permits, by identification,to find thel first terms
of the series̆s and leads to a truncated series:

s̆l(z) =

l
∑

k=0

skzk [21]

which is an approximation of the solution aroundz = 0. The orderl of [21], on which
depends the accuracy of the method, is arbitrary.

The three operations of the resummation methods are translated into a numerical
algorithm as follows.

1) The first operation, the Borel transformation, is a purelyalgebraic operation and
introduces no particular problem. It gives the following Borel transform of(s̆l − s0):

B(s̆l − s0)(ξ) =

l−1
∑

k=0

sk+1

k!
ξk. [22]
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Table 1. The numerical algorithm

s̆l =

l
∑

k=0

skzk BLa(s̆l)(z) = s0 +

∫

da

P (ξ)e−ξ/z dξ

Borel











y

x











Laplace(La)

B(s̆l − s0) =

l−1
∑

k=0

sk+1

k!
ξk −−−−−−−→

Padé P (ξ) =
A0 + A1ξ + · · · + AN1

ξN1

1 + B1ξ + · · · + BN2
ξN2

2) The second operation consists in extending [22] into a function which is analytic
in a direction to the infinity. It is assumed that this extension is possible. This can be
performed using the usual Padé approximant procedure (Bender et al., 1978; Suetin,
2002). It gives a rational approximation of [22]:

P (ξ) =
A0 + A1ξ + · · · + An1

ξn1

1 + B1ξ + · · · + Bn2
ξn2

[23]

wheren1 +n2 = l andAi andBi are the real numbers such that the Taylor expansion
of P at the orderl is the truncated series [22]. In opposition to the original series [21],
the Padé approximant procedure is efficient on [22] because this series is convergent.

3) The last operation is the application the Laplace transform LaP of [23] in a
direction whereP has no pole. One property of the Padé approximants [23] is that
it has an exponential growth at the infinity, and consequently, the Laplace transform
exists. To calculate the value of the Borel sum

BLa(s̆l) = s0 + LaP

at any pointz, a Gauss-Laguerre quadrature method (Guilpin, 1999; Kzaz,1999) is
used.

Table 1 summarizes the main operations of the resummation procedure. This algo-
rithm was integrated into a perturbation-method-based Fortran code and tested in the
next section.
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Figure 2. Solutions with and without resummation

4. Numerical tests

Our long-term aim is the resolution of the Navier-Stokes equations. However, in
this exploration phase, we only consider some model problems. The first example is
Equation [9]. The exact solution is

1

1 + z
.

Equation [9] is not an example on which the maximum profit of the resummation can
be made because it does not present an irregularity at the origin z = 0 but it has a
quadratic non-linearity like the Navier-Stokes equations.

4.1. Tests on Equation [9]

In a first test, the solution given by the perturbation methodalone is compared to
the solution given by the association of the perturbation method and the resummation
method. The series solution is computed up to the 8-th order (l = 8). The direction of
the Laplace transformation is the real positive axis and sixGauss points are used for
the Gauss-Laguerre integration.

The result of this first test is presented on Figure 2. It can beobserved on it that the
series solution provided by the perturbation method is no longer a good approximation
from aboutz = 0.7. When the perturbation method is combined to the resummation,
the computed solution remains very close to the exact solution at least untilz = 2.5.

The first conclusion is that the above presented algorithm isoperational. Note
that no optimization operation such as convergence acceleration nor an optimization
of the quadrature was performed in the algorithm. The secondconclusion is that,
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as expected, the resummation method brings a very significant improvement to the
perturbation method. In this case, the range of validity is multiplied by more than 3.5.

Theoretically, the resummation method should lead to the exact solution until the
infinity (Subsection 2.1) but since the initial series was truncated and no optimization
was done, numerical effects become non-negligible for large values ofz.

The next test is done on the same problem [9] but this time, a continuation proce-
dure is introduced in order to reach high values ofz.

Let Res be the residue:

Res(z) =
dw

dz
(z) + w2(z).

For the comparison, two calculations are done. In the first one, the perturbation
method is combined to the continuation procedure (PERT+CONT) and in the second,
the resummation procedure is added (PERT+RESUM+CONT). More precisely, the al-
gorithm with resummation can be described as follows.

a. (PERT) The truncated series

w̆l =

l
∑

k=0

wkzk

is computed using the perturbation method withw0 = w(0) = 1. This provides an
analytical approximation of the exact solution as long as the following relation holds:

‖Res(z)‖

‖w̆l(z)‖
< ε [24]

whereε is a small parameter and‖•‖ is the usual Euclidian norm. Let̄z be the last
computed values ofz for which the above relation holds.

b. (RESUM) Next, the Borel sumBL0(w̆
l) is computed. This provides an analytical

approximation of the exact solution forz ∈ [z̄, z0] wherez0 is the last value ofz for
which the following relation holds:

‖Res(z)‖

‖BL0(w̆l)(z)‖
< ε. [25]

c. (CONT) Whenz0 is reached, a continuation procedure is performed, that is,we
run the algorithm again with, in stepa., w0 = w(z0).

In PERT+CONT algorithm, stepb. is jumped andz0 = z̄. The computation is carried
out up toz = 10, with l = 8 andε = 10−2.
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Figure 3. Approximated solutions with continuation; a) without resummation
(PERT+CONT), b) with resummation (PERT+RESUM+CONT)

Figure 3 shows the approximate solutions. Visually, the exact solution cannot be
distinguished from the computed solutions and is not presented. Left is the approxi-
mate solution without the resummation procedure. The bold points (•) represent the
points where a continuation procedure is needed (the abscissa of these points corre-
spond to thez0’s). Right is the approximate solution with the resummationproce-
dure. The dashes correspond to the part of the solution obtained in phaseb. of the
algorithm. It can be observed that the resummation procedure prolongs well the solu-
tion provided by the perturbation method such that much lesscontinuation steps are
needed. Indeed, only two continuation points are required to reachz = 10 when the
resummation method is applied, against eight when it is not.

Such a result should still have much more interest in the resolution of high order
problems with ANM where the computation of the terms of the formal series (which
needs an inversion of a matrix) has an important cost compared to the resummation
procedure.

The above results corresponds to a truncation of the series at l = 8. Other calcula-
tions was done withl = 15. Table 2 compares the number of continuation points with
l = 8 andl = 15. A very significant diminution of the number of continuationpoints
can be observed when the resummation procedure is used.

These tests on Equation [9] permitted to check that the proposed algorithm is func-
tional and brings a good improvement to the perturbation method. In the following
tests, we consider a reduced model of the Navier-Stokes equations for the simulation
of realistic fluid flows.
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Table 2. Number of continuation points for Equation [9]

l=8 l=15

PERT+CONT 6 points 5 points
PERT+RESUM+CONT 2 points 1 points

4.2. Reduced model of the Navier-Stokes equations

The Navier-Stokes equations (see appendix, Equation [29])are reduced using the
Proper Orthogonal Decomposition (POD) method which consists in decomposing the
velocity fieldu in a particular basis(Φi)i=1,...,∞, composed of divergent free func-
tions, and which maximizes the energy (see Lumley (1967), Sirovich (1987), Aubry
et al. (1988)):

u(t, x) =
+∞
∑

i=1

̺i(t) Φi(x). [26]

t andx are respectively the time and space variables. The components ̺i of u will
be called themodes. The basis functions are generally determined numericallyor
experimentally and depend on the configuration of the flow.

In practice, the decomposition [26] is truncated at an orderm. This leads to the
following reduced model of the Navier-Stokes equations:

d̺i

dt
+

m
∑

j,l=1

Qi
jl ̺j̺l +

m
∑

j=1

Li
j ̺j = F i(t), i = 1, 2, . . .m. [27]

whereQ, L andF are known tensors depending on the basis functions. A property
of POD is that very few modes are needed to capture almost the whole energy of the
flow.

In our case, the basis functions were computed numerically.They are not presented
here but can be found in (Allery, 2002).

Equations [27] are solved using the perturbation-resummation algorithm
(PERT+RESUM+CONT) described above. For comparison, another calculation will
be done using the usual adaptive 5-order Runge-Kutta method. The Runge-Kutta step
is chosen such that the estimated valueE of the truncation error verifies the following
relation:

E

‖̺(t)‖
≤ ε [28]

where̺ = (̺i)i andε is the same error parameter used in [24] and [25]. Notice that
the Runge-Kutta method is of order 5 but the order of the perturbation-resummation
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Figure 4. Geometry of the driven cavity

method, which is defined byl, can be chosen arbitrarily. Moreover, while the Runge-
Kutta method gives a point by point solution, the perturbation-resummation method
provides an analytic solution.

The first test is carried out on an air flow inside a two-dimensional driven cav-
ity, represented on Figure 4. The lid velocityUref is horizontal, withUref =
(0.15m/s, 0m/s).

l is set to 10. The Laplace direction is the positive real axis (it is then assumed
that the Padé approximants have no pole on this axis). Four orten modes (m = 4 or
10) are computed. The first two modes fort from 0 to 20 seconds are presented on
Figure 5. A projection on the basis(Φi)i of a numerical solution of the Navier-Stokes
equations is used as a reference solution.

It can be observed on Figure 5 that the algorithmPERT+CONT+RESUM gives ap-
proximately the same numerical results as the Runge-Kutta method at the points where
a Runge-Kutta solution is available. The difference with the reference solution may
be essentially due to the numerical computation of the reference solution but the POD
modelisation may also introduce some errors (truncation ofthe series...). Stabilization
procedures exist (but not used here) to attenuate the POD modeling errors. The dif-
ference with the reference solution is then independent of the performance of our two
algorithms.

Table 3 compares the number of steps needed to reach 20, 50 and100 seconds for
m = 4 modes (l = 10). It shows that the perturbation-resummation method requires
much less steps than the Runge-Kutta method, about 35% less to reach 100 seconds.
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Table 3. Number of continuation steps for the driven cavity, withm = 4

20 seconds 50 seconds 100 seconds

Runge-Kutta 18 steps 41 steps 80 steps
Perturbation-resummation 9 steps 24 steps 52 steps

The gain of the perturbation-resummation method increaseswith the number of
modes. Indeed, as observed on Table 4 withm = 10 modes, the perturbation-
resummation method requires about 42% less continuation steps than the Runge-Kutta
method to reach 100 seconds.

Table 4. Number of continuation steps for the driven cavity, withm = 10

20 seconds 50 seconds 100 seconds

Runge-Kutta 29 steps 81 steps 175 steps
Perturbation-resummation 16 steps 44 steps 102 steps
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Since the reconstituted flows obtained from the perturbation-resummation method
and from the Runge-Kutta method are qualitatively the same,they are not presented
in this article but can be found in (Allery, 2002).

From the above results, it can be concluded that the perturbation-resummation
method provides an approximate solution as precise as the one given by the Runge-
Kutta method, but with less steps. In addition, the approximate solution is analytic.
These results also show that the perturbation-resummationmethod can be used for
the simulation of realistic problems. Finally, it can be expected that the advantage of
the method will be more important while simulating a high order problem such as the
discretized Navier-Stokes equations.

The last test is carried out on the flow inside the 2D ventilated room presented on
Figure 6. This geometry is used in (Alleryet al., 2005) for the study of pollution in
building field. For this geometry, the inlet and outlet heights are 0.31m. The inlet is
at 0.07m from the ceiling and the outlet at 0.07m above the floor. The inlet velocity is
0.443m/s.

A first simulation is done until the flow is stable. Then, a particle cloud is in-
jected. The details of the simulation can be found in (Alleryet al., 2005) and will not
be reproduced here. Our interest is the comparison of the perturbation-resummation
method with the Runge-Kutta method.

The flow is solved with POD, withm = 4 modes. Table 5 presents the number
of steps needed by the two methods 20, 30 and 100 seconds afterthe injection of the
particles. Also for this flow, the perturbation-resummation method requires less steps
than the Runge-Kutta method, about 44% less to reach 100 seconds. The reconstituted
flow can be found in (Alleryet al., 2005; Razafindralandy, 2005).
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Table 5. Number of continuation steps for the ventilated room

20 seconds 30 seconds 100 seconds

Runge-Kutta 93 steps 137 steps 397 steps
Perturbation-resummation 55 steps 78 steps 224 steps

5. Conclusion

It was shown that the Borel-Laplace resummation method can be used in a nu-
merical algorithm. Applied to a theoretical problem, it hasproved to bring a really
interesting improvement as a prolongation technique to theperturbation method. A
prolongation may considerably reduce the computational cost when simulating a high
dimensional problem such as the discretized Navier-Stokesequations where the com-
putation of the terms of the series requires an important computation time. It was also
seen from tests on reduced but realistic problems that the combination of the perturba-
tion method to the resummation technique presents interesting advantages compared
to the usual Runge-Kutta method. The perturbation-resummation technique requires
less continuation steps. So, it can be hoped that, once used on high dimensional prob-
lems, it will require less matrix inversions.

In this article, no comparison on the CPU has been presented.The reason is that
the Runge-Kutta method is known for a long time and has been well optimized. It is
not the case of the resummation technique which was used numerically for the first
time. Optimizations could be brought for example in the computation of the (vector)
Padé approximants or the Laplace transform (the direction of integration, the effective
calculation of the integral, ...). In addition, all the operations in the resummation
technique are formal. It may then be profitable to use a symbolic software such as
Maple for the resummation step instead of a purely numeric program. This should
significantly reduce the computation errors.
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7. Appendix: Time series expansion for the Navier-Stokes equations

In this appendix, an ANM algorithm obtained from a time series expansion for the
discretized Navier-Stokes equations is presented. Next, astudy on the convergence
radius of the series is carried out.

7.1. Presentation of the algorithm

Consider a Newtonial incompressible fluid with, for simplicity, a density 1. The
motion of this fluid is governed by the Navier-Stokes equations (in a dimensionless
form):















∂u

∂t
+ div(u ⊗ u) + ∇p −

1

Re
∇2u = 0

divu = 0

[29]

with the initial condition

u(t = 0, x) = u0(x)



Numerical divergent series resummation 449

wheret is the time variable,x the space variable,u the velocity field,p the pres-
sure andRe the Reynolds number. After a suitable discretization, these equations are
transformed into a matrix equation:

M
∂U

∂t
+ Q(U, U) + LU = 0, [30]

with

U(t = 0) = U0

whereU (respectivelyU0) are the vectors containing the nodal values ofu andp (resp.
u0), M the mass matrix,L = (Li

j)i,j=1,...,N , Q a vectorial quadratic operator such
that

Qi(V, U) =

N
∑

j=1

N
∑

l=1

Qi
jlV

jU l, [31]

Q = (Qi
j,l)i,j,l=1,...,N being a three-order tensor andN is the number of grid points.

The unknown vectorU is decomposed into a formal time series as follows:

U(t) = U0 + U1t + U2t
2 + · · · + Uktk + · · · [32]

Injecting the decomposition [32] in the matrix equation [30] and identifying according
to the powers oft, one obtains the following cascade of linear equations:























































Order 0 : MU1 + Q(U0, U0) + LU0 = 0

Order 1 : 2MU2 + Q(U0, U1) + Q(U1, U0) + LU1 = 0
...

Orderk : (k + 1)MUk+1 +

k
∑

r=0

Q(Ur, Uk−r) + LUk = 0

...

[33]

This cascade of problems has the property that the equationshave the same matrix to
be inverted, namelyM . The resolution of these equations provides an approximate
solution in the domain of validity of the series [32]. But compared to other algorithms
of the ANM family, the time-series decomposition presents one more very interesting
advantage: the continuation procedure does not require theinversion of any other
matrix becauseM does not depend on the continuation points.M is then inverted
only once during the computation; that presents an important save of computational
time. Only the second members change.

The performance of an algorithm built from this time series decomposition lies
however on the convergence radius of the series [32]. In whatfollows, a analysis of
the convergence radius is done.
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7.2. Estimation of the radius of convergence

For simplification, Equation [30] is rewritten in the following form:

dU

dt
+ Q(U, U) + LU = 0. [34]

In a vectorial form, the unknown is

U = (U1, U2, . . . , UN )T .

The time series decomposition [32] gives, for each component U i, i = 1, . . . , N :

U i(t) = U i
0 + U i

1t + U i
2t

2 + · · · + U i
ktk + · · · . [35]

The initial condition is

U0 = (U1
0 , U2

0 , . . . , UN
0 )T .

We denote

Q = max
i,j,l=1,...,N

|Qi
jl|, L = max

i,j=1,...,N
|Li

j |, [36]

U0 = max
i=1,...,N

|U i
0| [37]

the respective norms ofQ, L andU0.

The 0-th order of [33] gives:

−U i
1 =

N
∑

j=1

N
∑

l=1

Qi
j l U

j
0 U l

0 +

N
∑

j=1

Li
j aj

0, [38]

|U i
1| < Q

N
∑

j=1

N
∑

l=1

U0

2 + L

N
∑

j=1

U0 [39]

|U i
1| < QN2U0

2 + LNU0. [40]

If

E = (QN2α2 + LNα) [41]

whereα = max(U0, 1) then

|U i
1| < E, i = 1, . . . , N. [42]

We will prove by recurrence that|U i
k| < Ek for all i = 1, ..., N andk ∈ N.



Numerical divergent series resummation 451

The property holds whenk = 1. It is assumed true for alli = 1, ..., N andk ≤ k0,
with k0 ∈ N. Hence, at the orderk0 of [33], one has:

(k0 + 1)|U i
k0+1

| =

∣

∣

∣

∣

∣

∣

N
∑

j=1

N
∑

l=1

Qi
j l

(

k0
∑

r=0

U j
r U l

k0−r

)

+
N
∑

j=1

Li
j U j

k0

∣

∣

∣

∣

∣

∣

(k0 + 1)|U i
k0+1

| < Q

N
∑

j=1

N
∑

l=1

k0
∑

r=0

ErEk0−r + L

N
∑

j=1

Ek0

< QN2(k0 + 1)Ek0 + LNEk0 .

Hence,

|U i
k0+1| <

(

QN2 + LN
1

l + 1

)

Ek0 [43]

and then, for alli = 1, . . . , N ,

|U i
k0+1| < Ek0+1. [44]

Consequently, the property is also true fork = k0 + 1. This proves that

|U i
k| < Ek, ∀i = 1, . . . , N, k ∈ N. [45]

In summary, the quantitytc = 1/E whereE is defined by relation [41] is an es-
timation of the convergence radius of the series [32]. It decreases with1/N2 (or in
1/N ). This convergence radius may then be very small for a high dimensional prob-
lem. For an infinite-dimensional (i.e. continuous) problem, the convergence radius
may vanish (heat equation).



 




