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1. Introduction

Control is a natural desire once the simulation is completed. The applications of
optimal shape design (OSD) in industry are uncountable and increasingly involve mul-
tidisciplinary physics. Different physics to account for makes that optimum design is
not a once and for all solution tool and involves compromiseswith the necessity of
doingmulti-point constrained design. Not talking about noise in data which is a major
issue enforcing needs for robust optimization. This multi-criteria-multi-point situation
requires cheap robust global optimization tools with, as much as possible, sub-solution
approaches to break the complexity of the problem.

In multi-criteria optimization sensitivity analysis is important to discriminate bet-
ween Pareto points and this even if a gradient free approach is used. Indeed, the know-
ledge of sensitivity permits to qualify various points of a Pareto front from the point of
view of robustness. Indeed, two points on a Pareto front can be compared if one consi-
ders the sensitivity of the functional with respect to the independent variables which
are not control parameter. The robust optimum is the one withlowest sensitivity.

Also, sensitivity evaluation is important because often insimulations information
on the uncertainties on the results is more important than the results themselves. For
instance, it is essential to be able to identify dominant independent variables in a sys-
tem. As these will need more accurate monitoring and for which precise measurements
should be provided.

Sensitivity analysis is also useful to qualify the impact onthe results of a given
modelling, or evolution of the modelling, and also the way a model is discretized.

These concepts are central in Validation and Verification (V&V) issues which refer
to all of the activities that are aimed at making sure that a software will function as
required. Indeed, it is important to include robustness issues into the specifications
using sensitivity analysis and see that a simulation shouldbe therefore seen as multi-
criteria minimization.

Indeed, consider the following simulation loop linking a set of independent to de-
pendent variables and eventually leading to the calculation of a functionalJ(x, ϕ, h)
function of independent variablesx, for instance, a geometric parameterization,ϕ the
physical variables defining the flow andh the solution procedure parameters (discre-
tization, accuracy, convergence rates...)

(x, ϕ, h) → q(x, h) → U(ϕ, q(x), h) → J(x, ϕ, h, q(x, h), U(ϕ, q(x, h))) [1]

Flow calculations enter this class whereq denotes geometric quantities andU field
flow variables solution of the state equationF (U(q(x, h), ϕ, h) = 0. For a geometrical
set of parameters (x∗) and flow conditions (ϕ∗), the solution of the state equation can
be seen as minimization of

J1(x
∗, ϕ∗, h) = ‖F (U(q(x∗, h), ϕ∗, h)‖

Hence, we look for the best solution procedure which minimizes the residual:h =
Argminh∈HJ1(x

∗, ϕ∗, h). The admissible spaceH includes the constraint on the so-
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lution procedure (e.g. maximum discretization one can afford, accuracy in the solution
of nonlinear and linear systems...).

Robustness issues can now be introduced through the controlof the sensitivity with
respect to the other independent variables around the functioning point(x∗, ϕ∗):

J2(x
∗, ϕ∗, h) = ‖∇x,ϕJ1(x

∗, ϕ∗, h)‖

The simplest way to proceed is by penalizing these sensitivities and looking for the
solution ofh = Argminh∈HJ1(x

∗, ϕ∗, h) + J2(x
∗, ϕ∗, h). This is because no cal-

culation can be reliable if it is too sensitive to small perturbations in data. This also
shows that the solution procedure needs probably changes once including robustness
issues, except if the optimum of the constrained and unconstrained problems are the
same, which is quite unlikely. Despite the cost of this approach, one should howe-
ver pay attention and at leasta posteriorievaluate the sensitivity of the solution to
perturbation of independent variables (Suet al., 1997).

2. Global optimization and free surfaces

Discrete optimal time control problem and OSD have similar structure. Thus many
of the tools of control theory and of the Calculus of Variations have been extended to
PDEs and we shall use them to solve OSD problems numerically.

Consider the minimization of a functionalJ(S), S ∈ Oad, S is the shape parame-
terization and belongs to a admissible spaceOad (we show some examples of shape
parameter in the next section).

Most minimization algorithms can be seen as discretizations of (Ivorraet al., 2006;
Mohammadiet al., 2003):

{

M(S(ζ))Sζ = −d(S(ζ))
S(ζ = 0) = S0

[2]

M is aimed to be positive definite andM−1d is built to be an admissible direction.

Assume the infimumJm of J known and the problem admissible (i.e. the infimum
is reached inside the admissible domain:∃Sm ∈ Ωad, s.t.J(Sm) = Jm&J ′(Sm) =
0).

Global solution of [2] means, for instance, findingSm = S(1) verifying







M(S(ζ))Sζ = −d(S(ζ))
S(0) = S0

J(S(1)) = Jm

[3]

This is an over-determined boundary value problem. This over-determination tells us
why one should not solve global optimization problems with methods which are dis-
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crete form of Cauchy problems for first order differential systems. We propose to
consider global shape optimization solving the following boundary value problem:

{

ηSζζ +M(S(ζ))Sζ = −d(S(ζ)),
J(S(1)) = Jm, J ′(S(1)) = 0

[4]

We have dropped the initial condition onS which is misleading in the context of
global optimization. This can be solved using solution techniques for BVPs with free
surface. Indeed, an analogy can be given with the problem of finding the interface
between water and ice which is only implicitly known throughthe iso-value of zero
temperature.

In the sequeld will be based on approximation ofJ ′ andM will be a smoothing
operator for the CAD-free or level set parameterization (see section 3.2). There is a
global controllability result for this system ifJ is C2(Ωad, IR) and coercive,M = I
and d = J ′. System [4] is solved using the recursive semi-deterministic shooting
algorithm (Ivorraet al., 2006).

3. A model problem

Consider the academic problem of designing one boundaryS of a domainΩ with
required flow propertiesψd in a region of spaceD. ψd is defined outsideD to be used
as boundary condition too. We assume that the flow is potential and two dimensional.
With a stream function formulation this would be

min
S∈Sd

{j(S) :=

∫

D

|ψ − ψd|
2 : −∆ψ = 0, in Ω ψ|S = 0 ψ|C = ψd} [5]

whereC = Γ\S andΓ = ∂Ω.

It can be discretized by

min
Th

{jh :=

∫

D

|ψ−ψd|
2 :

∫

Ω

∇ψh∇wh+
1

ǫ

∫

C

(ψh−ψd)wh = 0 ∀wh ∈ Vh}

[6]

whereVh is the finite element space of piecewise linear continuous functions on
the triangulationTh of Ω ; h denotes the average edge length in the triangulation. If
wi denotes the function ofVh which is one at vertexqi and zero at all other vertices,
then, withΨj := ψh(qj),

ψh(x) = ψd(x) +
∑

i/∈Γ

Ψiw
i(x)
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Figure 1. Effect of the regularization operator on the level set function after few ite-
rations of a descent method for a drag reduction problem. Iso-lines show iso-χ(ψ).
Dislocations appear if regularity is not monitored. This ishowever useful if one looks
for topology changes

and, problem [6] is of the form

min
~q

ΨTB(~q)Ψ : A(~q)Ψ = F (~q) [7]

whereAij = (∇wi,∇wj), Bij = (wi, wj), andF is the discrete Laplacian ofψd. It
is clear that these depend on the position of all the vertices(stored here in the vector~q)
and not just of the vertices ofS. In the sequel, we will see how to break this complexity
with sub-solution methods.

3.1. Existence of solution

Many of optimal shape design problems do not have solutions.For example, if
ψd ∈ L2(Ω) but ψd /∈ H1(Ω), [5] does not have a solution becauseψ → ψd is
possible yetψ = ψd is impossible.

Existence can be studied in several ways and it is interesting to notice that each way
gives rise to a different numerical method. Below we consider three ways to parame-
terize the shape (direct shape parameterS, using mappingT and using characteristic
functionsχ).

Most existence results are obtained by considering minimizing sequencesSn,
(resp.Tn or χn) and, in the case of our academic example, showing thatψn → ψ
for someψ whenSn → S (resp.Tn → T or χn → χ), and that the PDE is satisfied
at the limit.
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3.2. Direct implicit or explicit shape parameterization

In shape optimization, different choices can be made for theparameter space fol-
lowing the variety of the shapes one would like to reach. If the topology of the target
shape is already known and if the available CAD parameter space is thought to be
enough rich, it should be considered as control parameter space during optimization.
On the other hand, one might use a different parameter space,larger or smaller, during
optimization having in mind that the final shape should be expressed in a CAD format
for being usable.

Using continuity results with respect to domain boundaries(Pironneau, 1984; Del-
four et al., 2001), the unknown is an implicit or explicit parametrization of the boun-
dary. One gives below an example of each parameterization. Although the set of ad-
missible boundaries is not easily endowed with a vector space structure, it is easy to
define boundary variations which have a Hilbertian structure. For instance, normal
variations byα(x), x ∈ S around a reference boundaryS of normal~n(x), would be

S(α) = {x+ α(x)~n(x) : x ∈ S}. [8]

By using regularity results with respect to the domain (Chenais, 1987) (see also
(Neittaanmaki, 1991) and (Delfouret al., 2001)) showed that in the class of allS
uniformly Lipschitz, problem [5] has a solution. However the solution may depend
upon the Lipschitz constant.

3.2.1. CAD-free shape parameterization

This is the simplest explicit shape parameterization: all the nodes of the surface
mesh over the shape are control parameters. One particularity of this parameterization
comes from the fact that, unlike in a CAD-based parameter space, regularity require-
ments have to be specified and handled by the user. Indeed, if the shape is described
using a CAD tool and if we use the same parameterization to specify the deformations,
the two entities belong to the same space in term of regularity.

SupposeΓ is a surface in a domainΩ ∈ R3 and suppose we want shape varia-
tionsδx ∈ C1(Γ). In the context of shape optimization, applying to aC1 shapeΓ a
gradient method does not necessarily produce aC1(Γ) variationδx. Actually, the va-
riation is rather inL2(Γ) and therefore we need to project the variations intoH5/2(Γ)
for instance. The smoothing can also be seen as a modificationof the metric on which
minimization is performed (Mohammadiet al., 2004; Mohammadiet al., 2001). Fi-
gure 3 shows the effect of regularization operators on the CAD-free parameterization
for a full aircraft shape optimization problem. One sees that beyond topology consi-
derations (the topology is unchanged in both parameterizations), one major issue in
CAD-based parameter spaces is that it fixes the regularity ofthe optimal shape at
the beginning of the optimization, while CAD-free parameterizations leave open the
question of final optimal regularity.
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Figure 2. Topology change with level sets with regularity control

3.2.2. Level sets

The level set method is an established technique to represent moving interfaces
((Osheret al., 1988; Dervieuxet al., 1979; Dervieuxet al., 1981)). Level set is an
implicit parameterization of the shape based on the signed distance functionψ to the
shape. The shape is known as the iso-0 contour ofψ. Equation [4] generalizes the
Hamilton-Jacobi type equation used for the motion of the level set parameter:

ψζ + V∇ψ = 0

with V = ∇J . n where the local normal to the iso-contours ofψ is defined by
n = ∇ψ/|∇ψ|. The variation ofψ are then given by

ψζ = −∇J |∇ψ|

We see that the particular choice ofη = 0,M(S(ζ)) = I andd = ∇J |∇ψ| gives the
classical equation used for the motion of the level set function.ψ known, we account
for the boundary conditions in the state equation using a relaxed normalized distance
functionχ(ψ), (0 ≤ χ(ψ) ≤ 1). One important issue here is that one needs to control
regularity as for the CAD-free parameterization (Mohammadi, 2007). Figures 4, 1
and 2 show examples of optimizations with level set parameterization and effects of
regularization operator.

3.2.3. Mapping and transformation

One may also map the unknown domainΩ from a fixed domainO and consider
that the unknown is the mappingT : O → Ω. Denote byT ′ its Jacobian matrix, let
ψ̂d beψd ◦T with ψd extending the given boundary conditions and the requirement in
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Figure 3. Effect of the regularization operator on the CAD-free parameterization for
a full aircraft shape optimization problem. Upper line: surface mesh used as para-
meterization and iso-Mach contours for an inviscid calculation. Successive levels of
regularization permits to look for the most suitable searchdirection and final regula-
rity for the shape
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Figure 4. Finding the right shape to enter the atmosphere using a levelset parame-
terization. The final shape does not have the same regularityat leading and trailing
edges than the initial guess. Pictures show iso-χ(ψ) and iso-density contours

D (recall thatψd = 0 onS and is constant on the upper wall of the nozzle). Then we
may solve

min
T∈Td

∫

D̂

|ψ̂ − ψ̂d|
2 : ∇ · [A∇ψ̂] = 0 in O [9]

together withψ̂|∂Ô = ψ̂d andA = T ′−1T
T ′−1det(T ′).

As for [5] it is also possible to work with a local (tangent) variation tV (x) and set

Ω(tV ) = {x+ tV (x) : x ∈ Ω} t small and constant [10]

(Murat et al., 1976) working with [9] showed that in the class ofT ∈W 1,∞ uni-
formly, the solution exists.

3.2.4. Topological optimization

This last approach, suggested by (Tartar, 1974) has led to what is referred now
as topological optimization. It extends the operators by zero belowS and take the
characteristic function ofΩ, χ, for unknown

min
χ∈Xd

{

∫

D

|ψ−ψd|
2 : −∇ · [χ∇ψ] = 0, ψ(1− χ) = 0, ψ|∂Ω = ψd} [11]

It may be difficult to work with the functionχ, then, following (Allaire
et al., 2002), the functionχ can be defined through a smooth functionη by
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χ(x) =bool(η(x) > 0) and in the algorithm we can work with a smoothη as in
the level-set methods.

[11] generally leads to weaker results because ifχn → χ, χ may not be a charac-
teristic function ; this leads to arelaxed problem, namely [11] with

Xd = {χ : 0 ≤ χ(x) ≤ 1} instead ofX̃d = {χ : χ(x) = 0 or 1} [12]

These relaxed problems usually have a solution and it is often possible to show that if
the solution is not inX̃d then it is the limit ofcomposite domainsmade of mixtures of
smaller and smaller subdomains and holes (Tartar, 1997).

In 2D and for Dirichlet problems like [5] there is a very elegant result due to Sverak
(Sverak, 1993) which shows that either there is no solution because the minimizing se-
quences converge to a composite domain or there is a regular solution ; more precisely:
if a maximum number of connected components for the complement of Ω is imposed
as an inequality constraint for the set of admissible domains then the solution exists.

This approach is powerful to answertopologicalquestions which are more embar-
rassing for the formulations [5] and [9]. One difficulty withthis approach is regularity
control. In practice, one likes to couple topology parameterization and level sets to
have both implicit parameterization and variable topologyeven though, as we saw in
Figures 1 and 2, the level set approach has the capacity of handling topology changes
if one reduces the required regularity to create dislocation and then recover the regu-
larity once a new topology is found for the shape.

3.2.5. Regularized formulations

One may insure well-posednessregularizingthe problem by changing the criterion
and adding a cost to the control. This can be done with any of the parameterization
above (S, T or χ). Problem [5] becomes

J(Ω) =

∫

D

(ψ − ψd)
2 + ǫ

∫

S

dx

insures existence. More generally, one may consider working with

J(Ω) =

∫

D

(ψ − ψd)
2 + ǫ‖S‖2

but the choice of norm is delicate. In general for second order problems anything
related to the second derivatives (i.e. radius of curvature) would be likely to work, but
it is not known if weaker norms would work also.

4. Sensitivity analysis

We gave in introduction several reasons why sensitivity evaluation is important in
minimization. Differentiability can be introduced for each of the formulations above.
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For [5] it is done by using normal variations around a reference shape (see [8]. If
Gateaux differentiability inL2(S) can be established, there existsχ ∈ L2(S) with

j(S(tα)) − j(S) = t

∫

S

χα+ o(t)

Fréchet differentiability will hold if in additiono(t) is o(t|α|0), where| · |0 denotes
the norm ofL2(S). Thenχ is theL2-gradient, denoted by gradαj(S) and we have:

j(S(α)) − j(S) =

∫

S

gradαj(S)αds+ o(|α|0)

and so gradαj(S) must be zero at the solution of [5] and̄α = −gradαj(S) is a direc-
tion of descent in the sense that ifS is not the solution,j(S(ρᾱ)) < j(S) for a small
enough positive constantρ.

Following (Cea, 1986) and (Delfouret al., 2001) one may consider a velocity of
deformationV (x) and define a time dependent shape

Ω(t) = {x+ V (x)t : x ∈ Ω}

and computedJ
dt , known as thematerial derivativeof J .

The concept of topological derivative (Sokolowskiet al., 1991; Garreauet al.,
2001) permits to introduce naturally changes in topology. One digs a small circular
hole of centerx and radiusǫ in the domain and study the limit of1ǫm (ψǫ − ψ), for the
right powerm, whereψǫ is the solution of the PDE with the hole andψ the solution
without the whole.

There are serious difficulties of analysis with the Calculusof Variations when
the solution of the partial differential equation has a discontinuity (Godlewskiet
al., 1998). One shows that the adjoint statev has no shock because its time boun-
dary condition is continuous and the characteristics integrated backward never cross
the shock. This fact was observed by Giles (Gileset al., 2001) in the more general
context of the Euler equations for perfect gas. Hence, one shows that as long as the
functional does not involve the position of the shock or its amplitude explicitly a blind
calculus of variation is valid (Bardoset al., 2002) and that there is no need to include
in a calculus of sensitivity the variations of the shock position explicitly.

Algorithmic differentiation

Often the equivalent continuous equation behind a computercode is unknown or
the discretization is inconsistent. One should therefore consider the discretized form
(or more simply the computer program) of the equation. Automatic Differentiation
(AD) is a natural way to access the derivative of discretizedfunctions. We recall
shortly the basis of the theory of AD



24 REMN− 17/2008. Shape design in aerodynamics

Let, f be a composed function given by:

x ∈ Rp → y = h(x) ∈ Rn → z = g(y) ∈ Rn → u = f(z) ∈ Rq [13]

Two differentiation procedures are available in automaticdifferentiation called the
forward and the reverse modes. The forward mode consists of computing the function
and its derivative at the same time using chain rule. On our example this gives:

u′ = f ′(z)g′(y)h′(x), [14]

wheref ′ ∈ Rq×n, g′ ∈ Rn×n, h′ ∈ Rn×p. We observe that in [14] we need to
introduce an intermediate matrixM = g′(y)h′(x) ∈ Rp×n to store the intermediate
result before makingu′ = f ′(z)M .

This can be seen as the propagation of the information on the function and its
derivatives through the program. This is therefore a natural way to analyze error pro-
pagation in a solver.

The backward or reverse mode is analogous to the classical adjoint method used
in optimization problems. The most important advantage of this approach over the
previous one is a complexity independent of the number of control parameters.

After transposition of [14] we have:

u′T = h′T (x)g′T (y)f ′T (z) [15]

We can see that the storage now isM = g′T (y)f ′T (z) ∈ Rn×q. Hence, following the
dimensions of the different spaces (i.e. p andq), we should use formula [14] or [15]
to optimize the required memory. For instance, for optimization applications where
p is the number of control variables andq = 1 with f being a cost function, the
differentiation after transposition is more suitable.

In a computer program, in the direct mode, the Jacobian is produced by differen-
tiating the program (considered as composed function) lineby line, by a computer
program, producing a new code for the gradient. Except if an object oriented language
is used in which case this is done at no extra programming effort overloading all the
operators in the native libraries (Mohammadiet al., 2001; Danailaet al., 2004). The re-
verse mode corresponds to writing the direct code in the reverse order (inverting loops
as well) and differentiating each liney = y+ f(x) using the rule:px = px + f ′(x)py

initializing all parameterspx to zero andpy to one (this corresponds to the last de-
pendent variable in a program) (Griewank, 2001; Gilbertet al., 1991; Mohammadiet
al., 2001).

One should also remark that in [13] the order of calculation of the variables is
x, y, z, u while in the reverse mode one needs variables available in the reverse or-
der u, z, y, x (see [15]). This is called intermediate stages storage and is one major
limitation of reverse or adjoint calculations (even in the continuous level). This is in
particular limiting with PDE based solvers using nested loops (e.g. a time iteration
loop and inside loops over nodes and elements) even though check-pointing technic
brings some relief (Griewank, 1995) giving maximal bounds for the combination of
storage versus redundant calculations.
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5. Numerical examples

In (Mohammadiet al., 2001) we showed several examples of flow control using
incomplete sensitivities with the control varying in time and space and expressed for
instance through injection/suction or piezo-electric devices. Here, we consider an ac-
tive control problem where the control does not depend on time despite the state and
the cost functional are time dependent. This is the case in shape optimization for uns-
teady flows. Building sub-optimal solution is more difficultin this situation.

5.1. A model problem for noise control

Consider the following minimization problem:

min
x∈Oad

J(x(y), y, t, u(x(y), y, t)), [16]

The state equation is a modified Burgers equation

ut + 0.5(u2)y − νuyy = (µy + g(y, t) + x(y))u, on D =] − 1, 1[ [17]

u(t,−1) = ul, u(t, 1) = ur, u(t = 0, y) = u0(y)

Here the control is a functionx(y) in space. Our aim is to reduce state fluctuations
in time. Of course, the unsteadiness can be completely removed only if x = g(y, t),
but then the control would depend on time. We consider the following configuration:
µ = 0.3, ν = 10−4, g(y, t) = 0.5 sin(10πt) cos(6πt)y. The equation is discretized on
an uniform mesh with 101 nodes with a classical explicit RK3 scheme in time and a
consistent numerical viscosity is used for stabilization.The admissible control space
is Oad = [−1, 1]101.

We consider the minimization of the following functional

J(x(y)) =

∫

t>0

j(t)dt, j(t) =

∫

D

(u2

t + u2

tt)dy. [18]

Figure 5 shows that a control obtained by minimizing (18) is efficient reducing the
fluctuations over all modes. Here the gradient is computed using the reverse mode of
AD. Approximation of gradient is based on partial reverse integration (typically over
1/20 of the total time).

5.2. Shape optimization for noise reduction

We consider now the problem of shape optimization for unsteady flows. The for-
mulation of the problem is as in (16) but the state is now solution of the Navier-Stokes
equations. The controlS is the CAD-Free parameterization of the shape with regula-
rity control.
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Figure 5. Model problem for noise reduction. Evolution ofj(t) (upper) and its spec-
tral representation on a given time window for the uncontrolled and controlled simu-
lations of [17] minimizing [18]

For compact sources, the radiated noise is linked to lift anddrag time fluctuations
(Marsdenet al., 2001). The aim is therefore to remove these fluctuations. Weconsider

J(x) = (max(Cl(t)) − min(Cl(t))) + (max(Cd(t)) − min(Cd(t))) [19]

for t ∈ [0, T ] whereT is a given observation time window.

We briefly recall the incomplete sensitivity approach used to define the search
direction. Consider a general simulation loop linking the shape parameterS to a func-
tionalJ:

J(S) : S → q(S) → U(q(S)) → J(S, q(S), U(q(S))), [20]
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whereq represents all geometrical entities andU all state related variables. The gra-
dient ofJ with respect toS is:

J ′ = J,S + J,qq,S + J,UU,S [21]

The major part of the cost of this evaluation is due to∂U/∂S in the last term.

Consider the following context for shape optimization:

– 1. both the cost function and control space are defined on theshape (or on some
part of it),

– 2.J is of the form

J(S) =

∫

Shape
f(S)g(U)ds,

– 3. the local curvature of the shape is not too large (this needs to be quantified,
for a wing typically we consider regions away from leading and trailing edges).

If these requirements hold, we can use an incomplete evaluation of this gradient,
neglecting the sensitivity with respect to the state in (21). In the context of a time de-
pendent phenomenon, incomplete sensitivity means also an instantaneous incomplete
gradient.

The functional (19) is therefore not suitable for incomplete sensitivity evaluation
as it involves time dependency. The functional we consider for incomplete sensitivity
evaluation is given by

J(x) = |Cl(pt)| + |Cd(pt)| + |Cd(ptt)| + |Cl(ptt)| [22]

whereCl andCd are the pressure terms in aerodynamic lift and drag coefficients
evaluated for the first and second time derivatives of the pressure.

Figure 6 shows iso-velocity contours around the initial andoptimized shapes, the
evolution of the lift and drag coefficients in time and the initial and final shapes obtai-
ned.

6. Conclusions

Optimal shape design is still a difficult and computer intensive task. Even if the
problem is well posed and the sensitivity are computed correctly, success is not gua-
ranteed. One should pay attention to the computing complexity and use sub-optimal
approaches whenever possible to avoid computing an adjointstate. As local minima
are present for these multi-criteria problems, global optimization approaches using a
mix of deterministic and nondeterministic together with surface response model re-
duction is necessary to break complexity. Care should also be taken when noise is
present in data and always consider robustness issues, at leasta posteriori.
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