Theory and practice of optimal
shape design

Bijan Mohammadi* — Olivier Pironneau**

* Mathematics & Modelling Institute, University of Montpellier

bijan.mohammadi@univ-montp2.fr

** Laboratory J.-L. Lions, University Paris VI

pironneau@ann.jussieu.fr

ABSTRACT. This paper is a short survey of some recent developments in Optimal Shape Design
(OSD) for fluids. Existence, sensitivity, compatibility of discretizations as well as efficient
algorithmic implementations with low complexity are critical. In this paper we will discuss
some of these issues with application to shape optimization for aerodynamic noise reduction.

RESUME. L’article présente quelques développements récents en conception optimale de
formes pour les écoulements de fluides. Existence de solutions, calculs de gradients,
compatibilité entre discrétisation et formulation continue, mais aussi implémentations
efficaces sont importants. Nous abordons quelques-uns de ces concepts et une application
d’optimisation de forme pour réduction de bruit aérodynamique.
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1. Introduction

Control is a natural desire once the simulation is completée applications of
optimal shape design (OSD) in industry are uncountablerasréasingly involve mul-
tidisciplinary physics. Different physics to account foakes that optimum design is
not a once and for all solution tool and involves compromiséh the necessity of
doingmulti-point constrained desigiNot talking about noise in data which is a major
issue enforcing needs for robust optimization. This mesitieria-multi-point situation
requires cheap robust global optimization tools with, asimas possible, sub-solution
approaches to break the complexity of the problem.

In multi-criteria optimization sensitivity analysis is partant to discriminate bet-
ween Pareto points and this even if a gradient free appreacted. Indeed, the know-
ledge of sensitivity permits to qualify various points ofa&o front from the point of
view of robustness. Indeed, two points on a Pareto front easompared if one consi-
ders the sensitivity of the functional with respect to théependent variables which
are not control parameter. The robust optimum is the onelaitiest sensitivity.

Also, sensitivity evaluation is important because oftesimulations information
on the uncertainties on the results is more important thamabults themselves. For
instance, it is essential to be able to identify dominanépehdent variables in a sys-
tem. As these will need more accurate monitoring and for wprecise measurements
should be provided.

Sensitivity analysis is also useful to qualify the impacttba results of a given
modelling, or evolution of the modelling, and also the way@ded is discretized.

These concepts are central in Validation and Verificatio&\{Yissues which refer
to all of the activities that are aimed at making sure thatfewswe will function as
required. Indeed, it is important to include robustnesseassnto the specifications
using sensitivity analysis and see that a simulation shbeltherefore seen as multi-
criteria minimization.

Indeed, consider the following simulation loop linking & skindependent to de-
pendent variables and eventually leading to the calculaifa functionalJ (z, ¢, h)
function of independent variables for instance, a geometric parameterizatigrihe
physical variables defining the flow andthe solution procedure parameters (discre-
tization, accuracy, convergence rates...)

(z,0,h) = q(z,h) = U(p,q(x), h) — J(2, 0, h,q(z,h),U(p,q(z,h))) [1]

Flow calculations enter this class whera@enotes geometric quantities atidfield
flow variables solution of the state equatiBtU (¢(x, h), ¢, h) = 0. For a geometrical
set of parameters:{) and flow conditions*), the solution of the state equation can
be seen as minimization of

Jl(x*ﬁp*ah) = ||F(U(Q(‘r*7h)7<p*7h)”

Hence, we look for the best solution procedure which mingsithe residualh =
Argminpe g J1(z*, ¢*, h). The admissible spadé includes the constraint on the so-
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lution procedure (e.g. maximum discretization one carrdffaccuracy in the solution
of nonlinear and linear systems...).

Robustness issues can now be introduced through the cohtha sensitivity with
respect to the other independent variables around theiumirg point(z*, *):

Jo (2", 9", h) = ||[VaeJi(z™, 9", b

The simplest way to proceed is by penalizing these sengtvand looking for the
solution ofh = Argminpen Ji(z*, ¢*, h) + Ja(z*, ¢*, h). This is because no cal-
culation can be reliable if it is too sensitive to small pdpations in data. This also
shows that the solution procedure needs probably changesincluding robustness
issues, except if the optimum of the constrained and unrinst problems are the
same, which is quite unlikely. Despite the cost of this applp one should howe-
ver pay attention and at leaatposteriorievaluate the sensitivity of the solution to
perturbation of independent variables @&uwal., 1997).

2. Global optimization and free surfaces

Discrete optimal time control problem and OSD have similarcture. Thus many
of the tools of control theory and of the Calculus of Variasdhave been extended to
PDEs and we shall use them to solve OSD problems numerically.

Consider the minimization of a functiond(.S), S € O.q4, S is the shape parame-
terization and belongs to a admissible spétg (we show some examples of shape
parameter in the next section).

Most minimization algorithms can be seen as discretizatafiflvorraet al., 2006;
Mohammadiet al., 2003):

{ M(S(¢))Se = —d(S(Q)) (2]
S(C=0) =5

M is aimed to be positive definite ardd ~'d is built to be an admissible direction.

Assume the infimuny,,, of J known and the problem admissibles( the infimum
is reached inside the admissible domaiss;,, € Qu4, s.t.J(Sm) = Jn&J' (Sm) =
0).

Global solution of [2] means, for instance, findifg, = S(1) verifying
M(5(¢))S¢ = —d(S(C))

5(0) = So (3]
J(S(1)) = JIm

This is an over-determined boundary value problem. This-determination tells us
why one should not solve global optimization problems witkthheds which are dis-
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crete form of Cauchy problems for first order differentiabt®ms. We propose to
consider global shape optimization solving the followircphdary value problem:

{ s MISOIS, = Q) ”
JS(0) =, T(S(1) =

We have dropped the initial condition o which is misleading in the context of
global optimization. This can be solved using solution téghes for BVPs with free
surface. Indeed, an analogy can be given with the problermdiniy the interface
between water and ice which is only implicitly known throutpe iso-value of zero
temperature.

In the sequell will be based on approximation of and M will be a smoothing
operator for the CAD-free or level set parameterizatiore (section 3.2). There is a
global controllability result for this system if is C?(Q.4, IR) and coerciveM = I
andd = J'. System [4] is solved using the recursive semi-determinigtooting
algorithm (lvorraet al., 2006).

3. A model problem

Consider the academic problem of designing one boun8larfya domaint2 with
required flow propertieg, in a region of spac®. v, is defined outsid® to be used
as boundary condition too. We assume that the flow is potemthtwo dimensional.
With a stream function formulation this would be

min {j(5) ZZ/D|¢—1/Jd|2 =AY =0,inQ ¢Pls =0 Pl =} [5]

SeSq

whereC' = T'\S andT’ = of2.

It can be discretized by

Hzlrihn{jh 1:/D|¢*¢d|2 : /§2V¢ilvwh+%/0(1/1h*¢d)wh =0 Yw, € Vi}
(6]

whereV}, is the finite element space of piecewise linear continuounstfans on
the triangulatiornZ;, of 2; h denotes the average edge length in the triangulation. If
w’ denotes the function df;, which is one at vertex’ and zero at all other vertices,
then, with®; := vy, (¢?),

Un(e) = dala) + 3 Bw'(a)
i@l
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Figure 1. Effect of the regularization operator on the level set fioiciafter few ite-
rations of a descent method for a drag reduction problem:litses show isox(¢)).
Dislocations appear if regularity is not monitored. Thishiswever useful if one looks
for topology changes

and, problem [6] is of the form

mqin UTB(Q)¥ : AV = F(Q) [7]

whereA;; = (Vw', Vw’), B;; = (w’,w?), andF is the discrete Laplacian af;. It

is clear that these depend on the position of all the ver{stesed here in the vectq)
and not just of the vertices ¢f. In the sequel, we will see how to break this complexity
with sub-solution methods.

3.1. Existence of solution

Many of optimal shape design problems do not have solutiBas.example, if
vy € L?(Q) butvyy ¢ HY(Q), [5] does not have a solution becauge— 14 is
possible yet) = 1), is impossible.

Existence can be studied in several ways and it is inteigekiinotice that each way
gives rise to a different numerical method. Below we consileee ways to parame-
terize the shape (direct shape paramséteusing mapping’ and using characteristic
functionsy).

Most existence results are obtained by considering minmgizequences™,
(resp.T™ or x™) and, in the case of our academic example, showingutftat—
for somey whenS™ — S (resp.T™ — T or x™ — ¥), and that the PDE is satisfied
at the limit.
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3.2. Direct implicit or explicit shape parameterization

In shape optimization, different choices can be made foptirameter space fol-
lowing the variety of the shapes one would like to reach. éftihpology of the target
shape is already known and if the available CAD parametetesgathought to be
enough rich, it should be considered as control parameteresguring optimization.
On the other hand, one might use a different parameter slaager or smaller, during
optimization having in mind that the final shape should beesged in a CAD format
for being usable.

Using continuity results with respect to domain bounda(fi®@onneau, 1984; Del-
four et al, 2001), the unknown is an implicit or explicit parametrieatof the boun-
dary. One gives below an example of each parameterizatitino#gh the set of ad-
missible boundaries is not easily endowed with a vectoresgaeicture, it is easy to
define boundary variations which have a Hilbertian strietitior instance, normal
variations bya(z), « € S around a reference bounda$yof normalsi(x), would be

S(a) ={z+ a(x)i(z) : v € S} [8]

By using regularity results with respect to the domain (Glign1987) (see also
(Neittaanmaki, 1991) and (Delfowat al., 2001)) showed that in the class of &ll
uniformly Lipschitz problem [5] has a solution. However the solution may depend
upon the Lipschitz constant.

3.2.1. CAD-free shape parameterization

This is the simplest explicit shape parameterization:tel nodes of the surface
mesh over the shape are control parameters. One parttgwdthis parameterization
comes from the fact that, unlike in a CAD-based parameterespagularity require-
ments have to be specified and handled by the user. Inde&eé, shiape is described
using a CAD tool and if we use the same parameterization tifygbe deformations,
the two entities belong to the same space in term of regularit

Supposd is a surface in a domaift € R? and suppose we want shape varia-
tionsdz € C(T). In the context of shape optimization, applying t6’a shapel’ a
gradient method does not necessarily produ€g @) variationdz. Actually, the va-
riation is rather inZ?(I") and therefore we need to project the variations g2 (T")
for instance. The smoothing can also be seen as a modifig#tibe metric on which
minimization is performed (Mohammast al, 2004; Mohammadet al., 2001). Fi-
gure 3 shows the effect of regularization operators on thB@#&e parameterization
for a full aircraft shape optimization problem. One sees bayond topology consi-
derations (the topology is unchanged in both paramet&irgt one major issue in
CAD-based parameter spaces is that it fixes the regularithefoptimal shape at
the beginning of the optimization, while CAD-free paranizi&ions leave open the
guestion of final optimal regularity.
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Figure 2. Topology change with level sets with regularity control

3.2.2. Level sets

The level set method is an established technique to refdresaring interfaces
((Osheret al, 1988; Dervieuxet al., 1979; Dervieuxet al, 1981)). Level set is an
implicit parameterization of the shape based on the sigisdnte function) to the
shape. The shape is known as the iso-0 contoup.dEquation [4] generalizes the
Hamilton-Jacobi type equation used for the motion of thelleet parameter:

be+VVYP =0

with V. = VJ . n where the local normal to the iso-contourspfis defined by
n = V1 /|Vi)|. The variation of are then given by

Ve = =V J|VY|

We see that the particular choicemt= 0, M (S(¢)) = I andd = VJ|V| gives the
classical equation used for the motion of the level set fonct) known, we account
for the boundary conditions in the state equation usingaxesl normalized distance
function x(¢), (0 < x(¥) < 1). One important issue here is that one needs to control
regularity as for the CAD-free parameterization (Mohaminma@07). Figures 4, 1
and 2 show examples of optimizations with level set pararizatiton and effects of
regularization operator.

3.2.3. Mapping and transformation

One may also map the unknown dom&lirfrom a fixed domairO and consider
that the unknown is the mappiriy : O — 2. Denote byI" its Jacobian matrix, let
g beyq o T with 1, extending the given boundary conditions and the requirémen
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Iso-Mach

CAD-free

Figure 3. Effect of the regularization operator on the CAD-free paedatization for
a full aircraft shape optimization problem. Upper line: §ace mesh used as para-
meterization and iso-Mach contours for an inviscid caltida. Successive levels of
regularization permits to look for the most suitable seadiection and final regula-
rity for the shape
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Figure 4. Finding the right shape to enter the atmosphere using a lsgeparame-
terization. The final shape does not have the same regulatrityading and trailing
edges than the initial guess. Pictures showjg@>) and iso-density contours

D (recall thatyyy = 0 on S and is constant on the upper wall of the nozzle). Then we
may solve

mm/bquz}ﬂ?;v-[Avd}]:o inO [9]

TeT,

together withy)| ., = 1g andA = 7T 7 deqT).

As for [5] itis also possible to work with a local (tangentyiadion ¢V (x) and set

QV)={z+tV(z) : z€Q} tsmalland constant [10]

(Murat et al,, 1976) working with [9] showed that in the classBfe !> uni-
formly, the solution exists.

3.2.4. Topological optimization

This last approach, suggested by (Tartar, 1974) has led & istreferred now
astopological optimizationlt extends the operators by zero belgvand take the
characteristic function d®, y, for unknown

min { /D W~ a? + V-V = 0, (1 —x) =0, Ylog = b} [11]

XE€Xa

It may be difficult to work with the functiony, then, following (Allaire
et al, 2002), the functiony can be defined through a smooth functignby
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x(x) =bool(n(x) > 0) and in the algorithm we can work with a smoothas in
the level-set methods.

[11] generally leads to weaker results becausg'if— y, x may not be a charac-
teristic function ; this leads to rlaxed problemnamely [11] with

Xq={x : 0<x(z) <1}instead ofXy = {x : x(z) =0o0r1} [12]

These relaxed problems usually have a solution and it is gftssible to show that if
the solution is not inX; then it is the limit ofcomposite domainmade of mixtures of
smaller and smaller subdomains and holes (Tartar, 1997).

In 2D and for Dirichlet problems like [5] there is a very elegeesult due to Sverak
(Sverak, 1993) which shows that either there is no solutemabse the minimizing se-
quences converge to a composite domain or there is a reglldios ; more precisely:
if a maximum number of connected components for the comptesh@ is imposed
as an inequality constraint for the set of admissible dors#iren the solution exists

This approach is powerful to answepologicalquestions which are more embar-
rassing for the formulations [5] and [9]. One difficulty withis approach is regularity
control. In practice, one likes to couple topology parameation and level sets to
have both implicit parameterization and variable topoleggn though, as we saw in
Figures 1 and 2, the level set approach has the capacity dfihgropology changes
if one reduces the required regularity to create dislooatiod then recover the regu-
larity once a new topology is found for the shape.

3.2.5. Regularized formulations

One may insure well-posednasgularizingthe problem by changing the criterion
and adding a cost to the control. This can be done with anyeptrameterization
above §, T or x). Problem [5] becomes

J(Q)z/wad)%e/de

insures existence. More generally, one may consider wonkith

5@ = [ (= va? +elSI?
but the choice of norm is delicate. In general for second ropdeblems anything
related to the second derivative®(radius of curvature) would be likely to work, but
it is not known if weaker norms would work also.

4. Sensitivity analysis

We gave in introduction several reasons why sensitivityuataon is important in
minimization. Differentiability can be introduced for daof the formulations above.
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For [5] it is done by using normal variations around a refeeeshape (see [8]. If
Gateaux differentiability in.?(S) can be established, there exigts L?(S) with

i(Stta) = 1(8) = [ xa-+o(t)
Fréchet differentiability will hold if in additioro(t) is o(t|a|o), where| - |y denotes
the norm ofL.%(.S). Theny is the L?-gradient, denoted by grad(.S) and we have:

Jj(S(a)) —4(S) = /Sgraqu(S)ads—ko(\ab)

and so gragd;j(S) must be zero at the solution of [5] and= —grad, j(.5) is a direc-
tion of descent in the sense thatSifis not the solutiong (S(p&)) < j(S) for a small
enough positive constapt

Following (Cea, 1986) and (Delfowt al., 2001) one may consider a velocity of
deformationV(x) and define a time dependent shape

Q) ={z+V(x)t : z€Q}

and computég—t’, known as thenaterial derivativeof .J.

The concept of topological derivative (SokolowsHi al., 1991; Garreatet al,
2001) permits to introduce naturally changes in topologye digs a small circular
hole of centerr and radius in the domain and study the limit eﬁ%(uﬁ — 1), for the
right powerm, wherey© is the solution of the PDE with the hole agdthe solution
without the whole.

There are serious difficulties of analysis with the Calcubfis/ariations when
the solution of the partial differential equation has a diguity (Godlewskiet
al., 1998). One shows that the adjoint statbias no shock because its time boun-
dary condition is continuous and the characteristics nattegl backward never cross
the shock. This fact was observed by Giles (Giéesl, 2001) in the more general
context of the Euler equations for perfect gas. Hence, one/slthat as long as the
functional does not involve the position of the shock or itgpéitude explicitly a blind
calculus of variation is valid (Bardat al,, 2002) and that there is no need to include
in a calculus of sensitivity the variations of the shock fiosiexplicitly.

Algorithmic differentiation

Often the equivalent continuous equation behind a commatge is unknown or
the discretization is inconsistent. One should thereforesitler the discretized form
(or more simply the computer program) of the equation. AwtienDifferentiation
(AD) is a natural way to access the derivative of discretifgtttions. We recall
shortly the basis of the theory of AD
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Let, f be a composed function given by:
r€RP -y=h(z) e R" - 2=g(y) € R" - u= f(z) € R? [13]

Two differentiation procedures are available in automdifterentiation called the
forward and the reverse modes. The forward mode consistsngbating the function
and its derivative at the same time using chain rule. On camgte this gives:

u = f'(2)g' (y)h (z), [14]

where f’ € R, ¢ € R"™™, h' € R"*P. We observe that in [14] we need to
introduce an intermediate matri¥' = ¢'(y)h/(xz) € RP*" to store the intermediate
result before making’ = f'(z) M.

This can be seen as the propagation of the information onuhetibn and its
derivatives through the program. This is therefore a natuas to analyze error pro-
pagation in a solver.

The backward or reverse mode is analogous to the classigahtohethod used
in optimization problems. The most important advantageha approach over the
previous one is a complexity independent of the number ofrobparameters.

After transposition of [14] we have:
u'T =0T (2)g" (y) [T (2) [15]

We can see that the storage nowis= ¢'* (y) f'*(z) € R"*4. Hence, following the
dimensions of the different spaces(p andq), we should use formula [14] or [15]
to optimize the required memory. For instance, for optitid@raapplications where
p is the number of control variables agd= 1 with f being a cost function, the
differentiation after transpaosition is more suitable.

In a computer program, in the direct mode, the Jacobian idymed by differen-
tiating the program (considered as composed function)Bindine, by a computer
program, producing a new code for the gradient. Except iftaeat oriented language
is used in which case this is done at no extra programmingteff@rloading all the
operators in the native libraries (Mohammatlal,, 2001; Danailat al., 2004). The re-
verse mode corresponds to writing the direct code in thesevarder (inverting loops
as well) and differentiating each line= y + f(z) using the rulep, = p, + f'(z)p,
initializing all parameters,, to zero andp, to one (this corresponds to the last de-
pendent variable in a program) (Griewank, 2001; Gille¢=l., 1991; Mohammadét
al., 2001).

One should also remark that in [13] the order of calculatibthe variables is
x,y, z,u While in the reverse mode one needs variables availableeimeberse or-
deru, z,y,z (see [15]). This is called intermediate stages storage siothé major
limitation of reverse or adjoint calculations (even in tlwtnuous level). This is in
particular limiting with PDE based solvers using nestethto¢e.g. a time iteration
loop and inside loops over nodes and elements) even thowgk-qiointing technic
brings some relief (Griewank, 1995) giving maximal boundisthe combination of
storage versus redundant calculations.
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5. Numerical examples

In (Mohammadiet al., 2001) we showed several examples of flow control using
incomplete sensitivities with the control varying in timedespace and expressed for
instance through injection/suction or piezo-electricides. Here, we consider an ac-
tive control problem where the control does not depend oe tiespite the state and
the cost functional are time dependent. This is the casedpesbptimization for uns-
teady flows. Building sub-optimal solution is more difficidtthis situation.

5.1. A model problem for noise control

Consider the following minimization problem:

zgl(gjd J(x(y),y,t,u(x(y),y,t)), [16]

The state equation is a modified Burgers equation
w4 0.5(u?)y — vuy, = (uy + g(y,t) + z(y))u, on D =] —1,1] [17]

u(t,—1) = w;, u(t,1) =u,, u(t=0,y)=ug(y)

Here the control is a function(y) in space. Our aim is to reduce state fluctuations
in time. Of course, the unsteadiness can be completely rethomly if x = ¢(y, ),

but then the control would depend on time. We consider tHeviihg configuration:
p=0.3,v=10"%g(y,t) = 0.5sin(10xt) cos(6t)y. The equation is discretized on
an uniform mesh with 101 nodes with a classical explicit RKBesne in time and a
consistent numerical viscosity is used for stabilizatibhe admissible control space
is Opq = [—1,1]10%,

We consider the minimization of the following functional

Ialw) = [

Jo)dt, j(t) = / (u? + u2)dy. [18]
Jt>0

D

Figure 5 shows that a control obtained by minimizing (18)fi€ient reducing the
fluctuations over all modes. Here the gradient is computadjube reverse mode of
AD. Approximation of gradient is based on partial revergegnation (typically over
1/20 of the total time).

5.2. Shape optimization for noise reduction

We consider now the problem of shape optimization for unistéws. The for-
mulation of the problem is as in (16) but the state is now smiubdf the Navier-Stokes
equations. The contrd is the CAD-Free parameterization of the shape with regula-
rity control.
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Figure 5. Model problem for noise reduction. Evolution df) (upper) and its spec-
tral representation on a given time window for the unconémland controlled simu-
lations of [17] minimizing [18]

For compact sources, the radiated noise is linked to liftdnag time fluctuations
(Marsderet al,, 2001). The aim is therefore to remove these fluctuationscatsider

J(z) = (max(Ci(t)) — min(Cy(t))) + (max(Cq(t)) — min(Ca(t)))  [19]

fort € [0,T] whereT is a given observation time window.

We briefly recall the incomplete sensitivity approach usedi¢fine the search
direction. Consider a general simulation loop linking thajge parametes to a func-
tional J:

J(8) : 5 = q(8) = U(a(5)) — J(S,4(5), U(q(9))), [20]
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Figure 6. Shape optimization for noise reduction. Upper: lsdfor the initial and
optimized shapes. The fluctuations have been reduced. éiliiland drag evolu-
tion in time for the initial and optimized shapes. Lower:tiai and final shapes and
evolution of [19]
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whereq represents all geometrical entities atidall state related variables. The gra-
dient of J with respect tcS is:

J = Js+Jq95+JuUs [21]

The major part of the cost of this evaluation is du@td/95 in the last term.
Consider the following context for shape optimization:

— 1. both the cost function and control space are defined oshtiyge (or on some
part of it),

— 2.J is of the form

J(8) = /Shapef(s*)gw)ds,

— 3. the local curvature of the shape is not too large (thislei¢ée be quantified,
for a wing typically we consider regions away from leading arailing edges).

If these requirements hold, we can use an incomplete evatuat this gradient,
neglecting the sensitivity with respect to the state in (2i}he context of a time de-
pendent phenomenon, incomplete sensitivity means alsostemitaneous incomplete
gradient.

The functional (19) is therefore not suitable for incomelsénsitivity evaluation
as it involves time dependency. The functional we consideincomplete sensitivity
evaluation is given by

J(2) = |Cilpe)| + [Calpe)| + [Calper)| + [Crlpre )| [22]

where C; and C; are the pressure terms in aerodynamic lift and drag coetigie
evaluated for the first and second time derivatives of thequne.

Figure 6 shows iso-velocity contours around the initial aptimized shapes, the
evolution of the lift and drag coefficients in time and theialiand final shapes obtai-
ned.

6. Conclusions

Optimal shape design is still a difficult and computer intemgask. Even if the
problem is well posed and the sensitivity are computed ctyesuccess is not gua-
ranteed. One should pay attention to the computing comglexid use sub-optimal
approaches whenever possible to avoid computing an adjtziteé. As local minima
are present for these multi-criteria problems, globalrofgation approaches using a
mix of deterministic and nondeterministic together withifage response model re-
duction is necessary to break complexity. Care should agéstaken when noise is
present in data and always consider robustness issueastd [gsteriori
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