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1. Introduction

A design engineer using CFD must find answers to several questions:

– are the flow predictions obtained with CFD accurate enough for design pur-
poses?

– what are the consequences of changing the parameters controlling the system
(boundary conditions, shape parameters etc.)?

– how robust is the design?

– what happens to the flow response if the design or operating parameters suffer
from uncertainty?

This paper presents a review of the Sensitivity Equation Method (SEM) as a means
of answering the later three questions. The first issue is best dealt with by systematic
time-step and grid refinement studies in a numerical analysis process called verifi-
cation (Roache, 1998) which proceeds in two steps: code verification followed by
simulation verification. Code verification ensures, through grid refinement studies,
that the discretization algorithm delivers the theoretical rate of convergence on prob-
lems with a closed form solution. Simulation verification entails grid error estimation
and grid refinement studies to assess a simulation’s accuracy and its grid convergence.
Whenever possible verification is followed by validation which assess the physical
suitability of the mathematical model by comparing verifiedpredictions to quality
measurements. See (Roache, 1998) for a thorough discussion. See also (Pelletieret
al., 2006; Turgeonet al., 2002) for a discussion of verification issues with adaptive
solvers

The wordsensitivitieshas two different meanings. In optimal design it refers to the
gradient of the cost function while in fluid mechanics it represents the derivatives of
the flow solution (velocity, pressure, temperature etc.) with respect to the parameters
of interest. For the flow around an airfoil,∂u

∂α
is the sensitivity of the velocity with

respect to the airfoil angle of attack. It expresses how the velocity field responds to
perturbations ofα around its nominal value. It is probably better to use the term
flow sensitivities. In both cases, however, sensitivities measure the importance of
changes in the response (cost function or flow) to perturbations of the design or model
parameters.

Flow sensitivities have a an intrinsic meaning while adjoint variables makes sense
only when the optimization problem from which they are derived is completely spe-
cified. Flow sensitivities find uses that are complementary to that of adjoint variables.
They provide information that can be used to produce fast andinexpensive estimates
of the flow solution for nearby values of the operating or design parameters without
resorting to a full blown flow reanalysis. This is done using Taylor series in parameter
space, and is especially useful to answerwhat if questionsfor complex flows. Finally,
sensitivity information can serve to cascade input data uncertainty through a CFD
code to yield uncertainty estimates of the flow response. In both cases speed and cost-
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effectiveness are achieved because sensitivities are obtained at a fraction of the cost of
computing the flow.

Sensitivity analysis is a more advanced field in solid mechanics than in fluid dy-
namics. Indeed, textbooks have been written on sensitivityanalysis of structures
(Kleiber et al., 1997; Hauget al., 1986). To our knowledge there is only one book
on sensitivity analysis of flow problems (Stanleyet al., 2001). It is recent and more
specialized than structural mechanics books. Also, (Gunzburger, 2002) discusses sen-
sitivity analysis in the context of flow control and optimization.

There are several means of computing flow sensitivities: finite differences of flow
solutions, the complex step method (Martinset al., 2003; Lu et al., 2006), auto-
matic differentiation (Putkoet al., 2001), and sensitivity equation methods (SEM)
(Borggaardet al., 1997; Stanleyet al., 2001; Turgeonet al., 2000b). The finite differ-
ence approach is a well known technique of estimating derivatives. It is based on the
following approximation of the derivative of a functionf :

df

dx
≈ f(x + h) − f(x)

h
[1]

The truncation error isO(h), and thus this is a first-order approximation of the
derivative. Note that in our case, a full Navier-Stokes simulation must be performed
for each evaluation off . Higher-order finite difference stencils can be derived, atthe
cost of additional flow evaluations. This option is thus costly because the problem
must be solved for two or more values of each parameter of interest. For example, if
a represents a vector of 10 parameters, then11 flow evaluations are required; one for
the baseline values ofa0, and one per perturbation for each of the 10 parameters. In
the case of a shape parameter, further technical problems arise because non matching
meshes are obtained for different values of the shape parameter.

The complex-step method as a computational tool for evaluating derivatives was
demonstrated by Lyness and Moler (Lynesset al., 1967). It is similar to the finite
difference approach and is based on the following properties of complex numbers.
Consider a function,f = u + iv, of the complex variable,z = x + iy. If f is analytic,
then the Cauchy-Riemann equations apply

∂u

∂x
=

∂v

∂y
[2]

∂u

∂y
=

∂v

∂x
[3]

[4]

The first condition can be used to write the following approximation

∂u

∂x
= lim

h→0

v(x + i(y + h)) − v(x + iy)

h
[5]
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where h is a real number. We can sety = 0, u(x) = f(x) andv(x) = 0 because the
original problem involved only real variables so that equation [5] can then be rewritten
as

∂f

∂x
= lim

h→0

ℑ [f(x + ih)]

h
[6]

For a small discrete h, this can be approximated by

∂f

∂x
≈ ℑ [f(x + ih)]

h
[7]

This complex-step derivative approximation is very robustand is not subject to sub-
tractive cancellation errors, since it does not involve a difference operation. However,
it requires about twice as much memory as the finite difference approach due to the
use of complex variables, and somewhat more CPU time (Andersonet al., 2001).

Automatic differentiation (also known as algorithmic differentiation or computa-
tional differentiation) is a well established method for estimating derivatives. The
method is based on the application of the chain rule of differentiation to each oper-
ation in the program simulating the flow. It is equivalent to differentiating the dis-
crete equations to generate a system of equations for the discrete sensitivities. It
is powerful because it automatically generates the code forcalculating sensitivities
(A.Griewank, 2000). In many cases, implementation requires human intervention to
ensure efficiency of the code.

Approaches to calculating sensitivities also differ depending on the order of the
operations of approximation and differentiation. In thediscretesensitivity equation
approach, the total derivative of the flow approximation with respect to the param-
eter is calculated (Hauget al., 1986), whereas in thecontinuoussensitivity equa-
tion method (SEM) one differentiates the continuum equations to yield differential
equations for the continuous sensitivities (Borggaardet al., 1997). See (Kleiberet
al., 1997) for a discussion of the two approaches. We have adopted the latter approach
for several reasons. First, in the case of shape parameters,it avoids the delicate issue
of computing mesh sensitivities. Second, because the continuous SEM works on the
continuum equations, it avoids the issue of differentiating computational facilitators
(Gunzburger, 2002) such as upwind schemes in finite volume methods or stabilisation
terms in finite element formulations. Finally, the method has shown its robustness in
optimisation of noisy cost functions (Borggaardet al., 2002).

Automatic differentiation for first-order flow sensitivities is discussed by (Sherman
et al., 1996) and (Putkoet al., 2001). Continuous SEMs may be found in (Godfreyet
al., 1998; Godfreyet al., 2001; Borggaardet al., 1997; Limache, 2000; Turgeonet al.,
2001b) for aerodynamics applications. Application to heatconduction is reported by
(Blackwellet al., 1998). Sensitivities for incompressible flows with heat transfer may
be found in several references (Borggaardet al., 1998; Turgeonet al., 2000c; Turgeon
et al., 2000b; Turgeonet al., 2000a). Sensitivity analysis for turbulence models is
detailed in the works by (Godfreyet al., 2001) and by (Turgeonet al., 2001a; Turgeon
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et al., 2001c). A wide variety of flow regimes were treated by the authors (Turgeonet
al., 1999; Turgeonet al., 2000c; Turgeonet al., 2000b; Turgeonet al., 2000a; Turgeon
et al., 2001d; Turgeonet al., 2001c). First and second order SEM were developed for
steady and unsteady incompressible flows by the Polytechnique group (Turgeonet
al., 2001b; Mahieuet al., 2005; Ilincaet al., 2005; Ilincaet al., 2006).

The paper is organised as follows. Section 2 describes the governing equations
and their boundary conditions. This is followed by a derivation of the Sensitivity
Equations. The formulation issues for shape parameters areexamined in Section 4.
Section 5 uses flow over NACA four digit airfoils to discuss numerical issues and
grid refinement studies for verification of the implementation in the sense of Roache
(Roache, 1998). Sections 6 and 7 present application of the SEM fo fast evaluation of
solutions on nearby geometries and a variety of optimal airfoil design problems.

2. Flow equations

The flow regime of interest is incompressible and modeled by the Navier-Stokes
equations (momentum and continuity equations):

ρ̃
∂ũ

∂t̃
+ ρ̃ũ · ∇̃ũ = −∇̃p̃ + f̃ + ∇̃ ·

[

µ̃

(

∇̃ũ +
(

∇̃ũ
)T
)]

[8]

∇̃ · ũ = 0 [9]

whereρ̃ is the density,̃t is time,ũ is the velocity,p̃ is the pressure,̃µ is the viscosity,
andf̃ is a body force. The tildẽdenotes dimensional quantities.

The above system is closed with a proper set of initial conditions

ũ(x̃, t̃ = 0) = Ũ0(x) in Ω [10]

and Dirichlet and Neumann boundary conditions

ũ(x̃, t) = Ũ b(x̃, t̃) onΓD. [11]

t̃ = [−p̃I + µ̃(∇̃ũ + ∇̃ũT )] · n̂ = F̃
N

onΓN [12]

whereΩ is the computational domain,̃U b is the value of the velocity imposed on the

boundaryΓD, I is the identity tensor, and̃F
N

is the imposed boundary value of the
surface traction forcẽt imposed on the boundary segmentΓN , andn̂ is the outward
unit normal toΓN .
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We make the equations dimensionless by selecting referencequantities for all vari-

ables and physical properties:L̃0, ρ̃0, µ̃r, Ũr, p̃r = ρ̃rŨ
2
r andf̃r =

ρ̃rŨ2

r

L̃r

. This leads
to the following dimensionless variables:

x =
x̃

L̃r

, y =
ỹ

L̃r

, u =
ũ

Ũr

, v =
ṽ

Ũr

,

p =
p̃

p̃r

, ρ =
ρ̃

ρ̃r

, µ =
µ̃

µ̃r

For constant property flows we haveρ = 1 andµ = 1. Boundary conditions are
normalized in the same manner. This leads to the following dimensionless continuity
and momentum equations

ρ
∂u

∂t
+ ρu · ∇u = −∇p + f + ∇ ·

[ µ

Re

(

∇u + (∇u)T
)]

[13]

∇ · u = 0 [14]

with boundary conditions

u(x, t = 0) = U0(x) in Ω [15]

and Dirichlet and Neumann boundary conditions

u(x, t) = U b(x, t) onΓD. [16]

t = [−pI + µ(∇u + ∇uT )] · n̂ = F N onΓN [17]

3. Sensitivity equations

3.1. General formulation of sensitivity equations

The continuous sensitivity equations (CSE) are derived formally by implicit dif-
ferentiation of the flow Equations [13] to [14] with respect to an arbitrary model pa-
rametera. We treat the variableu as a function of both space and of the parametera.
This dependence is denoted asu(x; a). Defining the flow sensitivities as the partial
derivativessu = ∂u

∂a
andsp = ∂p

∂a
, and denoting the derivatives of the fluid properties

and other flow parameters by a (′), differentiation of Equations [13] and [14] yields

ρ′
∂u

∂t
+ ρ

∂su

∂t
+ ρ′u · ∇u

+ρsu · ∇u + ρu · ∇su = −∇sp + f ′

+ ∇ ·
[

µ′
(

∇u + (∇u)
T
)

+µ
(

∇su + (∇su)T
)]

∇ · su = 0.
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3.2. Initial and boundary conditions

Initial conditions for the sensitivity equations are obtained by implicit differentia-
tion of Equations [15]

su(x, t = 0) =
∂U0

∂a
(x) in Ω [18]

Dirichlet conditions are obtained in a similar manner. However, one must account for
the fact that the boundary segmentΓD may now depend ona. Thus we write

u(xb(a), yb(a); a) = U b(xb(a), yb(a); a) [19]

so that one must take the total derivative on both sides to obtain a Dirichlet boundary
condition forsu:

su(x, t; a) =
dU b

da
(x, t; a) − ∂u

∂x

∂xb

∂a
− ∂u

∂y

∂yb

∂a
onΓD. [20]

The first term on the right hand side expresses the dependenceof U b on a, while
∂xb

∂a
and ∂yb

∂a
are the shape sensitivities of the boundary segment. They vanish if a is

a value parameter. Note that the flow gradient multiplies∂xb

∂a
and ∂yb

∂a
. Thus accu-

rate boundary conditions for a shape parameter require accurate evaluation of the flow
gradients at the boundary, a challenging task because accuracy of flow derivatives
decreases near boundaries. Duvigneau has developed promising techniques for ex-
tracting accurate flow gradients at the boundary (Duvigneauet al., 2005a; Duvigneau
et al., 2005b).

y

a

0
x

Figure 1. Plenum geometry
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As an example, consider the case of an inlet channel of heighta delivering a con-
stant flow rate,V̇ m2/s in 2-D, to a plenum independently of the value ofa as shown
on Figure 1. We have

xb = 0

yb = ar

Ub =
6r(1 − r)

a
V̇ r ∈ [0, 1]

wherer is the parametric variable along the boundary anda is the model parameter.
For this case the coefficients of Equation [20] are

∂xb

∂a
= 0

∂yb

∂a
= r

dU b

da
= −6r(1 − r)

a2
V̇

so that the boundary condition forsu is:

su = −6r(1 − r)

a2
V̇ − ∂u

∂y
r.

If a increases, the channel becomes wider and the inflow velocities decrease accord-
ingly to maintain a constant flow rate at the inlet.

For a value parameter the geometry of the domain does not depend ona. Hence,
∂xb

∂a
and ∂yb

∂a
vanish so that the boundary condition reduces to

su(x, t; a) =
∂Ub

∂a
(x, t; a) onΓD [21]

Neumann boundary conditions for the sensitivity of the surface forcesst = ∂t

∂a

given by

st =[−spI + µ(∇su + ∇sT
u
) + µ′(∇u + ∇uT )] · n̂ [22]

+ [−pI + µ(∇u + ∇uT )] · n̂′ [23]

are obtained by implicit differentiation of Equation [17]

st =
dF N

da
− {−∇p · ΠbI + ∇µ ·Πb(∇u + ∇uT ) + µA} · n̂ [24]

in which

Πb = (
∂xb

∂a
,
∂yb

∂a
)T
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and the components of the matrixA are

a11 = 2{∂2u

∂x2

∂xb

∂a
+

∂2u

∂x∂y

∂yb

∂a
}

a12 = { ∂2u

∂x∂y

∂xb

∂a
+

∂2u

∂y2

∂yb

∂a
} + {∂2v

∂x2

∂xb

∂a
+

∂2v

∂x∂y

∂yb

∂a
}

a21 = a12

a22 = 2{ ∂2v

∂x∂y

∂xb

∂a
+

∂2v

∂y2

∂yb

∂a
}.

Note that both of the above conditions require the evaluation of first or second
derivatives of the flow at the wall. This constitutes an important challenge for the
SEM as numerical differentiation results in reduced accuracy of the boundary con-
ditions and hence, of the sensitivity solution too. Extracting accurate derivatives re-
mains an open research question, although some progress hasbeen made (Duvigneau
et al., 2005a; Duvigneauet al., 2005b). In the case of a value parameter, all geo-
metric derivatives vanish and Equation [24] yields the following simplified Neumann
conditions:

st =
∂F N

∂a
(x, t; a) onΓN

4. Formulation issues for shape parameters

4.1. Geometrical issues

As parameter dependent boundaries must be properly described, we focus in this
section on some geometrical issues arising with shape parameters before presenting
the differentiation of physical quantities. There are two parametrizations that must
be treated simultaneously 1) the shape of the boundary curveΓ is described in terms
of the shape parametera and 2) the position of a point onΓ is described in terms
of the usual curvilinear coordinate along the curveΓ. Therefore, any point̂X of the
boundary surface depends both ona andξ:

Γ(a) =
{

X̂(ξ, a) | ξ ∈ [ξ0, ξ1]
}

[25]

Parametera determines the shape ofΓ while ξ determines the location of a point on
Γ.

For this parametrized boundary, the unit normal vectorsn̂(ξ, a) and the unit tan-
gent vector̂t(ξ, a) can be expressed in terms of the derivatives ofX̂ = [x̂; ŷ]

T with
respect toξ:

n̂ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂X̂

∂ξ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1
[

−∂ŷ

∂ξ
,
∂x̂

∂ξ

]T

; t̂ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂X̂

∂ξ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1
[

∂x̂

∂ξ
,
∂ŷ

∂ξ

]T

[26]
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Figure 2. Notations relative to boundary surface

Any change toa will affect all these geometrical quantities. Note that, their ma-
terial derivatives reduce to their partial derivatives if one uses the curve description
Equation [25]. This apparently burdensome notation is key to the successful differen-
tiation of geometrical quantities appearing in sensitivity boundary conditions. If one
follows a given point onΓ, ξ remains constant asa is varied to change the shape ofΓ
as illustrated in Figure 2. This leads to the following relations:

DX̂

Da
(ξ, a) =

∂X̂

∂a
(ξ, a)

Dn̂

Da
(ξ, a) =

∂n̂

∂a
(ξ, a)

Dt̂

Da
(ξ, a) =

∂t̂

∂a
(ξ, a)

whereD/Da denote the material derivative with respect toa. Finally, from Equa-
tions [25] and [26], the sensitivities of the unit normal andtangent vectors are derived:

∂n̂

∂a
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂X̂

∂ξ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1





+







∂X̂

∂ξ
· ∂2

X̂

∂ξ∂a
∣

∣

∣

∣

∣

∣

∂X̂

∂ξ

∣

∣

∣

∣

∣

∣

2







∂ŷ

∂ξ
− ∂2ŷ

∂ξ∂a
,

−







∂X̂

∂ξ
· ∂2

X̂

∂ξ∂a
∣

∣

∣

∣

∣

∣

∂X̂

∂ξ

∣

∣

∣

∣

∣

∣

2







∂x̂

∂ξ
+

∂2x̂

∂ξ∂a







T
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∂t̂

∂a
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂X̂

∂ξ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1





−







∂X̂

∂ξ
· ∂2

X̂

∂ξ∂a
∣

∣

∣

∣

∣

∣

∂X̂

∂ξ

∣

∣

∣

∣

∣

∣

2







∂x̂

∂ξ
+

∂2x̂

∂ξ∂a
,

−







∂X̂

∂ξ
· ∂2

X̂

∂ξ∂a
∣

∣

∣

∣

∣

∣

∂X̂

∂ξ

∣

∣

∣

∣

∣

∣

2







∂ŷ

∂ξ
+

∂2ŷ

∂ξ∂a







T

4.2. Evaluating the gradient of a scalar field

We consider here two local quantities (i.e. the pressure and skin friction coeffi-
cients considered at a fixed position) on the parameter dependent boundaries that oc-
cur frequently in aerodynamic problems. The following methodology can be applied
to any other local quantity.

For incompressible flow, the pressure coefficient is defined by:

Cp =
p − p∞
1
2ρU2

∞

Using the chain rule, the material derivative of the pressure on a boundary surface is
given by:

Dp

Da
= sp + ∇p · ∂X̂

∂a
[27]

and thus:

DCp

Da
=

1
1
2ρU2

∞

(

sp + ∇p · ∂X̂

∂a

)

[28]

The material derivative includes two separate contributions: the (Eulerian) sensi-
tivity term sp and an additional expression sometimes calledthe transpiration termin

mixed Eulerian/Lagrangian methods∇p · ∂X̂

∂a
. The latter ensures that the computed

value is correctly located in space. That is, it transports the physical point of interest
with the deformation of space due to the change in the value ofthe shape parameter.

The same approach applies to the skin friction coefficient which is defined as:

Cf =
τ · n̂ · t̂
1
2ρU2

∞
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whereτ is the Cauchy stress tensor andτ · n̂ · t̂ represents the force acting in the
direction tangent to the boundary. In this case, the differentiation is somewhat more
involved because the unit normal and tangent vectors to the boundary surface are also
parameter dependent. Therefore, the expression for the extrapolatedCf involves ad-
ditional terms describing the effects ofa on n̂ and t̂. Keeping in mind that̂n and t̂

are written aŝn(ξ, a) andt̂(ξ, a), their material derivatives with respect toa reduces
to their partial derivatives. Thus, we obtain:

DCf

Da
=

1
1
2ρU2

∞

[

D (τ · n̂ · t̂)
Da

]

=
1

1
2ρU2

∞

[

Dτ

Da
· n̂ · t̂ + τ ·

(

∂n̂

∂a
· t̂ +

∂t̂

∂a
· n̂
)]

=
1

1
2ρU2

∞

[

(

sτ + ∇τ · ∂X̂

∂a

)

· n̂ · t̂ + τ ·
(

∂n̂

∂a
· t̂ +

∂t̂

∂a
· n̂
)

]

[29]

4.3. Evaluating the gradient of an integral quantity

Finally, in optimal design, the objective function measures the performance of the
mechanical system of interest. In wing design, the objective function is often built
from the aerodynamic forces applied by the fluid to the airfoil. Thus, the objective
function involves quantities that are integrated over a parameter dependent surface
which take the following generic form:

∫

Γ(a)

Φ · n̂ dΓ [30]

The gradient-based optimization algorithm requires the computation of its derivative
with respect toa which is obtained from:

D

Da

∫

Γ(a)

Φ · n̂ dΓ =

∫

Γ(a)

(

DΦ

Da
· n̂ + Φ · ∂n̂

∂a
+

1

J

∂J

∂a
Φ · n̂

)

dΓ [31]

whereJ is the Jacobian of the transformation parametrizing the boundary surface as
described in Section 4.1 and is given by:

J =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂X̂

∂ξ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Its derivative is obtained from:

∂J

∂a
=

1

J

(

∂X̂

∂ξ
· ∂2

X̂

∂ξ∂a

)

Finally,
DΦ

Da
is calculated from Equation [27], the flow variables, and their sensitivi-

ties.
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5. Application context and numerical framework

5.1. Problem statement

We now apply the proposed method to NACA 4-digit series family of airfoils at a
Reynolds number of1000. The configuration of the problem is described in Figure 3.
Dirichlet boundary conditions are imposed at the inflow and on the airfoil surface, and
homogeneous Neumann boundary conditions are prescribed asfar field conditions.

Figure 3. Geometry and boundary conditions for the flows over NACA airfoils

The cambered wing sections of the NACA 4-digit series familyof airfoils are ob-
tained by combining a mean line and a thickness distribution. In what follows, we
consider unit-chord profiles. The shape of the mean line is expressed analytically by
two parabolic arcs tangent at the position of maximum mean-line ordinate. The mean
line distribution is given by:

yml =
m

p2

[

2px − x2
]

0 ≤ x ≤ xp [32]

yml =
m

(1 − p)2
[

(1 − 2p) + 2px − x2
]

xp ≤ x ≤ c [33]

wherem is the maximum ordinate of the mean line andp is the chord wise position of
the maximum ordinate. Both of them are expressed as a fraction of the chordc. The
thickness distribution is given by the following equation:

yth = ±5 e (0.2969
√

x − 0.1260 x− 0.3537 x2 + 0.2843 x3 − 0.1015 x4)



44 REMN – 17/2008. Shape design in aerodynamics

wheree is the maximum thickness of the wing section. Thus, in these equations, the
parametersm andp control the camber of the airfoils while the parametere controls
its thickness. All three are shape parameters because they influence the geometry of
the domain. The angle of incidenceα of the configuration is set by imposing the
proper inflow incidence via the inflow Dirichlet boundary condition (see Figure 3).
Thus, this parameter is treated as a value parameter.

5.2. Numerical techniques

The flow and sensitivity equations are solved by an adaptive finite-element
method (Pelletieret al., 1997; Pelletier, 1999). We discuss the salient features here
for completeness and to set up the approximation of the continuous sensitivity equa-
tion above. The weak form of the continuity and momentum equations are formed,
and a discretization based on the 7-noded Crouzeix-Raviartelement pair (P+

2 − P1)
leads to a system of nonlinear algebraic equations which arethen solved by Newton’s
method.

The accuracy of the finite-element approximation is directly related to the local
mesh size used. An adaptive remeshing procedure is employedto improve the accu-
racy, by refining the mesh in regions of high error in the flow and sensitivity variables.
Regions targeted for refinement are identified by using an error estimator based on
local projections of discontinuous quantities onto a localcontinuous polynomial ba-
sis (Zienkiewiczet al., 1992a; Zienkiewiczet al., 1992b). For example, since the
Crouzeix-Raviart element pair uses a piecewise quadratic basis for the velocity, the
stress tensor is discontinuous. By projecting it onto a continuous polynomial basis,
we can derive an error estimate defined as the difference between the finite-element
and the projected stresses.

Once error estimates are obtained for all variables (flow andsensitivities), an op-
timal mesh is determined using the asymptotic convergence rate of the finite-element
method. The optimal mesh is generated to redistribute the mesh sizes so that each
element has the same contribution to the norm of the total error:

‖E‖2
Ω =

ne
∑

k=1

‖E‖2
Ωk

= ne‖Eequi‖2 [34]

where the subscriptsΩ, Ωk refer to norms over the whole domain and the surface of
elementk respectively. Subscriptequi represents the target error obtained by equidis-
tribution of the error over the mesh. Thus when equidistribution is achieved the norm
of the error on any element of the mesh has the same value‖Eequi‖2. Finally ne
is the number of elements in the mesh. Comparison of the target error to the actual
error provides the information needed for refining or coarsening the mesh. The pro-
cess is performed in an iterative fashion, beginning with a coarse mesh and producing
a sequence of meshes which reduce the error by a constant factor over that of the
previous mesh usually in the range[0.25, 0.5]. Details of this adaptive remeshing pro-
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cedure may be found in the literature (Peraireet al., 1987; Pelletier, 1999; Turgeonet
al., 1999).

5.3. Grid convergence study

In the next Section, the flow around a NACA 4512 airfoil at an incidence of
5˚serves as a baseline reference. The NACA 4512 profile is shown in Figure 4(a),
it has a maximum thickness of 12% , a maximum camber displacement of 4% located
at 50% of chord.4%c of maximum ordinate located at the middle of the chord (see
Table 1 for the corresponding values ofe, m andp).

Using this configuration, the flow and sensitivity fields are solved using the adap-
tive finite-element method. All flow and sensitivity variables contribute to the error
estimation and mesh adaptation processes. We look at the grid convergence of the
aerodynamic forces and their gradients with respect to the shape parameters to as-
sess the influence of the number of grid points on them and to determine practical
numerical parameters for the design optimization exercise.

(a) NACA 4512 (b) NACA 4515 (c) NACA 5512

(d) NACA 4412 (e) NACA 9714 (f) NACA 6314

Figure 4. Geometries of some NACA airfoils

Seven grid adaptation cycles have been performed and the final meshes contain
approximately 80 000 nodes. Figure 5 shows the last adapted grid in the vicinity of the
profile. The evolutions of the Drag coefficient and its derivatives during the adaptive
procedure are plotted in Figure 6(a). The derivatives are the material derivatives as
computed by Equation [31] with respect to each of the three shape parameterse, m
andp. Furthermore, the absolute value of the derivatives are considered so that they
can be plotted in log-scale. The data on Figure 6(b) shows connvergence for the Lift
coefficient.

As can be seen, all the quantities converge to an almost grid independent value
with mesh refinement. However, the changes in the gradient values are far larger than
those of the aerodynamic coefficients. Indeed, the evaluation of the gradient is more
delicate than that of the primal function, since global force sensitivities all depend on
the flow sensitivities which, in turn, depend on the flow gradient at the wall through the
boundary conditions of the CSE. This study also indicates that the dependence of the
Drag (or Lift) and their gradients on the mesh are respectively 1. 10−5 (and1. 10−3).
These observations will help us to determine a stopping criterion for the optimization
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procedure. Furthermore, the convergence of these quantities required at least 50 000
nodes. As a consequence, in the remainder of this work, six toseven grid adaptation
cycles are performed for all reported computations. The reduction factor of the error
in the adaptive procedure is set so that the final meshes contain approximately 60 000
nodes in all the cases.

Figure 5. Adapted mesh around the NACA 4512 airfoil (Re = 1000 andα = 5◦)
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Figure 6. Mesh refinement study

6. Application: fast evaluation of flows on nearby geometries

6.1. Setting

This Section focuses on the computations of local and integral quantities on nearby
geometries using the CSE method with shape parameters. The main interest of this
approach is the capability to estimate outputs on nearby geometries without having to
perform a full flow reanalysis. Simplicity and cost-effectiveness are achieved by using
Taylor series in parameter space as long as the predicted values are accurate. Such a
procedure finds a wide range of useful engineering applications. In the framework of
optimization algorithms, it can reduce the cost of both first-order deterministic algo-
rithms and of non-deterministic approaches such as geneticalgorithms. Indeed, these
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algorithms require a large number of flow analysis that is responsible for the bulk of
the CPU costs. Thus, fast evaluation of flows for nearby values of the parameters can
significantly reduces the CPU-time consumed for each optimization exercise.

Leta0 denote the baseline value ofa and∆a its perturbation. Letφ be any solution
variable (say stagnation pressure,Cf , CL, etc), its value fora0 + ∆a is obtained by
linear Taylor series ina-space using values of the flow and its sensitivities from the
baseline solution. The first order Taylor series extrapolated field is given by:

φ(X̂, a0 + ∆a) ≈ φ(X̂, a0) + ∆a
Dφ

Da
(X̂, a0) [35]

whereφ will be either a local quantity (pressure or skin friction coefficient) or an
integral quantity (Drag, Lift and Moment coefficient). The corresponding material
derivative is computed as detailed in Section 4. In what follows,a will in turn bee, m
andp, the shape parameters that define an airfoil of the NACA 4-digit family.

6.2. Numerical result

We first perturb each parameter separately. From the baseline airfoil, a25% in-
crease in the airfoil thickness parametere leads to the NACA 4515 airfoil shown in
Figure 4(b). The same relative increase inm produces the NACA 5512 airfoil shown
in Figure 4(c). And, a20% increase in the maximum camber ordinate locationp
yields the NACA 4412 airfoil shown in Figure 4(d). The corresponding parameters of
all these NACA airfoils are reported in Table 1.

Table 1. Parameters of some NACA airfoils (unit chord)
NACA 4512 4515 5512 4412 9714 6314

e 0.12 0.15 0.12 0.12 0.14 0.14
m 0.04 0.04 0.05 0.04 0.09 0.06
p 0.50 0.50 0.50 0.40 0.70 0.30

We now compare the flow solutions obtained by either a full flowreanalysis or by
Taylor series extrapolation from the baseline flow. Table 2 reports the values of the
aerodynamic coefficients evaluated by the two approaches. As can be seen, even when
the percentage changes from the baseline values are substantial, the extrapolated co-
efficients are in very good agreement with those obtained by reanalysis. In all cases,
the relative differences are much less than one percent which confirms the capabil-
ity of the proposed methodology for computing the material derivatives of integral
quantities.

Figures 7, 8 and 9 show the pressure coefficient and the skin friction distributions
for the baseline flow, the Taylor series estimates and the recomputed flows around the
NACA 4515, NACA 5512 and NACA 4412 airfoils. As can be seen, the agreement
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between computations and extrapolations are almost perfect for all the surface coef-
ficients on both the pressure and suction sides of the airfoils. It is worth noting that
without the transpiration terms (see Equations [28] and [29]), the predictions are no
longer accurate as already reported in (Hayet al., 2006).

Table 2. Extrapolation from a NACA 4512: Aerodynamic coefficients

NACA Coeff.
Computed Extrapolated

(% Change from baseline) (% Diff. with computed)

4512 CD 0.13474
(baseline) CL 0.28024

4515
CD 0.14106 ( 4.7%) 0.14063 (0.3%)
CL 0.19570 (30.2%) 0.19694 (0.6%)

5512
CD 0.13756 ( 2.1%) 0.13738 (0.1%)
CL 0.29256 ( 4.4%) 0.29304 (0.2%)

4412
CD 0.13591 ( 0.9%) 0.13584 (0.1%)
CL 0.27613 ( 1.5%) 0.27548 (0.2%)

9714
CD 0.15180 (12.7%) 0.14964 (1.4%)
CL 0.30916 (10.3%) 0.29823 (3.5%)

6314
CD 0.14853 (10.2%) 0.14612 (1.6%)
CL 0.22342 (20.3%) 0.24077 (7.8%)
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Figure 7. Nearby solution for the NACA 4515 from the NACA 4512

Now that the procedure has been verified using the previous numerical examples,
we seek to evaluate how the linear Taylor series extrapolation performs when fac-
ing significant geometrical changes. To this end, we consider the NACA 9714 airfoil
shown in Figure 4(e) which differs significantly from the geometry of the NACA 4512
baseline airfoil illustrated in Figure 4(a). All three shape parameters must simultane-
ously increase, as reported in Table 1, to change the airfoilgeometry from that of a
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Figure 8. Nearby solution for the NACA 5512 from the NACA 4512
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Figure 9. Nearby solution for the NACA 4412 from the NACA 4512

NACA 4512 to that of a NACA 9714. The relatives changes ine, m andp are re-
spectively17%, 125% and40%. Table 2 compares the recomputed and extrapolated
aerodynamic coefficients. The discrepancy is more important than for the previous
cases, an indication that we are approaching the predictivelimits of the first order
Taylor series extrapolation for these very demanding geometry changes. However, the
predictions are still fairly good considering how large therelative changes are from
baseline for these coefficients and thus how important the corresponding geometrical
changes are.

Figure 10 shows the comparison between the extrapolated solution and the recom-
puted solution for both the pressure coefficient and the skinfriction. Once again, the
discrepancy is more substantial than for the previous cases. The peaks are not fully
captured by the extrapolated solution. This holds for the pressure and the skin fric-
tion coefficients. The main discrepancy is observed for the pressure coefficient in the



50 REMN – 17/2008. Shape design in aerodynamics

vicinity of the trailing edge on the pressure side. However,the Taylor series coef-
ficients distributions have captured successfully all the main features in the changes
from baseline.
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Figure 10. Nearby solution for the NACA 9714 from the NACA 4512

We complete this Section by obtaining estimates of the flow over a NACA 6314
by extrapolation from the flow over a NACA 4512. The NACA 6314 is obtained from
the NACA 4512 by increasing the thickness by17%, the maximum camber parameter
by 50% and by decreasing the maximum camber position parameter by40% (see Ta-
ble 1). As can be seen in Table 2, the relative changes in the aerodynamic coefficients
is even larger than for the previous case. Yet, the extrapolated Drag coefficient is still
in good agreement with the recomputed one. But, the relativedifference in the Lift
coefficient is larger than7% which illustrates the limits of the first order Taylor series
extrapolation in terms of the relative changes in a set of parameters. However, as can
be seen in Figure 11, the extrapolated local coefficients match the fully recomputed
solution fairly well except for the skin friction suction peak.
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Figure 11. Nearby solution for the NACA 6314 from the NACA 4512
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7. Application: gradient-based optimal design

7.1. Optimization loop

Optimal design consists in optimizing (maximizing or minimization) an objective
function (or cost function)J which depends on a vector of design variablesa and the
flow variablesU(a, X(a)) whereX represents the physical domain. The governing
equations of the flowR(a, U(a, X(a))) = 0 are considered as constraints which
must be satisfied at each step of the design procedure. Some bound constraints must
be added to the problem to ensure a realistic solution is found. Thus, the admissible
set of the design variables, known as the feasible design space, is usually closed.
From a mathematical point of view, the constrained problem may be expressed as:

Optimize J (a, U(a, X(a)))
Constrained to R(a, U(a, X(a))) = 0

Li ≤ a ≤ Ls

(whereLi and Ls may be extended real numbers.) The side constraints can be
taken into account inside the optimization algorithm by imposing bounds on the
design variables during the globalization step (e.g. when solving the trust-region or
line-search sub-problem). The constraint imposed by the flow equations is satisfied
at every point within the feasible design space so that it will not explicitly appear
in the optimization algorithm presented in the next subsection. Finally, our design
optimization loop consists of:

(1) Generation of the initial airfoil shapeX0

(2) Initialization of the design variablesa0

(3) Setk = 0
(4) Adaptive computation ofUk and its sensitivities
(5) Evaluation of the objective functionJ and its gradient
(6) Evaluation ofak+1 by the optimization algorithm
(7) Test for convergence, and if necessary incrementk and go to step (4)

Step (6) may require additional calls to step (5) as discussed below.

Optimization algorithm

A gradient-based optimization strategy is chosen to find optimal parameter values.
Because of the computational burden of the flow analysis, onemust use an optimizer
requiring a small number of evaluations of the objective function and its gradient.

Hence, a quasi-Newton algorithm is used for the present study. Considering the
maximization of an objective functionJ (a), an approximate hessian is initialized
with H0 = J (a0)I and then updated using a BFGS secant strategy. At the current
design pointak, the next values of the parameters are chosen by solving a trust-region
sub-problem (Dennis Jr.et al., 1983):

max
‖sk‖≤δk

J (ak) + ∇J (ak)T
sk +

1

2
s
T
k Hksk [36]
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with ak+1 = ak + sk if the requiredsufficient decrease conditionsare met. This
globalization strategy allows convergence for a wider range of initial parameter values.
For details on the secant strategy and globalization methods, the reader is referred
to Dennis and Schnabel (Dennis Jr.et al., 1983). However, this algorithm requires
the evaluation of the objective functionJ and its gradient∇J = dJ

da
. The latter is

computed using the sensitivities of the flow variables and the sensitivities of geometric
quantities as detailed for each specific case in what follows.

7.2. Drag and lift matching

This first optimal design problem aims at verifying the correctness of the proposed
approach. Starting from an arbitrary choose wing section, we ask the optimization
algorithm to find a profile that matches the targeted Drag and Lift coefficients. This is
a common problem in aerodynamic design: one must find a wing section generating
sufficient lift to sustain flight. Matching target Lift and Drag is also a common sub-
problem encountered in multi-point design.

The matching problem is defined by an objective function measuring the discrep-
ancy between the current airfoil characteristics (CL, CD) to their target values:

J =
ω1

2
(CD − C∗

D)
2

+
ω2

2
(CL − C∗

L)
2

where the star coefficients are the target Drag and Lift coefficients. The weightω1 and
ω2 are used to yield a balanced influence to the Drag and Lift independently of their
magnitudes:

ω1 = 1 ; ω2 =
C∗

D

C∗
L

Finally, the minimum of this objective function is known to be zero so that the optimal
design procedure can be checked because it should find a knownglobal minimum of
the cost function.

The design variables are the three shape parameters that define a wing section of
the NACA 4-digit series of airfoils:a = [e, m, p]T . The following bounds (for a unit
chord) are imposed on the design variables for the optimization process to converge
to a feasible design:

e ∈ [0.1, 0.25] ; m ∈ [0, 0.09] ; p ∈ [0.3, 0.7]

That is, the thickness is constrained to be between 10 and 25%of the chord, the max-
imum ordinate of the mean line can not exceed 9% of the chord and its position is
forced to lie between 30 and 70% of the chord, i.e. not too close to the leading and
the trailing edge (since it clearly leads to an unrealistic wing section). The angle of
incidence can also be taken as a fourth design parameter, andwill be studied in the
next cases, since it influences the aerodynamic performanceof the airfoils (Lépine
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et al., 2001). In the present case, the angle of attack is fixed because its influence
dominates that of the other parameters (e, m andp). The airfoil performance is thus
determined by the three shape parameters rather than mostlyby α. This turns out to
be a more challenging matching problem. It is worth noting that the optimal solu-
tion is not necessarily unique in the feasible design space since several wing sections
can have the same Drag and Lift (thus the objective function may have several global
minimum). This means that the optimal solution depends on the choice of the ini-
tial airfoil and on the initial trust region for obvious reasons. However, this does
not cause any limitations because the optimization procedure is set to find one opti-
mal solution (for a given initial point) and not all of them. Finally, one of the main
drawbacks of gradient-based algorithms is the possibilitythat they get stuck in a local
minimum (Vanderplaats, 1999). In the present case, we know the global minimum and
thus we can monitor whether or not it has been reached by the optimizer. If the global
minimum is not reached, the design exercise can always be restarted with a different
initial point.

The target values of Drag and Lift are set to typical values for a fixed angle of
incidence of5◦ of a NACA airfoil:

C∗
D = 0.14000 ; C∗

L = 0.22000

The initial airfoil is arbitrarily chosen as a NACA 8416 profile. Its Drag and Lift
coefficients are:

C0
D = 0.15833 ; C0

L = 0.17957

Thus, we ask the optimizer to find a profile that increases the Lift by more than 18%
while reducing Drag by 13%. The optimization process is stopped when the variation
of the function value or that of its gradient is outside a confidence interval that has
been determined during the grid refinement study (see Section 5.3) or if the variation
of all the parameters values become too small (less than1. 10−5).

initial profile
optimal profile

Figure 12. Drag and Lift matching: profiles

Figure 12 shows the initial and optimal profiles of the Drag and Lift matching
exercise. Both the camber and the thickness of the initial profile have been reduced to
match the Lift and Drag targets. The optimization path is reported in Table 3 which
presents the evolution of the design parameters, the value of the objective function and
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of its gradient during the optimization. Figure 13 shows theoptimization history of the
objective function along with its two contributing terms measuring the performance
in terms of Drag and Lift matching respectively. Eleven optimization iterations were
necessary to reach the global minimum of the objective function. Both the thickness
and the camber have been reduced to reach the targeted Drag and Lift coefficient.
Initially, the thickness is reduced until it is in the right range for obtaining the desired
performance. The optimizer then works mostly on the maximumcamber value and
location while refining the thickness parameter. Note that the first two iterates were
rejected by the trust-region algorithm indicating that theinitial hessian was the wrong
scale.
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Figure 13. Drag and Lift matching: optimization history

7.3. Lift-to-Drag ratio maximization

This section looks at a different design problem: the maximization of the Lift-
to-Drag ratio for the NACA 4-digit series of profiles. Thus, we ask the optimization
procedure to maximize the objective function which is now the Lift-to-Drag ratio:

J =
CL

CD

The design variables aree, m, p andα the angle of incidence. The same bounds as
in the previous Section are imposed on the shape variables. The angle of incidence is
constrained to lie between 0 and 10 degrees that isα ∈ [0, 0.175] where the angle is
expressed in radians. The initial parameter values are set as follows:

e = 0.15 ; m = 0.05 ; p = 0.5 ; α = 0
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Table 3. Drag and Lift matching: optimization path

It. e m p J ∂
∂e
J ∂

∂m
J ∂

∂p
J

0 0.16 0.08 0.40 0.69 10−3 0.81 10−1 −0.15 10−2 −0.32 10−2

1⋆ 0.08 0.08 0.40 0.14 10−1 −0.41 10+0 0.34 10−1 0.16 10−1

2⋆ 0.11 0.08 0.40 0.41 10−2 −0.23 10+0 0.16 10−1 0.12 10−1

3 0.13 0.08 0.40 0.50 10−3 −0.73 10−1 0.76 10−2 0.46 10−2

4 0.14 0.08 0.40 0.10 10−3 0.95 10−3 0.37 10−2 0.76 10−3

5 0.14 0.07 0.40 0.82 10−4 0.19 10−2 0.37 10−2 0.53 10−3

6 0.14 0.01 0.38 0.30 10−3 0.45 10−1 −0.16 10−1 0.10 10−3

7 0.14 0.02 0.39 0.18 10−3 0.40 10−1 −0.13 10−1 −0.11 10−3

8 0.14 0.05 0.39 0.43 10−4 0.20 10−1 −0.31 10−2 −0.36 10−3

9 0.13 0.04 0.37 0.45 10−5 −0.64 10−2 0.23 10−2 0.94 10−4

10 0.13 0.04 0.37 0.65 10−7 0.33 10−3 −0.26 10−3 −0.25 10−5

11 0.13 0.04 0.37 0.17 10−8 0.16 10−4 0.23 10−4 −0.78 10−7

⋆steps were rejected and trust-region radius was reduced

As can be seen in Figure 15, 16 iterations were necessary for reaching the opti-
mum. The objective function has been increased by a factor of15. However, most
of the gain is achieved after only 10 iterations. The final iterations yield marginal
improvement in the design. The optimal profile can be compared to the initial shape
in Figure 14. Clearly, the thickness has been reduced while the maximum camber
has been increased and its position has been moved toward thetrailing edge of the
wing section. Figure 15 shows the evolution of the objectivefunction, the drag and
lift coefficients. As can be seen, the bulk of the gain in the objective function comes
from the huge improvement of the lift coefficient during the optimization. Indeed, the
lift coefficient increases from0.03393 for the initial configuration to0.60708 for the
optimal configuration.

initial profile
optimal profile

Figure 14. Lift-to-Drag maximization: profiles

This is achieved by initially increasing the angle of incidence up to its maximum
bound which leads to a direct enhancement of the lift. Then, the maximum camber
position (controlled by the parameterp) is moved from the middle of the chord to the
trailing edge of the profile while the mean line deviation (controlled by the parame-
ter m) is also increased. Therefore, the camber of the profile has been significantly
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increased as can be easily seen in Figure 14, the deviation ofthe flow is much higher
so that the global force applied by the fluid on the airfoil is also much higher. As
one would expect, these geometric modifications also resultin an increase of the drag
coefficient since a part of it can be directly related to the lift coefficient. Indeed, the
drag coefficient increases from0.13372 for the initial configuration to0.16209 for the
optimal configuration (21%). However, the increase of the drag coefficient is small
compared to that of the lift coefficient so that the magnitudeof the objective function
is greatly increased during the optimization process and thus the performance of the
airfoil is significantly enhanced. Indeed, the lift-induced drag effect is balanced by the
fact that the thickness of the profile has been reduced duringthe optimization process.
This change in the parametere is directly responsible for a reduction of drag. As a
consequence, the drag increase has been limited while the lift performance has been
greatly improved. It is worth noting that the optimal drag-to-lift ratio is typical of a
take-off or landing configuration since the lift is high while the drag is important but
limited. The optimal profile looks like a wing section with a plain flap deployed as is
the case during landing. The enhanced lift allows the aircraft to fly more slowly and
to steepen its approach to the landing site. Thus, the optimal configuration found by
the optimization algorithm is physically coherent and realistic.
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Figure 15. Lift-to-Drag maximization: optimization history

7.4. Drag minimization with constrained Lift

The last optimization exercise carried out is the Drag minimization of the family
of profiles using the four design parameters of the previous Section. A reduction in the
Drag will typically result in a reduction of the Lift due to the decrease in the thickness
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and the camber of the airfoil. Thus, for the optimal design tobe relevant in a practical
context, the Drag minimization has to be performed with a constraint on the Lift. The

problem can be expressed as:
Minimize JD = CD

Constrained to CL ≥ C∗
L

whereC∗
L is the imposed minimum Lift. There are numerous techniques to handle

constrained multi-variable functions problem (Vanderplaats, 1999). Here, we use the
penalty function method based on a penalized objective function:

J = JD + rH2

with r the penalty parameter andH a penalty function that expresses how the
inequality-constraint is satisfied. The following choice ensures that no penalty is im-
posed if the constraint is satisfied:

H =

{

CL − C∗
L if CL ≥ C∗

L

0 otherwise

A trade-off has to be made when choosing the value of the penalty parameter so that
the minimization problem will not yield constraint violations that are too large and
problems that are too poorly conditioned from a numerical standpoint. We setr to
100 based on previous experience. The minimum allowable Lift coefficient is set to
C∗

L = 0.2 for the minimization problem to be of practical interest.

As in the previous Section, the initial profile is chosen to bea NACA 8416 at 5˚of
incidence. Note than this profile does not satisfy the constraint on the Lift (see Sec-
tion 7.2). The minimum of the penalized objective function is reached in 18 iterations.
The optimal profile fully satisfies the Lift constraint and the Drag has been reduced by
24%. The initial and optimal profiles are presented in Figure16.

initial profile
optimal profile

Figure 16. Drag minimization: profiles

The optimization path is summarized in Figure 17. The thickness parameter and
the maximum camber parameter have been decreased to their respective lower bound
while the angle of attack is adjusted to satisfy the lift constraint. The sharp peak of
the objective function is due to the penalty term as the constraint is violated during
the optimization process. It is worth noting the Lift of the optimal profile found is the
minimum allowable Lift chosen. This was expected because nobonus is associated
with a Lift greater thatC∗

L. Since a change in the parameters has most of the time
opposite effects on the Drag and Lift coefficients, the Lift constrained minimization
of the Drag is obtained for a profile that matches the minimum allowable Lift.
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Figure 17. Drag minimization: optimization history

8. Summary and concluding remarks

A continuous shape sensitivity equations method has been presented. Details have
been given on the suitable methodology to handle parameter dependent boundaries: a
proper description of the computational boundary, the necessary use of the Lagrangian
sensitivities and the correct derivation of transpirationterms for computing the deriva-
tives of physical quantities. To illustrate the correctness of the proposed approach,
numerical applications have been considered based on flows around the NACA 4-digit
series family of wing sections. All flow and sensitivity equations are solved using an
adaptive finite element method driven bya posterioriestimates of the error on the
variables. A grid convergence study has been carried out to characterize the suitable
mesh density and to determine its influence on the outputs.

The first application of the methodology shows how sensitivity information can be
used in a non optimization problem: the fast evaluation of flows on nearby geome-
tries. This is achieved by using Taylor series in parameter space. This methodology
has been pushed to its limits by considering large changes inthe airfoil geometries
that correspond to large modification of the shape parametervalues. Even in such
an extreme situation, the extrapolated solution yields useful information. The second
application concerns the use of the Sensitivity Equations Method for gradient-based
optimal design. A BFGS optimization algorithm is used to findthe optimal values
of shape parameters. Flow and sensitivity information are employed to calculate the
values and gradients of the design objective function. Three different optimization
problems were considered to assess the validity of the proposed approach. In this con-
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text, further work will aim at developing a richer design space that the one offered by
the NACA four-digit series family of airfoils.
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