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ABSTRACT. We present the sensitivity Equation Method (SEM) as a complementary tool to
adjoint based optimisation methods. Flow sensitivities exist independently of a design
problem and can be used in several non-optimization ways: characterization of complex
flows, fast evaluation of flows on nearby geometries, and input data uncertainties cascade
through the CFD code to yield uncertainty estimates of the flow field. The Navier-Stokes and
sensitivity equationssensitivity are solved by an adaptive finite element method.

RESUME. On présente la méthode de [’équation des sensibilités (MES) comme un outil
complémentaire aux techniques d’optimisation par variables adjointes. Les sensibilités
existent indépendamment du probleme d’optimisation et peuvent servir a d autres fins que le
design : caractérisation d’écoulements, évaluation rapide d’écoulements sur des géométries
voisines et cascade des incertitudes sur les inputs au travers du code CFD pour obtenir des
estimations de [’incertitude sur de [’écoulement. Les équations de Navier-Stokes et des
sensibilités sont résolues par une méthode d’éléments finis adaptative.
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1. Introduction

A design engineer using CFD must find answers to severaliguast

— are the flow predictions obtained with CFD accurate enowgtdésign pur-
poses?

—what are the consequences of changing the parametersltiogtthe system
(boundary conditions, shape parameters etc.)?

— how robust is the design?

— what happens to the flow response if the design or operatrangeters suffer
from uncertainty?

This paper presents a review of the Sensitivity Equatiorhidé{SEM) as a means
of answering the later three questions. The first issue isdedt with by systematic
time-step and grid refinement studies in a numerical aralysicess called verifi-
cation (Roache, 1998) which proceeds in two steps: coddéocation followed by
simulation verification. Code verification ensures, throwggid refinement studies,
that the discretization algorithm delivers the theordtiate of convergence on prob-
lems with a closed form solution. Simulation verificatiortals grid error estimation
and grid refinement studies to assess a simulation’s accaratits grid convergence.
Whenever possible verification is followed by validationiethassess the physical
suitability of the mathematical model by comparing verifigedictions to quality
measurements. See (Roache, 1998) for a thorough discuss@malso (Pelletiest
al., 2006; Turgeoret al,, 2002) for a discussion of verification issues with adaptive
solvers

The wordsensitivitiedhas two different meanings. In optimal design it refers # th
gradient of the cost function while in fluid mechanics it regents the derivatives of
the flow solution (velocity, pressure, temperature etcthwespect to the parameters
of interest. For the flow around an airfo@% is the sensitivity of the velocity with
respect to the airfoil angle of attack. It expresses how #ileaity field responds to
perturbations ofx around its nominal value. It is probably better to use thenter
flow sensitivities In both cases, however, sensitivities measure the impostaf
changes in the response (cost function or flow) to perturhatof the design or model
parameters.

Flow sensitivities have a an intrinsic meaning while adje@riables makes sense
only when the optimization problem from which they are dedvs completely spe-
cified. Flow sensitivities find uses that are complementathat of adjoint variables.
They provide information that can be used to produce fastiexpensive estimates
of the flow solution for nearby values of the operating or dagparameters without
resorting to a full blown flow reanalysis. This is done usirayl®r series in parameter
space, and is especially useful to answhat if questiongor complex flows. Finally,
sensitivity information can serve to cascade input datetamty through a CFD
code to yield uncertainty estimates of the flow responseoth bases speed and cost-
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effectiveness are achieved because sensitivities argmebtat a fraction of the cost of
computing the flow.

Sensitivity analysis is a more advanced field in solid medsatinan in fluid dy-
namics. Indeed, textbooks have been written on sensitaniglysis of structures
(Kleiber et al,, 1997; Hauget al, 1986). To our knowledge there is only one book
on sensitivity analysis of flow problems (Stanletyal,, 2001). It is recent and more
specialized than structural mechanics books. Also, (Guryay, 2002) discusses sen-
sitivity analysis in the context of flow control and optimiiza.

There are several means of computing flow sensitivitiestefidifferences of flow
solutions, the complex step method (Martietsal, 2003; Luet al, 2006), auto-
matic differentiation (Putkat al, 2001), and sensitivity equation methods (SEM)
(Borggaarcet al,, 1997; Stanlet al, 2001; Turgeoret al., 2000b). The finite differ-
ence approach is a well known technique of estimating déras It is based on the
following approximation of the derivative of a functigh

dr =~ h

The truncation error i$)(h), and thus this is a first-order approximation of the
derivative. Note that in our case, a full Navier-Stokes datian must be performed
for each evaluation of. Higher-order finite difference stencils can be derivedhat
cost of additional flow evaluations. This option is thus bobecause the problem
must be solved for two or more values of each parameter ofésteFor example, if
a represents a vector of 10 parameters, theflow evaluations are required; one for
the baseline values afy, and one per perturbation for each of the 10 parameters. In
the case of a shape parameter, further technical problessskacause non matching
meshes are obtained for different values of the shape paeame

The complex-step method as a computational tool for evialgaterivatives was
demonstrated by Lyness and Moler (Lynedsal, 1967). It is similar to the finite
difference approach and is based on the following propedfecomplex numbers.
Consider a functionf = u + v, of the complex variable; = = + iy. If f is analytic,
then the Cauchy-Riemann equations apply

ou Ov
o 9y [2]
ou Ov
9y~ or [3]

(4]

The first condition can be used to write the following approation

du _ . vle +ily+h) v +iy) 5]



34 REMN - 17/2008. Shape design in aerodynamics

where h is a real number. We can get 0, u(z) = f(x) andv(z) = 0 because the
original problem involved only real variables so that edquaf5] can then be rewritten
as

of _ . Slf(+ih)
TR R

For a small discrete h, this can be approximated by

of _ Slf(x+ih)]
ox h
This complex-step derivative approximation is very robausd is not subject to sub-
tractive cancellation errors, since it does not involveféedénce operation. However,

it requires about twice as much memory as the finite diffeeegqmproach due to the
use of complex variables, and somewhat more CPU time (Andetsal,, 2001).

[7]

Automatic differentiation (also known as algorithmic @iféntiation or computa-
tional differentiation) is a well established method fotimating derivatives. The
method is based on the application of the chain rule of difiéation to each oper-
ation in the program simulating the flow. It is equivalent iffedentiating the dis-
crete equations to generate a system of equations for tloeetlissensitivities. It
is powerful because it automatically generates the codedtmulating sensitivities
(A.Griewank, 2000). In many cases, implementation regum@man intervention to
ensure efficiency of the code.

Approaches to calculating sensitivities also differ degieg on the order of the
operations of approximation and differentiation. In tfiscretesensitivity equation
approach, the total derivative of the flow approximationhai¢spect to the param-
eter is calculated (Haugt al., 1986), whereas in theontinuoussensitivity equa-
tion method (SEM) one differentiates the continuum equmstito yield differential
equations for the continuous sensitivities (Borggaetrél., 1997). See (Kleibeet
al., 1997) for a discussion of the two approaches. We have ad tip¢datter approach
for several reasons. First, in the case of shape paramitavsjds the delicate issue
of computing mesh sensitivities. Second, because themmants SEM works on the
continuum equations, it avoids the issue of differentgiiomputational facilitators
(Gunzburger, 2002) such as upwind schemes in finite voluntkads or stabilisation
terms in finite element formulations. Finally, the method Bhown its robustness in
optimisation of noisy cost functions (Borggaathl., 2002).

Automatic differentiation for first-order flow sensitiviis is discussed by (Sherman
et al, 1996) and (Putket al,, 2001). Continuous SEMs may be found in (Godfet¢y
al., 1998; Godfreet al, 2001; Borggaarét al., 1997; Limache, 2000; Turgeat al.,
2001b) for aerodynamics applications. Application to hematduction is reported by
(Blackwellet al,, 1998). Sensitivities for incompressible flows with heatisfer may
be found in several references (Borggaetrdl., 1998; Turgeort al, 2000c; Turgeon
et al,, 2000b; Turgeoret al, 2000a). Sensitivity analysis for turbulence models is
detailed in the works by (Godfrest al,, 2001) and by (Turgeoet al., 2001a; Turgeon
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etal, 2001c). A wide variety of flow regimes were treated by théatg (Turgeoret

al., 1999; Turgeort al., 2000c; Turgeomt al., 2000b; Turgeowet al., 2000a; Turgeon

et al, 2001d; Turgeomt al., 2001c). First and second order SEM were developed for
steady and unsteady incompressible flows by the Polyteakrggoup (Turgeoret

al., 2001b; Mahietet al.,, 2005; llincaet al,, 2005; llincaet al., 2006).

The paper is organised as follows. Section 2 describes thergmg equations
and their boundary conditions. This is followed by a deiwatof the Sensitivity
Equations. The formulation issues for shape parametersxammined in Section 4.
Section 5 uses flow over NACA four digit airfoils to discussrmerical issues and
grid refinement studies for verification of the implemeraatin the sense of Roache
(Roache, 1998). Sections 6 and 7 present application ofEh f8 fast evaluation of
solutions on nearby geometries and a variety of optimabgidiesign problems.

2. Flow equations

The flow regime of interest is incompressible and modelechieyNavier-Stokes
equations (momentum and continuity equations):

N%+ﬁﬁ-%:—%+f+v {ﬂ <W+ (%)Tﬂ 8]
V-a=0 )

wherep is the densityf is time, @ is the velocity,p is the pressurej is the viscosity,
and f is a body force. The tildedenotes dimensional quantities.

The above system is closed with a proper set of initial caovalst
@(z,t=0)=Upy(z)inQ [10]
and Dirichlet and Neumann boundary conditions
(&, t) = Uy(&,1) onTp. [11]
F=|-pl+a(va+val) a=F" only [12]

where( is the computational domail],, is the value of the velocity imposed on the

. . . ~N . .
boundaryl'p, I is the identity tensor, and"  is the imposed boundary value of the
surface traction forceé imposed on the boundary segméh¢, andn is the outward
unit normal toI" .
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We make the equations dimensionless by selecting referprasttities for all vari-
~ ~ ~ ~ ~ 772
ables and physical propertieky, fo, fir, Uy, p, = p,U2 andf, = 2= This leads
to the following dimensionless variables:

T Y U 0
r= =, Yy ==, U= =, V==,
LT LT U’r‘ UT
_ D _ P _
Pp=—=— pP==> H= =
Pr Pr Hr

For constant property flows we haye= 1 andp = 1. Boundary conditions are
normalized in the same manner. This leads to the followimgetisionless continuity
and momentum equations

ou

por +pu-Vu=—Vp+f+V- [% (Vu+(Vu)T)} [13]
V-u=0 (14]
with boundary conditions
u(x,t =0) =Ugy(x) in [15]
and Dirichlet and Neumann boundary conditions
u(x,t) = Up(x,t) onT'p. [16]
t=[-pl+u(Vu+VuT)] -2 =F"onTy [17]

3. Sensitivity equations
3.1. General formulation of sensitivity equations

The continuous sensitivity equations (CSE) are derivethédly by implicit dif-
ferentiation of the flow Equations [13] to [14] with respegtan arbitrary model pa-
rametera. We treat the variable as a function of both space and of the parameter
This dependence is denotedw@@r; a). Defining the flow sensitivities as the partial
derivativess, = g—g ands, = %, and denoting the derivatives of the fluid properties
and other flow parameters by 3, (differentiation of Equations [13] and [14] yields

,3_’11,_'_%
P ot TP ot

+p8u - Vu+pu-Vs, = Vs, + f

+pu-Vu

+V. [,/ (Vu + (vu)T)

+u (Vsu + (Vsu)T)}
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3.2. Initial and boundary conditions

Initial conditions for the sensitivity equations are obtd by implicit differentia-
tion of Equations [15]

00Uy
" da

Dirichlet conditions are obtained in a similar manner. Heareone must account for
the fact that the boundary segméh$ may now depend on. Thus we write

u(zp(a), yp(a); a) = Up(xs(a), yp(a); a) [19]

so that one must take the total derivative on both sides tailtDirichlet boundary
condition fors,,:

Su(z,t=0) () InQ [18]

dU, Ou O0xp,  Ou Jyp

su(m,t;a):d—(m,t;a)—————— onT'p. [20]
a y Oa

The first term on the right hand side expresses the dependéiiégon a, while
% and% are the shape sensitivities of the boundary segment. Thaghvi a is
a value parameter. Note that the flow gradient muItip%!s and %. Thus accu-
rate boundary conditions for a shape parameter requirgaiecevaluation of the flow
gradients at the boundary, a challenging task because axcof flow derivatives
decreases near boundaries. Duvigneau has developed pror@shniques for ex-
tracting accurate flow gradients at the boundary (Duvigretal, 2005a; Duvigneau
et al, 2005b).

yA

Figure 1. Plenum geometry
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As an example, consider the case of an inlet channel of heigetivering a con-
stant flow rate)) m? /s in 2-D, to a plenum independently of the valueatdis shown
on Figure 1. We have

xb:O
Yp = ar
6r(1—1) -
A Skl O RPS Y

a

wherer is the parametric variable along the boundary arigl the model parameter.
For this case the coefficients of Equation [20] are

8175

Pa "

O _

Oa
U,  6r(l—r).

da a? v

so that the boundary condition fey, is:
_ 6r(l—r).  Ou

Su = _TV - 8—y’f‘.

If a increases, the channel becomes wider and the inflow vedsdcrease accord-
ingly to maintain a constant flow rate at the inlet.
For a value parameter the geometry of the domain does nondepe:. Hence,

% vanish so that the boundary condition reduces to

su(z,t;a) = %(w,t;a) onl'p [21]
a

me
2 and

Neumann boundary conditions for the sensitivity of the acefforcess; = %
given by

st =[—spl + p(Vsy + VL) + 1/ (Vu + Vul)] - i [22]
+ [=pl + pu(Vu + Vu')] - A/ [23]
are obtained by implicit differentiation of Equation [17]
dF™ . .
St :W—{—Vp-HbH+Vu~Hb(Vu+Vu )+ pA} -1 [24]
in which
I, — (aTb ayb)T

da’ da
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and the components of the matukare

2{8 u Oxp 0%u %

0r2 da ' 0xdy da
0%u Oxp 6u8yb} {8 Uaxb 0%v %
dxdy da 3y2 da dx? da (?x(?y da

ais = {

a1 = a12

0%v Oxy,  O0%v Oy
w2 =g s et 57 0

Note that both of the above conditions require the evalanabibfirst or second
derivatives of the flow at the wall. This constitutes an intpot challenge for the
SEM as numerical differentiation results in reduced accyef the boundary con-
ditions and hence, of the sensitivity solution too. Extiragiaccurate derivatives re-
mains an open research question, although some progrebséasnade (Duvigneau
et al, 2005a; Duvigneaet al, 2005b). In the case of a value parameter, all geo-
metric derivatives vanish and Equation [24] yields thedaiing simplified Neumann
conditions:

oFN
Oa

St = (z,t;a) only

4. Formulation issues for shape parameters
4.1. Geometrical issues

As parameter dependent boundaries must be properly dedcrie focus in this
section on some geometrical issues arising with shape paeasnbefore presenting
the differentiation of physical quantities. There are twargmetrizations that must
be treated simultaneously 1) the shape of the boundary ¢uis@escribed in terms
of the shape parameterand 2) the position of a point oh is described in terms
of the usual curvilinear coordinate along the cufzeTherefore, any poinK of the
boundary surface depends bothoand¢:

={X(&a) | €&} [25]

Parameten determines the shape Bfwhile £ determines the location of a point on
T.

For this parametrized boundary, the unit normal vecfiis @) and the unit tan-

gent vectort(¢, a) can be expressed in terms of the derivativeXot= [4;]” with
respect tct:

~ 11—1
0%

23

~ —1
0%

ag 91" .
SLE

0z 091"
o€ B¢ [_ _] 126!

¢’ ¢
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a+Aa
Ea+Aa
&, aftAa)
¢ cst

I'(a+Aa)

Figure 2. Notations relative to boundary surface

Any change ta: will affect all these geometrical quantities. Note thagithma-
terial derivatives reduce to their partial derivatives ifeouses the curve description
Equation [25]. This apparently burdensome notation is kethé successful differen-
tiation of geometrical quantities appearing in sensigiibundary conditions. If one
follows a given point orl’, ¢ remains constant asis varied to change the shapelof
as illustrated in Figure 2. This leads to the following relas:

DX X
E(fa a) = %(5, a)
Dn on
E(f, a) = %(55 a)
Dt ot
m(ga a) = %(65 a)

where D/ Da denote the material derivative with respectato Finally, from Equa-
tions [25] and [26], the sensitivities of the unit normal dadgent vectors are derived:

oh ox || %’é aagzaa g 9y
N G N O
T
ax 92X

Tl ) o
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~ ~ —1 2%
ok lox|| | (B de | 02, 0%
da || O¢ H H o9& 00a
~ 2,\ T
- ax-% o, 0

‘ ‘ ’ ’ 0¢  0t0a

4.2. Evaluating the gradient of a scalar field

We consider here two local quantitieise( the pressure and skin friction coeffi-
cients considered at a fixed position) on the parameter digetlboundaries that oc-
cur frequently in aerodynamic problems. The following ntetblogy can be applied
to any other local quantity.

For incompressible flow, the pressure coefficient is defined b

P 7P
=
3PUZ

Using the chain rule, the material derivative of the pressur a boundary surface is
given by:

Dp X
and thus:
DC, 1 X

The material derivative includes two separate contrimgiche (Eulerian) sensi-

tivity term s, and an additional expression sometimes cattedranspiration termn
mixed Eulerian/Lagrangian method% - %—f. The latter ensures that the computed
value is correctly located in space. That is, it transpdrésghysical point of interest

with the deformation of space due to the change in the valtiegeothape parameter.

The same approach applies to the skin friction coefficienitivis defined as:

T-0n-t
3PUZ

Cr =
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wherer is the Cauchy stress tensor and n - t represents the force acting in the
direction tangent to the boundary. In this case, the difféagion is somewhat more
involved because the unit normal and tangent vectors todhadry surface are also
parameter dependent. Therefore, the expression for thapetated”'; involves ad-
ditional terms describing the effects efon in andt. Keeping in mind thafi andt
are written asi(¢, a) andt (¢, a), their material derivatives with respectdaeduces
to their partial derivatives. Thus, we obtain:

DCy 1 [D(r-fa-t)
Da %pUgo i Da
L JDr n-t+ on £+8—E n
B ipU% | Da "'\ 9a da
1 oxX\ . . on . ot

4.3. Evaluating the gradient of an integral quantity

Finally, in optimal design, the objective function measutee performance of the
mechanical system of interest. In wing design, the objedtinction is often built
from the aerodynamic forces applied by the fluid to the dirfdihus, the objective
function involves quantities that are integrated over sapaater dependent surface
which take the following generic form:

/ & - ndl [30]
T'(a)

The gradient-based optimization algorithm requires thmpmuatation of its derivative
with respect tax which is obtained from:

D D® on 10J
— ®-ndl = —  n+®.-—+—-——® -n|dl 31
Da I'(a) n \/I:(a) (Da n da + J da n> [ ]

whereJ is the Jacobian of the transformation parametrizing thendauy surface as
described in Section 4.1 and is given by:

Its derivative is obtained from:
01 _1 (0% X
da  J\ 96 0€da

_ D® . . . o

Finally, Da is calculated from Equation [27], the flow variables, andrteensitivi-

a
ties.

oX

7=
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5. Application context and numerical framework
5.1. Problem statement

We now apply the proposed method to NACA 4-digit series faroflairfoils at a
Reynolds number of000. The configuration of the problem is described in Figure 3.
Dirichlet boundary conditions are imposed at the inflow andh® airfoil surface, and
homogeneous Neumann boundary conditions are prescrifadfésd conditions.

(-4.,5.) [pI+t.m=0 (4.,5.)
u =0 R
= [gﬁf;] R [-pl+<].M=0
(-4.-5.) STy (4.-5.)

Figure 3. Geometry and boundary conditions for the flows over NAC Avitsrf

The cambered wing sections of the NACA 4-digit series faroflgirfoils are ob-
tained by combining a mean line and a thickness distributionwhat follows, we
consider unit-chord profiles. The shape of the mean line isessed analytically by
two parabolic arcs tangent at the position of maximum méamdrdinate. The mean
line distribution is given by:

Ymi = ﬁz [2p2 — :cg} 0<z<z, [32]
Ymi = d [(1—2p) + 2px — 2] rp,<z<c [33]
(1—-p)? PeT s

wherem is the maximum ordinate of the mean line anid the chord wise position of
the maximum ordinate. Both of them are expressed as a fracfithe chordc. The
thickness distribution is given by the following equation:

Yin = £5¢(0.2969 \/z — 0.1260 z — 0.3537 2% + 0.2843 2° — 0.1015 2%)
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wheree is the maximum thickness of the wing section. Thus, in thegatons, the
parametersn andp control the camber of the airfoils while the paramet@ontrols
its thickness. All three are shape parameters becausernfiegrice the geometry of
the domain. The angle of incideneeof the configuration is set by imposing the
proper inflow incidence via the inflow Dirichlet boundary dition (see Figure 3).
Thus, this parameter is treated as a value parameter.

5.2. Numerical techniques

The flow and sensitivity equations are solved by an adaptiritefelement
method (Pelletieet al., 1997; Pelletier, 1999). We discuss the salient features he
for completeness and to set up the approximation of the mwoatis sensitivity equa-
tion above. The weak form of the continuity and momentum &qgoa are formed,
and a discretization based on the 7-noded Crouzeix-Raslament pair P, — P;)
leads to a system of nonlinear algebraic equations whictharesolved by Newton’s
method.

The accuracy of the finite-element approximation is diseo#lated to the local
mesh size used. An adaptive remeshing procedure is emptoyietprove the accu-
racy, by refining the mesh in regions of high error in the flow aansitivity variables.
Regions targeted for refinement are identified by using aor erstimator based on
local projections of discontinuous quantities onto a lamaitinuous polynomial ba-
sis (Zienkiewiczet al, 1992a; Zienkiewiczt al, 1992b). For example, since the
Crouzeix-Raviart element pair uses a piecewise quadrascsior the velocity, the
stress tensor is discontinuous. By projecting it onto aicoious polynomial basis,
we can derive an error estimate defined as the differencedeetthe finite-element
and the projected stresses.

Once error estimates are obtained for all variables (flowsanitivities), an op-
timal mesh is determined using the asymptotic convergeatesof the finite-element
method. The optimal mesh is generated to redistribute thghrszes so that each
element has the same contribution to the norm of the totaterr

ne

IEIE =D IEIG, = nell Beguil® [34]
k=1

where the subscriptQ, Q; refer to norms over the whole domain and the surface of
elementt respectively. Subscriplyui represents the target error obtained by equidis-
tribution of the error over the mesh. Thus when equidistitiuis achieved the norm

of the error on any element of the mesh has the same \gliug,;||*>. Finally ne

is the number of elements in the mesh. Comparison of thettergar to the actual
error provides the information needed for refining or coansg the mesh. The pro-
cess is performed in an iterative fashion, beginning witbbarse mesh and producing
a sequence of meshes which reduce the error by a constaat taar that of the
previous mesh usually in the ranf§e25, 0.5]. Details of this adaptive remeshing pro-
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cedure may be found in the literature (Peraitel, 1987; Pelletier, 1999; Turgeat
al., 1999).

5.3. Grid convergence study

In the next Section, the flow around a NACA 4512 airfoil at acidence of
5°serves as a baseline reference. The NACA 4512 profile iwshio Figure 4(a),
it has a maximum thickness of 12% , a maximum camber displaneaf 4% located
at 50% of chord.4%c of maximum ordinate located at the middle of the chord (see
Table 1 for the corresponding valuesegfn andp).

Using this configuration, the flow and sensitivity fields anéved using the adap-
tive finite-element method. All flow and sensitivity variablcontribute to the error
estimation and mesh adaptation processes. We look at thegnvergence of the
aerodynamic forces and their gradients with respect to tiapea parameters to as-
sess the influence of the number of grid points on them and teerrdene practical
numerical parameters for the design optimization exercise

e e ——

(a) NACA 4512 (b) NACA 4515 (c) NACA 5512
(d) NACA 4412 (e) NACA 9714 (f) NACA 6314

Figure 4. Geometries of some NACA airfoils

Seven grid adaptation cycles have been performed and tHenfeshes contain
approximately 80 000 nodes. Figure 5 shows the last adapttihghe vicinity of the
profile. The evolutions of the Drag coefficient and its detixas during the adaptive
procedure are plotted in Figure 6(a). The derivatives agentlaterial derivatives as
computed by Equation [31] with respect to each of the thregpsiparameters m
andp. Furthermore, the absolute value of the derivatives arsidened so that they
can be plotted in log-scale. The data on Figure 6(b) showswargence for the Lift
coefficient.

As can be seen, all the quantities converge to an almost gdiependent value
with mesh refinement. However, the changes in the gradidm¢sare far larger than
those of the aerodynamic coefficients. Indeed, the evaluati the gradient is more
delicate than that of the primal function, since global osensitivities all depend on
the flow sensitivities which, in turn, depend on the flow gesudiat the wall through the
boundary conditions of the CSE. This study also indicatastte dependence of the
Drag (or Lift) and their gradients on the mesh are respelgtive10—°> (and1.10~3).
These observations will help us to determine a stoppingrooi for the optimization
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procedure. Furthermore, the convergence of these quemntéquired at least 50 000
nodes. As a consequence, in the remainder of this work, Sewten grid adaptation
cycles are performed for all reported computations. Theicédn factor of the error
in the adaptive procedure is set so that the final meshesin@gproximately 60 000
nodes in all the cases.

N AVAN YA
SVAYAY
RN

ORI

RIS
pYAY
> SREE RSN
muvi%’.fg?}s:«’%:ﬁ&fﬁéﬁﬁ'éfé‘z
<l

TAVATS AN
SO

Vs Yavava
AV
VAV AT
SOAAX KK KA
R s
QAN
VAV

R K SR AR
FAVAVAY KR
SR A KR

0.001 Drag E 0.01 ¢ Lift E
Abs. Drag Sens. W.r.t. e -——x-— Abs. Lift Bens. wr.t. e -—x-—-
Abs. Drag Sens. W.r.t. m--%--— Abs. Lift Sens. w.r.t. m--%--
Abs. Drag Sens. w.r.t. p 8 Abs. Lift Sens. w.r.t. p -8
0.0001 { N 1 L i . 0.001 . . h . . .
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
adaptive iteration adaptive iteration
(a) Drag and its derivatives (b) Lift and its derivatives

Figure 6. Mesh refinement study

6. Application: fast evaluation of flows on nearby geometrie
6.1. Setting

This Section focuses on the computations of local and iategrantities on nearby
geometries using the CSE method with shape parameters. @meimterest of this
approach is the capability to estimate outputs on nearbgngéies without having to
perform a full flow reanalysis. Simplicity and cost-effeethess are achieved by using
Taylor series in parameter space as long as the predictads/ale accurate. Such a
procedure finds a wide range of useful engineering applinatiln the framework of
optimization algorithms, it can reduce the cost of both finster deterministic algo-
rithms and of non-deterministic approaches such as gealgiicithms. Indeed, these



Sensitivity equation method 47

algorithms require a large number of flow analysis that ipoesible for the bulk of
the CPU costs. Thus, fast evaluation of flows for nearby smtf¢he parameters can
significantly reduces the CPU-time consumed for each opétitn exercise.

Leta denote the baseline value@&ndAua its perturbation. Lep be any solution
variable (say stagnation pressu€g;,, Cr, etc), its value for + Aa is obtained by
linear Taylor series im-space using values of the flow and its sensitivities from the
baseline solution. The first order Taylor series extragaldield is given by:

gb(X,ao—i-Aa) =~ gb(X,ao) + Aa D¢(X,a0) [35]

Da
where ¢ will be either a local quantity (pressure or skin frictionefficient) or an
integral quantity (Drag, Lift and Moment coefficient). Theresponding material
derivative is computed as detailed in Section 4. In whaofedl,a will in turn bee, m
andp, the shape parameters that define an airfoil of the NACA 4t-tagnily.

6.2. Numerical result

We first perturb each parameter separately. From the basaiifoil, a25% in-
crease in the airfoil thickness parametdeads to the NACA 4515 airfoil shown in
Figure 4(b). The same relative increaserirproduces the NACA 5512 airfoil shown
in Figure 4(c). And, &0% increase in the maximum camber ordinate location
yields the NACA 4412 airfoil shown in Figure 4(d). The copesding parameters of
all these NACA airfoils are reported in Table 1.

Table 1. Parameters of some NACA airfoils (unit chord)
NACA 4512 4515 5512 4412 9714 6314

e 0.12 0.15 0.12 0.12 0.14 0.14
m 0.04 004 005 0.04 0.09 0.06
P 0.50 050 0.50 040 0.70 0.30

We now compare the flow solutions obtained by either a full flteanalysis or by
Taylor series extrapolation from the baseline flow. TableRarts the values of the
aerodynamic coefficients evaluated by the two approachesaA be seen, even when
the percentage changes from the baseline values are stidistidue extrapolated co-
efficients are in very good agreement with those obtainecelapalysis. In all cases,
the relative differences are much less than one percentwdoafirms the capabil-
ity of the proposed methodology for computing the materidivdatives of integral
quantities.

Figures 7, 8 and 9 show the pressure coefficient and the sktiofr distributions
for the baseline flow, the Taylor series estimates and themeated flows around the
NACA 4515, NACA 5512 and NACA 4412 airfoils. As can be seerg #greement
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between computations and extrapolations are almost pgddeall the surface coef-
ficients on both the pressure and suction sides of the arfdtilis worth noting that
without the transpiration terms (see Equations [28] and)[2Be predictions are no
longer accurate as already reported in (lawpl., 2006).

Table 2. Extrapolation from a NACA 4512: Aerodynamic coefficients

Computed Extrapolated
NACA Coef. (% Change fﬁom baseline) (% Diff. W?th computed)

4512 Cp 0.13474
(baseline) Cr 0.28024

4515 Cp 0.14106 ( 4.7%) 0.14063 (0.3%)

CL 0.19570 (30.2%) 0.19694 (0.6%)

5512 Cp 0.13756 ( 2.1%) 0.13738 (0.1%)

Cr 0.29256 ( 4.4%) 0.29304 (0.2%)

4412 Cp 0.13591 ( 0.9%) 0.13584 (0.1%)

CrL 0.27613 ( 1.5%) 0.27548 (0.2%)

9714 Cp 0.15180 (12.7%) 0.14964 (1.4%)

CL 0.30916 (10.3%) 0.29823 (3.5%)

6314 Cp 0.14853 (10.2%) 0.14612 (1.6%)

CL 0.22342 (20.3%) 0.24077 (7.8%)
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Figure 7. Nearby solution for the NACA 4515 from the NACA 4512

Now that the procedure has been verified using the previoneerioal examples,
we seek to evaluate how the linear Taylor series extrapugterforms when fac-
ing significant geometrical changes. To this end, we consideNACA 9714 airfoil
shown in Figure 4(e) which differs significantly from the geetry of the NACA 4512
baseline airfoil illustrated in Figure 4(a). All three sleaparameters must simultane-
ously increase, as reported in Table 1, to change the agémimetry from that of a
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Figure 8. Nearby solution for the NACA 5512 from the NACA 4512
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Figure 9. Nearby solution for the NACA 4412 from the NACA 4512

NACA 4512 to that of a NACA 9714. The relatives changeg,jnm andp are re-
spectivelyl7%, 125% and40%. Table 2 compares the recomputed and extrapolated
aerodynamic coefficients. The discrepancy is more impottzan for the previous
cases, an indication that we are approaching the predititivts of the first order
Taylor series extrapolation for these very demanding gégnebanges. However, the
predictions are still fairly good considering how large tie¢ative changes are from
baseline for these coefficients and thus how important theesponding geometrical
changes are.

Figure 10 shows the comparison between the extrapolatatic@oband the recom-
puted solution for both the pressure coefficient and the Bldgtion. Once again, the
discrepancy is more substantial than for the previous cablee peaks are not fully
captured by the extrapolated solution. This holds for thesgpure and the skin fric-
tion coefficients. The main discrepancy is observed for tlesgure coefficient in the
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vicinity of the trailing edge on the pressure side. Howetee, Taylor series coef-
ficients distributions have captured successfully all tr@mieatures in the changes

from baseline.
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Figure 10. Nearby solution for the NACA 9714 from the NACA 4512

We complete this Section by obtaining estimates of the floar a/NACA 6314
by extrapolation from the flow over a NACA 4512. The NACA 63%dbbtained from
the NACA 4512 by increasing the thickness1§%, the maximum camber parameter
by 50% and by decreasing the maximum camber position parametéd%y(see Ta-
ble 1). As can be seen in Table 2, the relative changes in tloeagamic coefficients
is even larger than for the previous case. Yet, the extrapolBrag coefficient is still
in good agreement with the recomputed one. But, the reldiifference in the Lift
coefficient is larger thafi% which illustrates the limits of the first order Taylor series
extrapolation in terms of the relative changes in a set clupaters. However, as can
be seen in Figure 11, the extrapolated local coefficientgimite fully recomputed
solution fairly well except for the skin friction suction gle.
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Figure 11. Nearby solution for the NACA 6314 from the NACA 4512
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7. Application: gradient-based optimal design
7.1. Optimization loop

Optimal design consists in optimizing (maximizing or mif@ation) an objective
function (or cost function)y which depends on a vector of design variakiemnd the
flow variablesU (a, X (a)) where X represents the physical domain. The governing
equations of the flonR(a,U(a, X(a))) = 0 are considered as constraints which
must be satisfied at each step of the design procedure. Saune lbonstraints must
be added to the problem to ensure a realistic solution isdodius, the admissible
set of the design variables, known as the feasible desigoesps usually closed.
From a mathematical point of view, the constrained problesy ive expressed as:

Optimize J(a,U(a, X (a)))
Constrainedto R(a,U(a, X(a))) =0
Li S a S Ls

(whereL; and Ly may be extended real numbers.) The side constraints can be
taken into account inside the optimization algorithm by asing bounds on the
design variables during the globalization step (e.g. whadvirsg the trust-region or
line-search sub-problem). The constraint imposed by the élquations is satisfied
at every point within the feasible design space so that ik mot explicitly appear
in the optimization algorithm presented in the next subsactFinally, our design
optimization loop consists of:

(1) Generation of the initial airfoil shap&,

(2) Initialization of the design variablesg,

(3) Setk=0

(4) Adaptive computation df;, and its sensitivities

(5) Evaluation of the objective functiaff and its gradient

(6) Evaluation ofa;,1 by the optimization algorithm

(7) Test for convergence, and if necessary incremtaanid go to step (4)

Step (6) may require additional calls to step (5) as disaibséow.

Optimization algorithm

A gradient-based optimization strategy is chosen to finthogdtparameter values.
Because of the computational burden of the flow analysispoung use an optimizer
requiring a small number of evaluations of the objectivection and its gradient.

Hence, a quasi-Newton algorithm is used for the preseniystGdnsidering the
maximization of an objective functioff (a), an approximate hessian is initialized
with Hy = J(ap)I and then updated using a BFGS secant strategy. At the current
design pointy, the next values of the parameters are chosen by solvingarggion
sub-problem (Dennis Jet al., 1983):

1
max J(ax) + VI (ar) sg + §S£Hksk [36]

llsk <6
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with a1 = ai + s if the requiredsufficient decrease conditiorse met. This
globalization strategy allows convergence for a wider eaofgnitial parameter values.
For details on the secant strategy and globalization methihe reader is referred
to Dennis and Schnabel (Dennis &t al, 1983). However, this algorithm requires
the evaluation of the objective functigii and its gradienV 7 = ‘Z—Z. The latter is
computed using the sensitivities of the flow variables aedstinsitivities of geometric
quantities as detailed for each specific case in what follows

7.2. Drag and lift matching

This first optimal design problem aims at verifying the cotress of the proposed
approach. Starting from an arbitrary choose wing sectios,ask the optimization
algorithm to find a profile that matches the targeted Drag dfietbefficients. This is
a common problem in aerodynamic design: one must find a wiapsegenerating
sufficient lift to sustain flight. Matching target Lift and &g is also a common sub-
problem encountered in multi-point design.

The matching problem is defined by an objective function meag the discrep-
ancy between the current airfoil characteristi€s, (Cp) to their target values:

T =5 (Cp—Cp)*+ 5 (Cr— )

where the star coefficients are the target Drag and Lift cdiefits. The weight; and
wy are used to yield a balanced influence to the Drag and Liftgeddently of their
magnitudes:

_%
-5

w1 =1 ) w9

Finally, the minimum of this objective function is known te bero so that the optimal
design procedure can be checked because it should find a kgloal minimum of
the cost function.

The design variables are the three shape parameters thae defiing section of
the NACA 4-digit series of airfoilsa = [e, m, p]T. The following bounds (for a unit
chord) are imposed on the design variables for the optinazgirocess to converge
to a feasible design:

e€[0.1,025] ; me[0,0.09 ; pel0.3,0.7]

That is, the thickness is constrained to be between 10 ando28% chord, the max-
imum ordinate of the mean line can not exceed 9% of the chodditarposition is
forced to lie between 30 and 70% of the chord, i.e. not tooectosthe leading and
the trailing edge (since it clearly leads to an unrealistiogrsection). The angle of
incidence can also be taken as a fourth design parametewiirttb studied in the
next cases, since it influences the aerodynamic performaintee airfoils (Lépine
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et al, 2001). In the present case, the angle of attack is fixed lsecis! influence
dominates that of the other parametersif, andp). The airfoil performance is thus
determined by the three shape parameters rather than nimysdly This turns out to
be a more challenging matching problem. It is worth notingt tthe optimal solu-
tion is not necessarily unique in the feasible design spimoe several wing sections
can have the same Drag and Lift (thus the objective functiay have several global
minimum). This means that the optimal solution depends enctioice of the ini-
tial airfoil and on the initial trust region for obvious reass. However, this does
not cause any limitations because the optimization praeeiduset to find one opti-
mal solution (for a given initial point) and not all of theminglly, one of the main
drawbacks of gradient-based algorithms is the possililidy they get stuck in a local
minimum (Vanderplaats, 1999). In the present case, we khewlobal minimum and
thus we can monitor whether or not it has been reached by ttimiapr. If the global
minimum is not reached, the design exercise can always bertes with a different
initial point.

The target values of Drag and Lift are set to typical valuasafdixed angle of
incidence of° of a NACA airfoil:

ChH=0.14000 ;  Cp =0.22000

The initial airfoil is arbitrarily chosen as a NACA 8416 prefi Its Drag and Lift
coefficients are:

CY =0.15833 ;  C9 =0.17957

Thus, we ask the optimizer to find a profile that increases tfidolz more than 18%
while reducing Drag by 13%. The optimization process is gapwhen the variation
of the function value or that of its gradient is outside a oderfice interval that has
been determined during the grid refinement study (see 3$e5tR) or if the variation
of all the parameters values become too small (less thamr®).

initial profile --—-----
-.___ optimal profile

Figure 12. Drag and Lift matching: profiles

Figure 12 shows the initial and optimal profiles of the Dragl &ift matching
exercise. Both the camber and the thickness of the initi@ilprhave been reduced to
match the Lift and Drag targets. The optimization path ioré&gd in Table 3 which
presents the evolution of the design parameters, the vathe objective function and
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of its gradient during the optimization. Figure 13 showsdpé&mization history of the
objective function along with its two contributing terms aseiring the performance
in terms of Drag and Lift matching respectively. Eleven optation iterations were
necessary to reach the global minimum of the objective fancBoth the thickness
and the camber have been reduced to reach the targeted Dadgfanoefficient.
Initially, the thickness is reduced until it is in the riglange for obtaining the desired
performance. The optimizer then works mostly on the maxinoamber value and
location while refining the thickness parameter. Note thatfirst two iterates were
rejected by the trust-region algorithm indicating thatithigal hessian was the wrong
scale.
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Figure 13. Drag and Lift matching: optimization history

7.3. Lift-to-Drag ratio maximization

This section looks at a different design problem: the mazation of the Lift-
to-Drag ratio for the NACA 4-digit series of profiles. Thusewsk the optimization
procedure to maximize the objective function which is now tthift-to-Drag ratio:

The design variables ake m, p anda the angle of incidence. The same bounds as
in the previous Section are imposed on the shape variablesarigle of incidence is
constrained to lie between 0 and 10 degrees thatds [0, 0.175] where the angle is
expressed in radians. The initial parameter values aresdetlaws:

e=015 ; m=005 ; p=05 ; a=0
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Table 3. Drag and Lift matching: optimization path
It. e m p J %J %j a%j
0 016 0.08 0.40 0.6910°3 0.8110~! —0.1510"% —0.32102
1 0.08 0.08 040 0.14107! —0.4110%° 0.34107! 0.16107!
* 0.11 0.08 0.40 0.411072 —0.2310%° 0.1610°! 0.1210~1
0.13 0.08 0.40 0501073 -0.7310"! 0.76102 0.46102
0.14 0.08 0.40 0.101073 0.951073 0.37102 0.761073
0.14 0.07 0.40 0.82107* 0.19102 0.371072 0.531073
0.14 0.01 0.38 0.301073 0.45107'  —0.16107! 0.101073
0.14 0.02 0.39 0.181073 0.4010-! —0.13107* —0.111073
0.14 0.05 0.39 0.4310~* 0.20107!  —0.311072 -0.36103
0.13 0.04 0.37 0451075 —0.641072 0.23102 0.94104
10 0.13 0.04 0.37 0.651077 0.3310=%  —0.2610"% —0.25107°
11 0.13 0.04 0.37 0.171078 0.161074 0.2310%  —0.7810°7
*steps were rejected and trust-region radius was reduced

©CoO~NOULAWN

As can be seen in Figure 15, 16 iterations were necessargémhing the opti-
mum. The objective function has been increased by a factébofHowever, most
of the gain is achieved after only 10 iterations. The finalatens yield marginal
improvement in the design. The optimal profile can be contbtrdhe initial shape
in Figure 14. Clearly, the thickness has been reduced whéentaximum camber
has been increased and its position has been moved towatrhtliveg edge of the
wing section. Figure 15 shows the evolution of the objectivection, the drag and
lift coefficients. As can be seen, the bulk of the gain in thgzctive function comes
from the huge improvement of the lift coefficient during thgtimization. Indeed, the
lift coefficient increases from.03393 for the initial configuration t®.60708 for the
optimal configuration.

initial profile --—-----
optimal profile

Figure 14. Lift-to-Drag maximization: profiles

This is achieved by initially increasing the angle of ingide up to its maximum
bound which leads to a direct enhancement of the lift. Thiea,nhaximum camber
position (controlled by the parameteris moved from the middle of the chord to the
trailing edge of the profile while the mean line deviationr{tolled by the parame-
ter m) is also increased. Therefore, the camber of the profile leas Isignificantly
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increased as can be easily seen in Figure 14, the deviatitr dow is much higher
so that the global force applied by the fluid on the airfoil iscamuch higher. As
one would expect, these geometric modifications also résalt increase of the drag
coefficient since a part of it can be directly related to tlitechefficient. Indeed, the
drag coefficient increases froml1 3372 for the initial configuration t@®.16209 for the
optimal configurationZ1%). However, the increase of the drag coefficient is small
compared to that of the lift coefficient so that the magnitafithe objective function

is greatly increased during the optimization process and the performance of the
airfoil is significantly enhanced. Indeed, the lift-inddadrag effect is balanced by the
fact that the thickness of the profile has been reduced dthimgptimization process.
This change in the parameteiis directly responsible for a reduction of drag. As a
consequence, the drag increase has been limited whileftipetformance has been
greatly improved. It is worth noting that the optimal draglift ratio is typical of a
take-off or landing configuration since the lift is high wéihe drag is important but
limited. The optimal profile looks like a wing section with &jm flap deployed as is
the case during landing. The enhanced lift allows the dirtoafly more slowly and
to steepen its approach to the landing site. Thus, the optiamdiguration found by
the optimization algorithm is physically coherent and ista.
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Figure 15. Lift-to-Drag maximization: optimization history

7.4. Drag minimization with constrained Lift

The last optimization exercise carried out is the Drag mination of the family
of profiles using the four design parameters of the previ@aetiGn. A reduction in the
Drag will typically result in a reduction of the Lift due toefdecrease in the thickness
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and the camber of the airfoil. Thus, for the optimal desighdaelevant in a practical
context, the Drag minimization has to be performed with ast@int on the Lift. The
Minimize Jp =Cp

Constrainedto Cp > C}

where(C’; is the imposed minimum Lift. There are numerous techniqodsandle
constrained multi-variable functions problem (Vandegtéa 1999). Here, we use the
penalty function method based on a penalized objectivetiumc

J = Jp +rH?

with » the penalty parameter an a penalty function that expresses how the
inequality-constraint is satisfied. The following choigesares that no penalty is im-
posed if the constraint is satisfied:
= Cr—-Cy if CL.ZCZ
0 otherwise

problem can be expressed as:

A trade-off has to be made when choosing the value of the pepatameter so that
the minimization problem will not yield constraint violatis that are too large and
problems that are too poorly conditioned from a numericahdpoint. We set to
100 based on previous experience. The minimum allowablecbéfficient is set to
C; = 0.2 for the minimization problem to be of practical interest.

As in the previous Section, the initial profile is chosen tal¢ACA 8416 at 5°of
incidence. Note than this profile does not satisfy the cairgton the Lift (see Sec-
tion 7.2). The minimum of the penalized objective functismdached in 18 iterations.
The optimal profile fully satisfies the Lift constraint ané&tBrag has been reduced by
24%. The initial and optimal profiles are presented in FigiL6e

initial profile -------
——— optimal profile

Figure 16. Drag minimization: profiles

The optimization path is summarized in Figure 17. The thédeparameter and
the maximum camber parameter have been decreased to spéctive lower bound
while the angle of attack is adjusted to satisfy the lift dosigt. The sharp peak of
the objective function is due to the penalty term as the caimtis violated during
the optimization process. It is worth noting the Lift of thgtional profile found is the
minimum allowable Lift chosen. This was expected becausbamus is associated
with a Lift greater that”;. Since a change in the parameters has most of the time
opposite effects on the Drag and Lift coefficients, the Ldhstrained minimization
of the Drag is obtained for a profile that matches the minimiawable Lift.
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Figure 17. Drag minimization: optimization history

8. Summary and concluding remarks

A continuous shape sensitivity equations method has besepted. Details have
been given on the suitable methodology to handle parameparitient boundaries: a
proper description of the computational boundary, the semey use of the Lagrangian
sensitivities and the correct derivation of transpiratiemms for computing the deriva-
tives of physical quantities. To illustrate the correcte$ the proposed approach,
numerical applications have been considered based on flowadthe NACA 4-digit
series family of wing sections. All flow and sensitivity edjoas are solved using an
adaptive finite element method driven byposterioriestimates of the error on the
variables. A grid convergence study has been carried othaoacterize the suitable
mesh density and to determine its influence on the outputs.

The first application of the methodology shows how sensjtiviformation can be
used in a non optimization problem: the fast evaluation of$§l@n nearby geome-
tries. This is achieved by using Taylor series in paramgiacs. This methodology
has been pushed to its limits by considering large changéseimirfoil geometries
that correspond to large modification of the shape paranvetees. Even in such
an extreme situation, the extrapolated solution yield$ulseformation. The second
application concerns the use of the Sensitivity Equatiomshidd for gradient-based
optimal design. A BFGS optimization algorithm is used to fthd optimal values
of shape parameters. Flow and sensitivity information anpleyed to calculate the
values and gradients of the design objective function. &ldifferent optimization
problems were considered to assess the validity of the gexbapproach. In this con-
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text, further work will aim at developing a richer design spahat the one offered by
the NACA four-digit series family of airfoils.
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