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ABSTRACT. Adjoint methods are the choice approach to obtain gradients of large simulation
codes. Automatic Differentiation has already produced adjoint codes for several simulation
codes, and research continues to apply it to even larger applications. We compare the
approaches chosen by existing Automatic Differentiation tools to build adjoint algorithms.
These approaches share similar problems related to data-flow and memory traffic. We
present some current state-of-the-art answers to these problems, and show the results on
some applications.

RESUME. Les méthodes adjointes sont largement utilisées pour obtenir des gradients de
simulations de grande taille. La Différentiation Automatique est une méthode de construction
des codes adjoints qui a déja été appliquée a plusieurs codes de taille réaliste, et les
recherches visent des codes encore plus gros. Nous comparons les approches choisies par les
principaux outils de Différentiation Automatique pour construire des codes adjoints, en
mettant [’accent sur les problémes de flot de données et de consommation mémoire. Nous
présentons des développements récents dans [’'application d’'un principe classique de
compromis stockage-recalcul, et nous montrons nos résultats expérimentaux préliminaires.
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1. Introduction

Modern scientific computing increasingly relies on the caoiagion of several
sorts of derivatives. Obviously, derivatives play a naltucde in the basic simula-
tion activity, as well as in most of the mathematics that nhtttesystems to simulate.
But we are now witnessing a sharp increase in the use of disegamade possible
by the impressive power of present computers on one handyrahably by new pro-
gramming concepts and tools, such as Automatic Differéatig AD), on the other
hand.

The present journal issue provides ample illustration esthnovel uses of deriva-
tives. Now that computing capacities technically allowifpresearchers explore new
usages of derivatives. To quote some examples, simulafiancomplex system in
a neighborhood of some initial configuration is no longerited to a simple linear
approximation. Second- and higher-derivatives can pewadnmuch more accurate
simulation, and are now affordable. Similarly, the devehlamt of gradient-based
optimization of complex systems requires efficient gratighrough adjoints. Re-
searchers are exploring the computation of these grademts for very long and
expensive instationnary simulations (Maatial, 2007). Further, gradient-based opti-
mization, which several years ago was restricting to apipnate quasi-Newton meth-
ods, is now considering true Newton methods, which requémsd-order Hessian
derivatives. Even further, the Halley method is being cdessd again, and it requires
a third-order derivative tensor. Second-order derivaitifermation is also the key to
the sensitivity of the optimum itself, leading to so-caltetbust design.

In this small catalog, Adjoint Codes rank among the most psorg kinds of
derivatives, because gradients are crucial in Optimipatand because the adjoint
method can return a gradient at a cost essentially indep¢frden the number of in-
put parameters. The justification for this will be sketche&®ectior 2. Applications
in CFD or structural mechanics require gradients for sefitsitanalysis and optimal
shape design. Applications such as climate research, noétgy, or oceanography,
require gradients for sensitivity analysis and inversebfgms e.g. variational data as-
similation. Their number of input parameters is often sabmmillions, which makes it
impossible to compute the gradient with direct approachel as divided differences.
The adjoint method is the appropriate strategy to buildgtggadients, and therefore
adjoint codes have been written for several applicatioftsndoy hand at a huge devel-
opment cost. Moreover, hand-written adjoint codes wererokuilt from simplified
models only, to reduce development cost, but this discrgpproduced annoying ef-
fects in the optimization loop. But the increasing complexif e.g. simulations of
turbulent flow by LES models makes this simplification evenerttazardous. Present
AD tools can automatically build efficient adjoint codes floese very large and com-
plex simulations.

AD tools are still research tools. The applications show8Beatiorh demonstrate
that AD can now address simulations of a very decent size,aaadnaking rapid
progress in this respect. However they will maybe never trexblack-box tools like
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compilers. Interaction with the end-user is unavoidablelifterentiate the largest
codes.

In this article, we will introduce the principles of AD in S&n[d, emphasizing the
notions behind AD adjoint codes. We will present in Seclith&existing AD tools
that can produce adjoint codes and we will try to comparer thgécific strategies.
Because optimization of instationnary simulations is ohallenge of the years to
come, we will study in Sectidd 4 the specific problems thattrbesaddressed in the
case of very large and time-consuming codes. SeLlion 5 weilgnt some applications
of our AD tool Tapenade to large instationnary simulatiodes, with our first realistic
measurements of the performance of AD-generated adjod@xo

2. Building adjoint algorithms through Automatic Differen tiation

Automatic Differentiation (AD) is a technique to evaluatFigtatives of a function
F:X e R"— Y e IR" defined by a computer prograka In AD, the original
program is automatically transformed or extended to a negqmp’ that computes
the derivativesnalytically. For reference, we recommend the monograph (Griewank,
2000), selected articles of recent conferences (Caetiat, 2001; Buckeet al,, 2006),
or the AD community websiteww . autodiff .org.

After some formalization of Automatic Differentiation iregeral in Sectioi 211,
we focus in SectiofL212 on the structure of AD-generatediatimmdes, which we
call adjoint algorithms In SectioZB, we underline the principal difficulty thaese
adjoint algorithms must overcome.

2.1. Principles of Automatic Differentiation

The first principle of Automatic Differentiation is to cowl&r any numerical pro-
gram as a mathematical function, obtained by composing ldraentary functions
implemented by each simple statement. The analytic derasbf the complete pro-
gram can therefore be computed using the chain rule of agcdince these are ana-
lytic derivatives, they have the same level of accuracy agiten numerical program,
and are free from the approximation error which is inherertheDivided Differences
(F(X +¢) — F(X))/e

The second principle of AD is that it iButomatic i.e. the end user doesn'’t need
to actually write the derivative program. This task is pemnfed by a tool or by an
appropriate environment, so that producing the derivativde actually costs very
little. This is especially important when the original coaay be modified several
times to embed new equations, new discretization choicaswralgorithms. In most
cases, actual differentiation of code can be called frorkafile. The differentiated
code is regarded as some intermediate step in the compitegspand ideally should
never be modified or post-processed by hand. Unfortunaielgality this still occurs
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sometimes, but it is considered a weakness and AD toolsrarmgtto progressively
eliminate these hand modification stages.

Let’'s now introduce a bit of formalization. Consider a nuioal programp that
implements a functio’. Among the outputs oP, suppose we identify a subsétof
variables that we want to differentiate. Symmetricallycag the inputs of?, suppose
we identify a subseX of variables with respect to which we want to differentiaite
Both X andY are multi-dimensional in general, and must consist of \#eis of a
continuous type e.g. floating-point numbers. Thare often called theaxdependents
andY the dependentsWe are looking for the derivatives df at the current input
point X = X,, and we will assume that there exists a neighborhood arotind
inside which the control flow af remains the same. This means that all conditional
branches, loops, array indices, or other address computaité the same for any input
points in this neighborhood oXy. This is apparently a strong assumption, since the
flow of control of a program usuallpnaychange a lot when the inputs change, but in
practice this assumption is reasonable and leads to useduiediable derivatives. In
this neighborhood, execution @fis equivalent to the execution of a (possibly very
long) sequence of simple statemenig—1—.p :

P 211;12;...11),1;]1; .

Calling f; the mathematical function implemented By, we know that the function
F computed by is:

F=fpofpio--ofi.

Calling W}, the set of all intermediate values after statemgntefined byi?, = X,
andW;, = fi(Wy_1), we can use the chain rule to compute the derivative:of

F'(Xo) = fy(Wp—1)-fpo1(Wp—2).....f1(Wp)

and this can be implemented right away by a new progpanealled thedifferenti-
atedprogram. The goal of Automatic Differentiation is to proéusuch a prograrp’
automatically fronP, for instance through program augmentation or progranmstran
formation, or even as an additional phase during compiteic®.

Itturns out in practice that this full Jacobian matfi%(X) is expensive to compute
and for most applications is not really necessary. Insteadf applications often need
is either theangentderivative:

Y =F'(X).X = f}(Wpo1)-fp_y(Wp—a). ... .f1(Wo). X

or theadjoint (or reverseor cotangentderivative:
X =FYX)Y = f{(Wy)..... fl’f_l(Wp,Q).fz’f(Wp,l).?

Intuitively, the tangent derivativ& is the directional derivative of” along a given
direction X. The adjoint derivativeX is the gradient, in the input space, of the dot-
product ofY” with a given weighting’. Both formulas for tangent and adjoint deriva-
tives are better evaluated from right to left, becaiisandY” are vectors and thg] are
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matrices, and matrixvector products are much cheaper than matmatrix. More-
over eachf;, is very sparse and simple. If, is an assignment to a variablg of an
expression that usesother variablesy,, is basically an identity matrix in which the
k" row is replaced with a vector with onkynon-zero entries. Choosing this right to
left evaluation order, on¥ or oneX costs only a small multiple of the cost Bfitself,
independently of the sizes &f andY". The slowdown factor fron® to P’ reflects the
cost ratio between elementary operations and their derdatrhich ranges between
one and four. It depends on the actual code and on the optionagerformed by the
compiler. In practice it is typicall.5 with the tangent mode aridwith the adjoint
mode. The key observation is that this ratio is essentiatigpendent from the length
of the programP and from the dimensions of the independent ingutnd depen-
dent outpuft”. The reasons for the higher cost ratio of the adjoint modebeitome
apparent when we study this mode in more detail.

For most of the applications we are targeting at, the reqduezivative is actually a
gradient of a scalar cost function. For optimization, thstéonction can be a physical
value such as the lift/drag ratio of an airplane. For invgrsgblems and optimal
control, it will be the least-square discrepancy betweendbmputed final state and
a target state or more generally between all computed irgdiae states and a target
trajectory. In these cases, the dimensioof X is large wherea¥ is a single scalar.
One run of the tangent code would return only one scElaandm runs are needed
to build the complete gradient. On the other hand, the atd@gorithm returns this
complete gradient in just one run. In the sequel of this kertiwe will therefore focus
on the adjoint mode of AD.

2.2. The adjoint mode of Automatic Differentiation

The adjoint mode of AD builds a new co@iehat evaluates
X = FYX)Y = [HWo). oo Sl (W) S (W)Y

from right to left. Therefore it computeg/ (WW,,_1).Y first, and this needs the values
W,_1 that the original prograrh knows only after statemed},_; is executed. This
implies a specific structure fa& which is often surprising at first sight: it consists
of an initial run of a copy oP, followed by actual computation of the intermediate
gradientsV, x—, o initialized with

W,=Y
and computed progressively by
Wit = filt(Wi_1) Wy

for k = p down tol. X is found in the final¥/.
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Consider the following very simple example forfrom inputsa andb to resultc:

@ s = axa + bxb
@ r = sqrt(s)
®) cC =71 + 2%s

Essentiallyp will be the following, from inputsa, b, andc to resultss andb

axa + bxb
sqrt(s)

r + 2%s
(9

2%¢C

=0.0

=35 + 1/(2*sqrt(s))
= 0.0

= 2%axs

= 2%b*s

= 0.0
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where linesP:(1-3) are the copy fronP, usually called thdorward sweep They are
followed by thebackward sweegpwhich is made of the differentiated instructions for
each original statement, in reverse order, naregl-6) from P:(3), P:(7-8) from P:(2),
andP:(9-11)from P:(1). The reader can easily check each differentiated instrostset
by building the transposed Jacobian times vector prodfi¢tV,_).W for k = 3
down tol.

Let's look at the cost of computing the gradiarendb for this simple example, by
counting the number of arithmetic operatiorsitself costs 6 arithmetic operations.
The naive divided differences approach would require aitlé@ee runs op, i.e. a
total cost of3 x« 6 = 18 operations. Computing the same gradient using the tangent
mode (not shown here) would require two executions of thgegahmode for a total
cost of15 + 15 = 30. This cost can be easily reducedito+ 9 = 24 by sharing the
original values between the two derivatives computatidigs is more expensive than
divided differences. In general the two costs are comparfsllarge programs, but
the accuracy of tangent derivatives is clearly better. I§in® computes the gradient
in just one run, at a cost of 15 arithmetic operations, whilalready better than
the other approaches. This advantage becomes even higties asmber of input
variable grows. The slowdown factor fropto P is here 2.5.

The structure of the adjoint algorithtnbecomes even more surprising when con-
trol comes into play. The control path which is actually talke the progran® and
therefore in the forward sweep Bfmust be taken exactly in reverse in the backward
sweep oP. One way to do that is to remember all control decisions dyitie forward
sweep, by storing them on a stack. During the backward swikemontrol decisions
are read from the stack when needed, and they monitor theatafitthe backward
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sweep. With this approach, conditionals frénbecome conditionals iR, and loops
in P become loops i®, although their iteration order is reversed.

2.3. The taping problem of adjoint AD

However, there is a problem lying in the reverse order ofvddive computations
in adjoint AD, which uses values fromin thereverseof their computation order. Al-
though we carefully designed the example in Sediioh 2.2 ¢idathis, real programs
often overwrite or erase variables. Overwriting actualiyioot be avoided in real sim-
ulation programs, which are iterative in essence. For atljaD, an erased variable
must be restored if the erased value is used in a derivatirgatation. This has a
cost, whichever strategy is used.

If a value is needed which is not available, because it has bessed, there are
basically three tactics to make it available again.

— The desired value may have been stored in memory just befasal. This is
the fundamental tactic and it motivates the name we giveisddpingproblem.

— The desired value may be recomputed forward by repeatimgtdtement that
defined it, provided the inputs to this statement are thereselvailable.

— In a few situations, the desired value may be deduced fratarsent that uses
it, provided that the statementiisvertible and that the other inputs to this statement
and its output are available.

For example ifa andc are available, one can invert statement b+c to makeb
available.

Adjoint AD on large programs must use a sophisticated coathin of these three
tactics to compute the gradient efficiently. We will see thdtatever the strategy, it
will always include some amount of storage.

The number of values that are overwrittentbgrows linearly with the execution
time of P. Thus this problem becomes even more crucial for the verg modes that
we are now considering, such as instationnary simulations.

3. Automatic Differentiation approaches and tools: advanages and drawbacks

There exist today a large number of AD tools. In this secti@will select only a
subset of them, which seem to us the most active tools, anchvete representative
of the existing different approaches. We aim at being objedtere, although we are
developing one of these tools, Tapenade. One can find a maonglete catalog on the
AD community websiteww . autodiff . org. We will emphasize how the approaches
behave for building adjoints of large simulation codes. Vilefirst present the general
picture in Sectiol 311, together with a summary in Tdflle 1. thén compare the
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merits of the main alternatives, namely Overloadisg Program Transformation in
Sectior 3P and strategies for restoring overwritten valneSectiol 313.

3.1. AD approaches and tools

Traditionally, the first distinction among AD tools is codesnloadingvs. explicit
program transformation. Since program transformatiomstace harder to implement,
code overloading AD tools came earlier. The principal mendighe overloading
class is the AD tool Adol-C (Griewardt al., 1996). Adol-C applies to € codes, us-
ing the overloading capacities of Object-Oriented stylenifarly for MATLAB, avail-
able AD packages such as ADMAT (Verma, 1999), ADiMat (Bidchbal.,, 2003),
and recently MAD (Forth, 2006), rely on overloading. ADiMaixes overloading
with some amount of code transformation. All overloadingsmffer an implementa-
tion of the tangent mode, and can often compute other tamtiyectional higher-order
derivatives such as Taylor developments.

Some of the overloading tools also offer adjoint AD capasitibut at a cost that
we will discuss in Sectiof3d.2. To our knowledge, overlogdirased tools have pro-
duced adjoint algorithms only for relatively small applicas. For adjoints of large
simulation codes, overloading becomes too expensive aogrgm transformation
tools are compulsory. These tools share common organizptiaciples, that we can
summarize as four successive phases.

1) Parse the complete given program, with all subroutinesiadude files, and
build an internal representation.

2) Perform a number of global static analyses on this inteapesentation. Most
of these are data-flow analyses that help produce a bettét.r8esme of these analy-
ses are completely specific to differentiation.

3) Build the differentiated program, in the internal regmetation format.
4) Regenerate a differentiated source code.

Phase§ll and 2 obviously look very much like what is done inpitems. The in-
ternal representation makes the tool less dependent oarthet fanguage. This idea
was present right from the design stage for Tapenade (Hastak 2004) and Ope-
nAD (Utke et al, 2006), for which phasdd 2 afifl 3 are language-independéig. T
makes extensions to new languages easier. There is a pbtexttia level of flexi-
bility with OpenAD, which publishes an API allowing a progmener to define new
code analyses on the internal representation. Therefer&pen” in OpenAD. The
two other frequently mentioned program transformatiorid@e Adifor (Bischofet
al., 1996) and TAMC/TAF (Gieringet al., 2005). Not so surprisingly, all these trans-
formation tools have a similar policy regarding the apgima language: Their pri-
mary target is Fortran, and they all more or less accept &o®. Except Adifor, they
are all working on C too, although at an experimental staggemade and OpenAD
take advantage of their architecture there, whereas TARdgrgoing a major rewrit-
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ing to reach “TAC”. The G+ target language is a different story, commonly regarded
as a hard problem, and postponed for future research.

The ability to run global analyses is a strong point in favidihe program transfor-
mation approach. Program transformation AD tools sligkiffer from one another
at the level of the data-flow analyses that they perform. Mhe&drnal representation is
important here, since it conditions the accuracy of thecsthta-flow analyses. Also,
some tools have specific analyses that allow for slightlyrompd differentiated code.
But in general, the most profitable analyses have spread toads. For instance
the activity analysis, that finds out whether a given variable somewtreted code
actually has a nontrivial derivative, is available in theiftools above.

In the adjoint mode, the program transformation tools diffichow they address
the taping problem (cf. Sectidn2.3). There are mostly twprapches, namely
Recompute-AlRA) for TAMC/TAF and Store-All(SA) for Tapenade and OpenAD.
There is no adjoint mode in Adifor, but a previous attemptfAdjusing SA, will serve
as a basis for the adjoint mode of OpenAD. Sediiah 3.3 consghsRecompute-All
and Store-Allapproaches. In reality, it turns out that both approachestine hy-
bridized, and their performances grow very much alike.

Although it doesn't feature an adjoint mode yet, let's mentthe extension of
the NAGWare Fortran compiler (Naumaenhal,, 2005) that includes AD capabilities
right inside the NAG Fortran95 compiler. The advantage & tthasé€ll of program
transformation is done by the compiler, the internal fornali®ady defined, and the
final phasdl4 is useless. There is a slight difficulty for pgBs@ndB because sep-
arate compilation, which is the standard in compilers, prés global analyses and
transformations. Therefore the differentiated code dio&®lows the structure of the
original code, very much like overloading-based tools dbe &djoint mode is under
development, and will follow the code-list approach of deading tools.

Table 1. Summarized comparison of some AD tools and environments

| | target | approach | adjoint | taping strategy |
OpenAD F77/F95(soonL | transfo. | yes SA
Adifor F77/F95 transfo. | no

TAMC/TAF F77/F95(soonL | transfo. | yes RA
Tapenade F77/F95(soonL | transfo. | yes SA

NAG F95 F77/F95 compiler | no
Adol-C C++ overload.| yes SA + Code-List
ADiMat MATLAB overload.| no

MAD MATLAB overload.| no
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3.2. Overloadingvs. program transformation

Overloading is the ability, available in some languagesidfine different imple-
mentations for the same procedure or operation. It is the dffihe procedure argu-
ments that decides which implementation is chosen for angiedl. Object-Oriented
programming is a generalization of Overloading. Using tnaeting, one can redefine
the meaning of arithmetical operations to include derxggticomputations. AD by
code overloading requires little modification of the origliprogram: all is needed is
to change the declared type of the variables that have aadiggv Still, this must be
done generally by hand. Then, after linking to a predefinestloading library for
arithmetical operations, the program computes the déresit

On the other hand, explicit program transformation recuaevery complex AD
tool, similar to a compiler, which parses the original pr@grin order to analyze it
and then to create a new program that computes the derisafsme advantage of this
approach is its flexibility: it builds a totally new programvhose structure need not
follow the original. The other advantage is the possibitdyrun a number of global
static analyses on the original code, that can lead to istiege optimizations in the
differentiated code. The cost of this approach is a long ldgveent effort to build the
tool, but in theory all that one can do with Overloading casodle done with program
transformation.

Specifically for the adjoint mode, overloading has a harqidgamust follow the
control flow and execution order of the original program.c®ithe adjoint mode needs
to run the derivative computations in the reverse ordersgh®omputations cannot
be run by the overloaded operations. The common answerstgad, to store the
required derivative computations themselves on a stagkohly when the overloaded
program terminates that this computation stack is used engbldy run in the correct
order. In other words, the overloaded statements write apregram, named eode-
list, from its last line to its first line, and only at the end thisdedlist is executed
to get the derivatives. Storing the derivative computatisnexpensive: the code-list
grows with execution time, since it contains no control stinwe. The values needed
in the derivatives computation must still be stored too. Anier of refinements can
reduce this cost, many of them inspired by the program taansdtion approach, but
overloading is lagging behind. The typical size of applmas that can be efficiently
adjointed by overloading is notably smaller than by progteansformation.

In contrast, the program transformation approach can preduwell structured
adjoint algorithm, which is smaller than a code list, and ikidone only once at dif-
ferentiation time. The compiler can exploit this contralsture to generate efficient
code. Only the values needed in the derivatives computatigst be stored.

To conclude this section, one must note that the relativétsnefrOverloading and
Program transformation are getting blurred with time. Orenback of Overloading
used to be a noticeable inefficiency of overloaded progravhs;h is now reduced
by very sophisticated compilers. Some overloading toatsnew considering to run
a preliminary global analysis of the program, and some arofiprogram transfor-
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mation to automatically change the types of variables wihénis necessary. This
amounts to addingctivity analysis into the overloading scheme, thus improving the
final code. There are also a number of strategies in Adol-@daice the size of the
code-list. On the other hand, the code-list strategy canttio@ctive for the program
transformation tools, in the cases where reversing the fiogontrol and the flow of
data become too complex. This is not the case at present,ight wery well be for
AD of Object-Oriented programs.

3.3. Storagevs. recomputation

As mentioned in Sectidnd.3, an adjoint algoritRrmust provide a way to retrieve
(most of) the intermediate valuesBfusing a combination of three elementary ways:
memory storage, forward recomputation, and backward savein present AD tools,
backward reversal is rarely used. Inserting some backwarersal into the general
strategy, and finding the best combination, are still opeblems. We shall focus here
on what is available in real tools, namedtorageand recomputation All strategies
radically modify the adjoint algorithm structure of Sectl2.2.

The TAMC/TAF tool initially relies on recomputation, leamdj to theRecompute-
All (RA) approach. The RA approach recomputes each neBdedn demand, by
restarting the program on inplit, until instruction;. The cost is extra execution
time, grossly proportional to the square of the number oftime instruction. Fig-
ured summarizes RA graphically. Left-to-right arrows regent execution of orig-
inal instructionsly, right-to-left arrows represent the execution of the d#fgiated
instructions?k which implementV;_, = f,’j(Wk,l).Wk. The big black dot repre-
sents the storage of all variables needed to restart exedutim a given point, which
is called asnapshatand the big white dots represent restoration of these biasa
from the snapshot.

Y 1 2 3 p-2 p-&
C—
O > 1
time ¢

| e o o p-1
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C—
v Oh 1_2
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Figure 1. The Recompute-All tactic

The Tapenade and OpenAD tools initially rely on storageitegito theStore-All
(SA) approach. The SA approach stores elghin memory, onto a stack, just before
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the correspondindy.; during the forward sweep &. Then during thebackward

sweep eachWW}, is restored from the stack before the correspondTngl. The cost
is memory space, essentially proportional to the numbeupftime instruction.
Figurel2 summarizes SA graphically. Small black dots regmestorage of th&/;, on
the stack, before next instruction might overwrite thend amall white dots represent
their popping from the stack when needed. We draw these dattes than in FigurEll
because it turns out we don’t need to storel&]l, but only the variables that will be
overwritten byl 1.

1 2 -
nmel
O O e s e G O O e s
T T

Figure 2. The Store-All tactic

The RA and SA approaches appear very different. The quadmati-time cost
of the RA approach appears unacceptable at first sight. Hewvéve TAF tool is
successful and performs comparably with Tapenade. Onenédas that is the run-
time cost of individual storage operations in the SA appheaghich must not be
overlooked. These operations often damage data locdiit\s compromising later
compiler optimizations. Values are stored on and retrigveth a dynamic stack,
whose management also has some cost. Hardware can prowderane.g. pre-
fetching, but these low-level concepts are not easily med&gpm the target language
level.

In any case, pure RA and pure SA are two extreme approaches:ofh
timum usually lies in-between.  Clearly recomputing theutesof an ex-
pensive program expression can cost far more than simplegsgp although
costs in memory space and in run time are hard to compare. ©nother
hand, consider a computation of an indirection index in aplosuch as:

nodeIndex = leftEnd(edgelndex) .
Assume that botheftEnd andedgeIndex are available. In addition to its inher-
ent memory space, storage tactic f@deIndex already costs one push and one pop
from the stackj.e. more than twice the run-time of simple recomputation. Tfae
recomputation is here cheaper for both memory space andimen t

But the main reason why RA and SA approaches perform comjyaoablarge
simulation codes is that neither of them can work alone agywée quadratic run
time cost of pure RA is simply unacceptable, and the lineamorg space cost of
pure SA easily overwhelms the largest disk space availdliie.classical solution is
called checkpointingand it applies similarly to RA and SA. Checkpointing will be
discussed in detail in Sectign #.1. All we need to say herbas €heckpointing is
a storage/recomputation trade-off which can be recungigpplied to nested pieces
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of the program. In ideal situations, optimal checkpointingkes both the run-time
increase factor and the memory consumption grow like orgyidigarithm of the size
of the program. In other words jf is the number of run-time instructions Bf then
the run-time ofP will grow like p x Log(p) and the maximum memory size used
will grow like Log(p). These optimal costs remain the same, whether applied to the
RA or SA approaches. This is illustrated in Figuiés 3 Bind 4: 8R4 SA approaches
visibly come closer as the number of nested checkpointingldegrow. In Figurél3,
the part on a gray background is a smaller scale reproducfitite basic RA scheme
of Figure[l. Similarly in Figurdl4, the gray box is a smallealscreproduction of
the basic SA scheme of Figu® 2. Apart from what happens aetlleaves” (the
gray boxes), Figureld 3 aiidl 4 are identical. The questioniresria compare pure
SA and pure RA, but it becomes less crucial as these are dpplmaller pieces of
the program. We believe SA with some amount of recomputdtianore efficient,
especially on small pieces of program, because the stacktagrin cache memory.
This is why we chose SA as the basis approach for our AD tookiiage.

4. Space-time trade-offs for reversing large simulation cdes

We now focus on the construction of adjoint algorithms fegésimulation codes.
We recall that the adjoint approach in general is the onlgtzal way to obtain gra-
dients, because of the large number of input parametersrenidng simulation run
time. The adjoint algorithms obtained through AD belonghis tategory.

This section deals with the fundamental difficulty of adjaihgorithms namely,
the need to retrieve most of the intermediate values of theilsition in reverse or-
der. Sectiol =313 described the RA and SA approaches, bitenaian work on the
present large simulation codes. Both need to be amendedgihriatensive use of
checkpointingwhich is described in Sectidn4.1. This shows in particthat RA
and SA behave similarly when checkpointing comes into @ag we will therefore
restrict to the SA approach from then on. Secfian 4.2 retdonly known situation
where optimal checkpointing can be found. Secfion 4.3 dessithe general situa-
tion, where checkpointing is applied on structured prograeen as call trees at the
topmost level.

4.1. Checkpointing

On large programs, neither the RA nor the SA approach can work. The SA ap-
proach uses too much memory, grossly proportional to theiraa number of instruc-
tions. The RA approach consumes computation time, grosglgring the run-time
number of instructions. Both approaches need to use a $perde-off technique,
known ascheckpointing The idea is to select one or many pieces of the run-time se-
quence of instructions, possibly nested. For each gieoae can spare some repeated
recomputation in the RA case, some memory in the SA caseeg &otst of remember-
ing asnapshati.e. a part of the memory state at the beginningo¥We studied how
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to keep the snapshot size as low as possible in (Hast@dt 2006). The structure
of real programs usually forces the pieces to be subroytinegs, loop bodies, or
fragments of straight-line code.
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Figure 3. Checkpointing on the Recompute-All tactic

Let us compare checkpointing on RA and SA in the ideal casepofra straight-
line program. We claim that checkpointing makes RA and SAeatoser. Figurgl3
shows how the RA approach can use checkpointing for one gnogiecec (the first
part of the program), and also for two levels of nested cherkp. The benefit comes
from the checkpointed piece being executed fewer times.cbseis memory storage
of the snapshot, needed to restart the program just afteritbekpointed piece. The
benefit is higher when is at the beginning of the enclosing program piece. On very
large programs, 3 or more nested levels can be useful. Abtherllevels, the memory
space of already used snapshots can be reused. Similagly;e shows how the
SA approach can use the same one-level and two-levels chietikg schemes. The
benefit comes from the checkpointed piece being executefirshéime without any
storage of intermediate values. This divides the maximwu®a sf the stack by 2. The
cost is again the memory size of the snapshots, plus thisamextra execution of the
program piec&€. Again, the snapshot space used for the second level of pbatlng
is reused for two different program pieces. Visibly, the tsahemes come closer as
the number of nested checkpointing levels grow.

Let us analyze more precisely why checkpointing generatigroves things. Fo-
cusing on the SA approach from the top part of Fidlre 4, thetime cost of check-
pointing is an extra run of. The benefit lies in the maximum memory size used. Call
D the remaining of the original code, downstreanWith no checkpointing, the max-
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Figure 4. Checkpointing on the Store-All tactic

imum memory use is reached at the end of the forward sweepm alhetermediate
values computed duringand therD are stored. We will write this maximum:

peak = tap&C) + tapgD)

With checkpointing, there are two local maximal memory ugiest at the end of the
forward sweep ob,
peak, = snp(C) + tap&D)

where snfC) is the snapshot needed to re-iyrand second at the end of the re-run,
i.e. forward sweep, o,

peak, = tape(C)

To see whypeak, < peak, observe that tage) grows linearly with the size of:
each executed statement overwrites a variable, which neusabed in general. On
the other hand srp) is the subset of the memory state at the beginningwhich is
used byC. This set grows slower and slower@grows bigger, because the successive
assignments during progressively hide the initial values. Therefore &ipgrows
less than linearly with the size afand for large enough, we have snff) < tapgC).

4.2. Checkpointing fixed-length flat code sequences

Consider the model case of a programmade of a sequence of piecBs,—i—.p,
each piece considered atomic and taking the same time. Asalso that each piece
consumes the same amount of storage(tBp¢hat the snapshot stf.) is sufficient
to re-run not onlyl;, but all subsequent pieces, and that all (dpp have the same
size sng/). Under those assumptions, it was shown in (Griewank, 1992n1G et
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al., 1996) that there exists an optin@leckpointing schemiee. an optimal choice for
the placement of the nested checkpoints.

The optimal checkpointing scheme is defined recursivelyafgiven maximal
memory consumption and a maximal slowdown factor. The mgroonsumption is
expressed as the maximum number of snapshots that one wishes to fit in meato
the same time. The slowdown factor is expressed &s maximum number of times
one accepts to re-run anfy.. For a givens andr, I(s,r) is the maximum number
of steps that can be adjointed, starting from a stored statehacan be a snapshot.
It is achieved by running as many initial steps as possihe then place a snapshot
and again adjoint as many tail steps as possible (or the initial sequencé; is
maximized recursively, but this time with onty 1 recomputations allowed since one
has been consumed already, and for the tail sequénisanaximized recursively, but
with only s — 1 snapshots available, since one has been consumed alrdetgfdre

Us,r)=1(s,r—=1)+1(s—1,7) ,
which shows that(s, ) follows a binomial law:

(s+1)!
slrl

This optimal checkpointing scheme can be read in two waysst,Rivhen the
lengthp of the program grows, there exists a checkpointing schemwliich both
the memory consumption and the slowdown factor due to rectatipns grow only
like Log(p). Second, for real situations where the available memorytlagefore the
maximals is fixed, the slowdown factor grows like t&" root of p.

This model case is not so artificial after all. Many simulatemdes repeat a basic
simulation step a number of times. The steps may vary a, Ititlé still take roughly
the same time, tape size, and the snapshot to run one steguacessive steps is basi-
cally the same because each step build a state which is thetomthe next step. One
guestion remains with the numbeof iterations of the basic step. In a few capds
actually known in advance, but in general it is unknown ardfogram iterates until
some convergence criterion is satisfied. Strictly speakimg optimal checkpointing
scheme can only be organized wheis known in advance. However, there exist ap-
proximate schemes with basically the same properties whgilynamic,.e. known
only at run-time. It is very advisable to apply these scheroptimal or not, to the
principal time-stepping loops of the program to differaudi

4.3. Checkpointing call trees

In many situations the structure of the prograns not as simple as a sequence
of identical steps. Even in the case of iterative simulajahe program structure
inside one given step can be arbitrary. Since AD applies ¢osthurce o, we are
here concerned with the static structurePof which is acall graph i.e. a graph of
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procedures calling one another. Each procedure in turmuststred as nested control
constructs such agquences, conditionaBndloops

This strongly restricts the possible checkpointing schentgenerally speaking,
the beginning and end of a checkpointing pi€aaust be contained in the same pro-
cedure and furthermore inside the same node of the tree dfatatructures. For
example a checkpoint cannot start in a loop body and endthaitdoop. The optimal
scheme described in Sectibnl4.2 is therefore out of reaclke. qUiestion is how can
one find a good checkpointing scheme that respects thesietioss.

Let us make the simplifying assumption that checkpointioguos only on proce-
dure calls. If we really want to consider checkpointing fther program pieces, we
can always turn these pieces into subroutines. Figure 5stimeffect of reverse AD
on a simple call graph, in the fundamental case where chéttipgis applied to each
procedure call. This is the default strategy in TapenadeckHton of a procedurkin
its original form is shown as. The forward sweep,e. execution ot augmerled with
storage of variables on the stack just before they are ovitewyis shown ast . The
backward sweep,e. actual computation of the reverse dgLivativesAohoich pops
values from the stack to restore previous values, is showh aBor each procedure
call, e.g.B, the procedure is ruwithout storage during the enclosing forward sweep
A . When the backward sweep reaches, it runs B, i.e. B again but this time with
storage, and then immediately it runs the backward sweeemd finally the rest oft .
Figure[® also shows the places where snapshots are takeseddourun procedures
B, C andD twice. If the program’s call graph is actually a well baladeall tree, the
memory size as well as the computation time required for #vense differentiated
program grow only like the depth of the original call trée, like the logarithm of the
size ofP, which compares well with the model case of Secfiah 4.2.

[x] : original form ofx
[x) : forward sweep fox

(%] : backward sweep for
¢ : take snapshot

Figure 5. Checkpointing on calls in Tapenade reverse AD

In this framework, the checkpointing scheme question artwotodeciding, for
each arrow of the call graph, whether this procedure callties checkpointed piece
or not. This is obviously a combinatorial problem. With respto the number of
nodes of the call graph, there is no known polynomial alganito find the optimal
checkpointing scheme. There is no proof that it is NP nor egpdal either. In any
case, we can devise approximate methods to find good enohgimss.

The fundamental step is to evaluate statically the perfoceaf a given check-
pointing scheme. If the call graph is actually a call treés ttan be done using rela-
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tively simple formulas. These formulas will use the follogidata for each nodg,
i.e. each procedure of the call tree.

—time(R): the average run-time of the original procedasenot counting called
subroutines.

—time(R): the average run-time of the forward and backward sweepgseddjoint
algorithm ofR, not counting called subroutines.

— tap€R, i): the memory size used to store intermediate values af the tape,
between itsi’" subroutine call and the following procedure call. Indi¢esart atl
up, andmaxstands for the last

— sn@T,4): the memory size used to store the snapshot to checkpoitttiseb-
routine called by the root procedure of

—snp_timé€T,4): the time needed to write and read the snapshot, very roughly
proportional to snT, 7).

These values can be either measured through run-time pgobfi the adjoint code,
guessed through profiling on the original program, or eversgly evaluated statically
on the source program at differentiation time. The form@s® use the navigation
primitives:

— roof(T), the procedure at the root of the sub-call-ttge
— child;(T), thei*" sub-call-tree off,

as well as the boolean ckp i), true when the considered scheme does checkpoint
the i** subroutine call made by the root procedureTofThis boolean function in-
deed defines one checkpointing scheme, and for each “ckp’afiredthe following
durations:

—time(T) as the total run-time cost af
—time(T) as the total run-time cost af the adjoint algorithm of.

We can compute these durations, recursively on each salr-toé the call tree, as
follows:

time(T) = time(root(T))+Ztime(childi(T))

time(T) = time(root(T))+

— if ckp(T,4) : time(child;(T))+snp_timeT, i
Ztlme(chlldi(T))—i—{ othre)(rwi%s)e:() (child; (T))+snp_timeT, 4)

Figure[® shows an example call tree, together with an examipdekpointing
scheme, namely on the callsBoE, andF. The resulting adjoint algorithm is shown
on the right. Inspection of the adjoint call tree justifies tibove timing evaluations.
Similarly, we can evaluate the peak memory consumptionndutiie adjoint algo-
rithm. Arrows in Figurdb show the places where this peak aomsion may occur.
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Figure 6. Example checkpointing scheme on a call tree

The formulas are slightly more complex and we need to intcedihe intermediate
valuepart_mem(T) in order to compute the final resydeak_men{T). We define

—part_mem(T, ) as the amount of memory used between the beginning of the
forward sweep?> and the(i + 1)*" subroutine call done bf. In particular, the last
part_mem(T, imax) is the amount of memory used by the complate We define
part_mem(T) = part_mem(T, imazx),

— peak_men(T) as the peak memory consumption during execution of the whole
T.

We can compute these memory consumptions recursively dm aaetreer as fol-
lows. Notice thapart_mem(T, ) on a giverT is computed recursively farincreas-
—

ing from 0 to imax i.e. ir)om the beginning ofT , incorporating progressively each
successive call made by .

part_mem(T,0) = tap&root(T),0)

part_mem(T,i) = part_mem(T,i—1)+ tapgroot(T),:)+
if ckp(T,7) : snp(T,q)
otherwise: part_mem(child;(T))

part_mem(T) = part_mem(T,imax)

peak_memT) =
ma><part_mem(T)7

Max (part_mem(L i—1)+ peak_men(childi(T))))
i|cKp(T,9)

These formulas can be used to evaluate the time and memosymmtion for
every checkpointing scheme, and therefore to search foptimal scheme. A simple
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heuristic could be to sweep through the call tree to find tlegdure call (the” in T)
that gives the best improvement when toggling(@kp), actually toggle it, and repeat
the process until no improvement remains. We are currenjbheementing such a
system inside Tapenade. The next section presents sonmaipeely results.

5. Applications

Prior to experiments, we developed an extension to the defaeckpointing strat-
egy of Tapenade: each subroutine call can now be checkpoartaot, through a
boolean directive called$AD NOCHECKPOINT, inserted by hand by the end-used into
the original code. In the future, Tapenade will look for a daheckpointing scheme
following the principles of Sectioi”4.3. Then the end-usan cefine this choice
through directives. Until this exists, we place these dives by hand on every pro-
cedure call to make experiments. We present the resultsrer targe instationnary
simulation codes.

5.1. Stics

Stics is a Fortran 77 code that simulates the growth of a fiakdhg into account
the plants that are actually grown, the type of soil, the slaied quantities of the
inputs in water and nitrates, and the weather during a camplgricultural cycle. This
simulation is of course instationnary, with an explicit &rstepping scheme. Stics is
developed by the French Institut National pour la Rechefsgmnomique (INRA)
since 1996.

For this experiment, the goal was to compute the gradiertetdtal amount of
biomass produced, with respect to most of the input paraset€his is a typical
application for AD adjoint mode. For the particular apptioa the simulation ran for
about 400 days,e. 400 time steps.

The original simulation code is about 27 000 lines long, ane simulation runs
for 0.4 seconds on a 3GHz PC.

For this size of program, checkpointing is of course commyidor the adjoint
algorithm. Even with Tapenade’s default strategy, checkpointing on all calls, the
peak memory size was larger than the available 2 Gigabyteseafory.

The immediate answer was to apply a slightly sub-optimasieerof the check-
pointing strategy described in Sectionl4.2 to the topleweplof 400 time steps. As
a result, the adjoint algorithm actually worked, and retatia gradient that we could
validate.

However the slowdown factor from the original simulatioritte adjoint algorithm
was much too high. We claimed in Sectldn 2 that this factor typically 7, but on
Stics we observed a factor closer to 100 !
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In addition to the optimal checkpointing strategy appliedte toplevel loop, we
looked for a good checkpointing scheme inside the call tfesach time step. We
measured the time and memory data from Sedfioh 4.3 and wel félsubroutines
where it was obviously counter-productive to apply chedékpiog. Actually these
subroutines behaved very strangely, since for them thestreivas much larger than
the tape, which is very unusual. The snapshots were so laagé&e times to take and
read the snapshots, “snp_time” dominated the actual déveomputations.

Using the new predicate in Tapenade, we implemented thiskgloénting scheme
by explicitly not checkpointing the 6 procedure calls. Asesult, we observed a
reduction both in time and in peak memory. The slowdown is naly 7.4, and the
peak memory is only 80 Megabytes, comparable to the 30 Mdgalsyatic memory
size of the original simulation code.

This application shows that a good checkpointing scheméasfor AD adjoint
algorithms of long simulations. In addition, although ckgainting is generally a
trade-off that spares peak memory at the cost of run-timedbavn, there are extreme
cases where checkpointing looses in both respects anddshewlvoided.

5.2. Gyre

Gyre is a simple configuration of the oceanography code OBAIBsimulates the
behavior of a rectangular basin of sea water put on the tsdpitween latitudes 15
and 3@, with the wind blowing to the East. OPA 9.0 is developed byltR&CEAN-
IPSL team in Paris VI university. It consists of about 110 0A8s of Fortran 90. The
Gyre simulation runs for 4320 time steps ranging on 20 days.

The time advancing uses an implicit scheme with a precamtl conjugate gra-
dient for solving the linear system at each time step. Onaulsition of the Gyre
configuration takes 92 seconds on a 3GHz PC.

In this experiment, in order to perform data assimilatidre goal was to obtain
a gradient of an objective function, the total heat flux asresme boundary at the
northern angle, with respect to an initial parameter, whsctine temperature field in
the complete domain 20 days before. This is a typical apipdiador the adjoint mode
of AD.

Here again, the checkpointing strategy for iterative loopSection 4P is abso-
lutely necessary. Otherwise, the adjoint code exceeded8bgtes of memory after
just 80 time steps. With the checkpointing strategy on fieedoops, the adjoint code
computed an exact gradient with the following performances

—time: 748 seconds,e. a slowdown of 8.2

—memory: 494 Megabytes, to be compared with the 40 Megabytes statiwamne
size of the original code.
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The next improvement step is to look for a better checkpogscheme inside
the time steps: we progressively increased the number afplre calls that are not
checkpointed, until we used all the available memory of 3aBiges. As expected,
this reduced the number of duplicate executions due to g@ucts, and thus reduced
the slowdown factor to 5.9. We believe this can still be inya@with some work.

Incidentally, notice that for the previous version 8.0 offAQEhe adjoint code was
written by hand, which is a long development. The slowdowstidawas between
3 and 4, which is a little better than what we obtain with Tegm However, the
hand adjoint reduced the memory consumption by storingstanly at certain time
steps, and recomputing them during the backward sweep épiiation. This proves
efficient, but still this is a cause for inaccuracy in the gead In comparison, the AD
adjoint algorithm returns a more accurate gradient for ati@ly small extra cost.

Figurel shows a part of the resulting gradient, with respette initial tempera-
ture distribution at a depth of 300 meters. We also show ttexpinetation of some of
its structures made by the oceanographers.

Influence of T at -300 meters

on the heat flux 20 days later
across north section

Kelvin wave

Rossby wave

15° North

Figure 7. Oceanography gradient by reverse AD on OPA 9.0/Gyre
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5.3. Nemo

Nemo is a much larger configuration of OPA 9.0, encompaskiaflbrth Atlantic.
Again, we want to build a gradient through adjoint AD. Worloisgoing and we have
few results. We recently obtained our first valid gradientheéf this gradient is fully
reliable for the whole simulation (450 time steps here) ve® @&lxpect to have at hand
the first version of the checkpointing profiling heuristicsdgbed in Sectioi213. We
plan to use Nemo as our first large testbed to improve thiskgwanting profiling
heuristic.

6. Outlook

We presented the current research on Automatic Differeatiaaiming at au-
tomatic generation of efficient adjoint codes for long itistanary simulations. We
described the principles of AD, which show that the adjoiotimis certainly the most
reasonable way to obtain the code for the gradient of a stimulaWe suggested how
existing AD approaches and tools could compare in this @spdowever, adjoint
codes require complex data flow and memory traffic. AD toolgehget to reach the
level where these questions are properly solved. In thigpaye tried to present the
directions we are considering to address these questions.

The issue of finding good checkpointing schemes on largérarpiprograms is
central. There is a strong suspicion that this combindtquastion is NP-hard. We
believe we can devise good heuristics, suggesting effidkatkpointing schemes
even for large applications. Yet, these heuristics relytaticsdata-flow analyses that
are always approximate, and also on approximate modelseopéformance of a
code on a computer architecture. Therefore interactioh thi¢ end-user is definitely
necessary to obtain really efficient checkpointing schemes

Although our example applications are still at an experitabHevel, we hope they
show that AD tools are making constant progress, and proddjznt codes whose
efficiency is similar to hand-coded adjoints. In a matter s, we will probably be
able to relieve numericians from the tedious task of haniirvgradjoints.
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