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1. Common obstacles to optimization with PDEs

For many actual or potential optimization users the transition from existing simu-
lation models and tools to optimal design is anything but simple. Often the prospect
of redesigning and reimplementing their models to interface with a classical NLP
(non-linear programming) package is so daunting that the idea of employing calculus
based optimization methods is abandoned all together. Especially for discretizations
of PDEs the specifications of Jacobian sparsity patterns andthe provision of partial
derivative values can be extremely laborious. Moreover dueto sheer size and lack of
structure that effort may not even lead to an efficient solverfor the purpose ofsystem
simulation, i.e. the resolution of a nonlinearstate equation

c(y, u) = 0 with c : Y × U → Y.

Hereu ∈ U is a design vector, which may be kept fixed asc(y, u) = 0 is solved for
the correspondingstate vectory = y∗(u) ∈ Y . In aerodynamicsu may represent
a parameterization of a wing shape, which determines together with appropriate free
stream boundary conditions the flow fieldy around the wing. In climatological studies
u is a vector of model parameters andy is a vector of prognostic variables,i.e. ocean
and atmosphere flow velocities and temperature. In the rightfunction space setting one
may assume that the linearized operatorcy ≡ ∇yc has a bounded inverse, but often
the Jacobian obtained for a suitable discretization is so unwieldy that no Newton-like
solver can be realized. In (Heinkenschlosset al., 2001; Hazraet al., 2005; Biros
et al., 2002) one finds frameworks for constrained optimization incases where the
linearized state equations can be solved reasonably rapidly.

Instead we address the situation where one has to make do witha fixed point
iteration for solvingc(y, u) = 0

yk+1 = G(yk, u) for k = 0, 1, . . .

which frequently may be interpreted as pseudo-time stepping on an underlying insta-
tionary version of the state equation.

For example, in aerodynamics, one can use quasi-unsteady formulations which are
solved by explicit central finite volume schemes stabilizedby artificial dissipation and
Runge-Kutta time integration (Jamesonet al., 1981). These schemes are most efficient
in combination with geometric multigrid (Jameson, 1986; Swansonet al., 1997).

There is some steady progress in simulation models and of course computing
power. Nevertheless we have to assume that in many application areas a single state
equation solve to full accuracy takes several hours or even days on a single machine.
Compared to the effort of gaining feasibility for givenu in this way, the evaluation of
an objective

f(y, u) : Y × U → R
m,

which may represent a fitting functional or other performance indices is usually a
cheap byproduct. Hence the transition from simulation to optimization may appear at
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first quite simple. Consequently there are many software tools that implement assorted
direct search strategies based on computing solutionsyk with c(yk, uk) ≈ 0 and then
f(yk, uk) at a cloud of sampling pointsuk in the design domainU .

Disregarding frequent claims of global convergence to global minima on nondif-
ferentiable problems, one can expect that local minima willbe approximately located
by Nelder Mead type algorithms (Nelderet al., 1964) if c(y, u) andf(y, u) are at
least once continuously differentiable. Instead of the linear models on which Nelder
Mead is based, one may of course fit othersurrogate objectivefunctions through the
points evaluated at any stage. To construct a reasonableresponse surfaceof that kind
or to approximate a single gradient by differences one needsat the very leastdim(u)
evaluations. Hence there is no hope to achieve what might be called the principle of
bounded cost deterioration

Cost Optimization ∼ Cost Simulation

for optimal design.

In the computational practice one tries very hard to reducedim(u) by allowing
only certainprinciple modeperturbations in the design domain. Nevertheless, com-
pletely derivative-free optimization calculations rarely involve fewer than a hundred
function evaluations and the use of evolutionary algorithms that aim at locating global
minima can easy lead to thousands if not millions of sample points. At a recent engi-
neering conference several speakers reported of structural and aerodynamical design
optimization studies that tied up hundreds of computers forseveral weeks. Similar
brute force calculations are also standard in the German automotive industry, for ex-
ample to optimize the placement of welding point with regards to the resulting crash
test properties. As far as practical optimization with PDE based models is concerned
this must be considered the state of the art.

Apart from the very important ease-of use issue two reasons are often advanced for
the preference of evolutionary algorithms. First, their ability to climb out of local min-
ima and hopefully to reach nearly globally minimal values. Especially on adaptively
discretized and iteratively solved PDEs many of the local minima may be generated
by ‘roughness’ of the actually computed function, which is also correctly seen as an
obstacle to the calculation of derivatives. In the context of fixed point solvers this
difficulty can be partly overcome by using the sequence

discretize→ differentiate→ iterate

rather than

discretize→ iterate→ differentiate.

As a negative consequence the derivatives calculated will no longer be strictly consis-
tent with the underlying function values. This suggests that one might as well pull the
differentiation all the way in front and prefer the sequence

differentiate→ discretize→ iterate.
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We note that the popular debate whetherdiscretize should preceedoptimize

or not makes little sense in the context of one-shot approaches. In any case on non-
linear problems one should always distinguish between the processesoptimize and
differentiate, which is often synonymous withlinearize. The second reason often
given by users of evolutionary algorithms is the desire to perform multi-objective op-
timization, for which calculus based methods are widely considered inadequate. We
content that this is a misconception and will pursue the approach of (Daset al., 1998)
to trace the Pareto (hyper) surface.

2. AD tools

The forward and reverse mode of algorithmic or automatic differentiation (AD)
were already proposed in the mid-fifties and mid-sixties, respectively. The develop-
ment of corresponding software tools started in earnest only in the mid-eighties and
has yet to reach the professional level that would be appropriate for the complexity of
the task at hand. This caveat concerns in particular the reverse, or adjoint mode, while
forward differentiation represents no difficulty even whenapplied to the adaptive and
iterative solvers of interest here. For example Bischof hasdifferentiated the com-
mercial CFD code FLUENT using ADIFOR 2.0 (Bischofet al., 2001), Giering and
Kaminski have differentiated the CFD code NSC2KE using TAF (Gieringet al., 2005)
and Hascoet has applied TAPENADE for sonic boom reduction (Hascoëtet al., 2003).

In order to achieve bounded cost deterioration irrespective of the dimension of the
design domain the reverse mode must be employed. The DLR codes FLOWer (For-
tran) (Kroll et al., 1999) and TAUij (C-Code, 2D version of TAUijk) (Heinrich, 2006)
have been correctly differentiated in the reverse mode using TAF and ADOL-C
(Schlenkrichet al., 2006), respectively. However, in both cases there was a consid-
erable effort in terms of man power. To a large extent that is due to the complicated
information flow and extensive memory traffic generated by the reverse mode. In par-
ticular in the context of iterative solvers the easy, safe, and efficient use of the reverse
mode still requires some improvements of the AD tools.

3. One-step one-shot optimization on fixed point solvers

The problem of augmenting fixed point solvers for PDEs with sensitivity and op-
timization calculation has been considered by the authors during the last few years
(Griewanket al., 2002; Griewank, 2006; Griewanket al., 2005).

For a given objectivef(y, u) we require to fulfill the state equationc(y, u) =
P (y − G), while G(y, u) = y − P−1c is an iteration function andP an appropriate
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preconditioner. We assume a uniform contraction rate‖Gy‖ ≤ ρ < 1 and define the
shiftet Lagrangian function

N(y, ȳ, u) := G(y, u)⊤ȳ + f(y, u)

= f(y, u)−
(

P−1c
)⊤

ȳ + y⊤ȳ .

Rather than first fully converging the primal state using

yk+1 = G(yk, uk) → primal feasibility aty∗

and then fully converging the dual state applying

ȳk+1 = Ny(yk, ȳk, uk) → dual feasibility at̄y∗

before finally performing an “outer” optimization loop

uk+1 = uk −H−1
k Nu(yk, ȳk, uk) → optimality atu∗ ,

we suggest an extended single-step one-shot iteration of the form
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ȳk+1
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For computing the optimization correctionuk+1 − uk one has to choose the sym-
metric positive definite matrixHk ≻ 0, which we will refer to as thepreconditioner
of the approximate reduced gradientūk. As discussed in (Griewanket al., 2002) the
ȳk andūk are not the exact adjoints ofyk anduk but represent approximations with
the same limit.

For simplicity we assume that theHk converge to an ideal limitH∗, which must
reflect the parameterization of the design domainU . The construction of a suitableH∗

may be interpreted as the design of a feed back state controller based on the ‘output’
function Nu to stabilize the KKT (Karush-Kuhn-Tucker) point. The ramifications
of results from the theory of discrete dynamical systems ( see e.g. (Hinrichsenet
al., 2005) ) on our nonlinear optimization tasks have not yet been examined but will
be explored in the proposed project.

The gradient(Ny, Nu) and thus the adjoints(ȳk+1, ūk+1) can be computed by
algorithmic differentiation providedG andf are available as a “grey box”,i.e. the
source code of the solver is available and suited for the application of AD techniques.
Alternatively, of course a user supplied adjoint solver canbe utilized. By differenti-
ating the step functionG in the reverse mode we implement thedifferentiate →
iterate strategy mentioned above. To obtain good sensitivity information it is impor-
tant that the size of the adjoint discrepancyNy−ȳ be included into the overall stopping
criterion. Assuming only that the largest eigenvalues ofGy are nondefective, it was
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shown in (Griewanket al., 2005) that for fixed designuk = u the adjoints̄yk con-
verge with the same R-factor as theyk, but that the error ratio‖ȳk − ȳ∗‖/ ‖yk − y∗‖
grows proportionally to the iteration counterk. Second order adjoints were found to
lag behind by a factor ofk2, which might delay the construction of the preconditioner
H∗ somewhat.

Provided we have convergence of the extended iteration, theJacobian at a limit
point(y∗, ȳ∗, u∗) takes the form

Ĵ∗ =
∂ (yk+1, ȳk+1, uk+1)

∂ (yk, ȳk, uk)

∣

∣

∣

∣

(y∗,ȳ∗,u∗)

=





Gy 0 Gu

Nyy G⊤
y Nyu

−H−1
∗ Nuy −H−1

∗ G⊤
u 1−H−1

∗ Nuu



 .

We found that the imposition of contractivity with respect to a norm of the diagonal
form

(

‖.‖2Y + ‖.‖2
Ȳ

+ ‖.‖2U
)0.5

leads to very tight conditions onH∗. Hence we prefer
a spectral analysis of the extended fixed point iteration which places less restrictions
on the choice ofH∗.

A sufficient condition for contractivity in some norm of the extended fixed point
iteration is that the spectral radiusρ̂ of Ĵ∗ be smaller than 1. Whenever we can define
H such that

1− ρ̂

1− ρ
≈

log(ρ̂)

log(ρ)
< const

over a range of problems, the goal ofbounded retardation may be considered at-
tained.

It was shown in (Griewank, 2006) that the eigenvalues ofĴ∗ are the zeros of the
equation

det((λ− 1)H∗ + H(λ)) = 0 ,

where

H(λ) :=
[

−G⊤
u (G⊤

y − λ1)−1 1]

Nxx

[

−(Gy − λ1)−1Gu1 ]

[1]

and

Nxx := ∇2
(y,u)N =

[

Nyy Nyu

Nuy Nuu

]

.

HereNxx is the Hessian of the Lagrangian andH(1) its projection onto the feasible
tangent space, which must be at least semi-definite at local minimizers.
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To exclude real eigenvaluesλ ≥ 1 it is necessary and sufficient thatH∗ is positive
definite, which was already assumed anyway. To exclude real eigenvaluesλ ≤ −1 we
derived in (Griewank, 2006) the more interesting necessarycondition that

H∗ ≻ H(λ)/(1 − λ) if λ ≤ −1 .

On a simple 2D test problem with positive definiteNxx it was found in (Griewank,
2006) that the choiceH∗ = H(−1) worked quite well. However, on closer examina-
tion one finds that in general checking the above condition onany finite subinterval
of (−∞,−1] is not enough to ensure thatH∗ satisfies the test for allλ. Since we
have so far also disregarded the likely possibility of complex eigenvalues, it becomes
clear that finding theH∗ for which ρ̂ is less than1 (let alone minimal) requires further
investigation.

There is some indication that it may sometimes be advantageous to alternate
between various versions ofH or even to modify the original solver, so that it
has more desirable spectral properties. For example if all eigenvalues ofGy were
real one could eliminate alternating modes in the convergence of G by consider-
ing yk+1 = G2(yk, uk) ≡ G(G(yk, uk), uk)) as basic step. A cheaper modifi-
cation then also yielding a strictly positive spectrum would be to take the average
yk+1 = [yk +G(yk, uk)]/2. More general one might consider a nonlinear Chebychev
iteration of the form

yk+1 =

q
∑

j=0

αjG
j(yk, u) with

q
∑

j=0

αj = 1 .

Possibly, once could then also apply cyclicallyq > 0 different preconditioners during
the substeps, but that is pure speculation at this stage.

WhenH∗ is defined asH(1) or H(−1) as defined in Equation [1] it can be com-
puted as a family ofdim(U) second order adjoint vectors by another level of algo-
rithmic differentiation. As we will see this requires in particular the calculation of a
dim(U) dim(Y ) matrix ofdim(U) directions in the state space. For more general def-
initions ofH∗ one may have to estimate certain parameters from the currentiteration
behavior, so that many practical issues remain to be resolved.

Whereas near the optimal and feasible solution point the preconditioner ensures an
asymptotic contraction rate, a line search has to be appliedin the earlier stage of the
iteration to enforce convergence. Preliminary examinations suggest the augmented
Lagrangian

p(y, ȳ, u) :=
α

2
‖G(y, u)− y‖22 +

β

2
‖Ny(y, ȳ, u)− ȳ‖22 + N − ȳ⊤y ,

which is a smooth, exact penalty function, (see (Pillo, 1994)). The gradient of the
merit functionp can be expressed in the factorized form





∇yp
∇ȳp
∇up



 = −





α(1−Gy)⊤ −βNyy − 1 0
−1 β(1−Gy) 0
−αG⊤

u −βNuy H
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Ny − ȳ
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When the weightsα andβ are selected such that the block matrix on the right
is nonsingular, it follows from the general contractivity assumption onG that the
KKT points of the original problem correspond exactly to stationary points of the
augmented Lagrangianp(y, ȳ, u). Moreover we find that the step increment

s := s(y, ȳ, u) =
[

G− y, Ny − ȳ, −H−1Nu

]⊤

of the extended iteration yields descent on the merit function whenα, β andH are cho-
sen adequately. More specifically we obtain the directionalderivative as the quadratic
form

[

∇yp

∇ȳp

∇up

]⊤

s = −s⊤





α(1− Gy) −
β

2
Nyy − 1 −

α
2
Gu

−
β

2
Nyy − 1 β(1− Gy) −

β

2
Nyu

−
α
2
Gu −

β

2
Nyu H



 s ,

whereGy = 1
2 (Gy + G⊤

y ) denotes the symmetrization of the matrixGy. For suitable
choices ofα, β andH the smallest eigenvalue of the symmetrized block matrix on the
right can be bounded away from zero. Then one can design a linesearch procedure
for determiningγk such that the iterates

[yk+1, ȳk+1, uk+1] = (1− γk) [yk, ȳk, uk]

+ γk

[

G (yk, uk) , Ny (yk, ȳk, uk) ,−H−1ūk+1

]

must converge to a KKT point. SinceNy and thusp involves already first derivatives
of G andf it will be a challenge to design an efficient line-search thatdoes not require
the evaluation of second derivatives, although that would also be possible in principle.

4. Implementation at the software level

In this section we discuss how the original ‘primal state’ iteration yk+1 =
G(yk, uk) can be augmented by the ‘dual state’ iterationȳk+1 = Ny(yk, ȳk, uk).
Mathematically this is easily done and the cheap gradient result of automatic differ-
entiation guarantees that the operations count for evaluating the combined gradient
∇N = (Ny, Nu) is no more than five times that for evaluating the pair(G, f) and
thusN itself. This favorable complexity result presupposes the ability to store all
intermediate quantities generated during one evaluation of (G, f). It should be em-
phasized that this ‘logging’ of intermediates is normally only required for one eval-
uation of (G, f) at a given argument(y, u), rather than the sequence of iterations
yk+1 = G(yk, uk). Typically the resulting memory requirement is also a smallmul-
tiple of that for evaluatingG(y, u) itself. Hence there are theoretically no serious
obstacles to generating an efficient adjoint iteration. However, from a software point
of view the situation is not quiet as straightforward.

First, let us consider the ideal situation, where one state iteration and one objective
evaluation can be wrapped into a user supplied subroutine call of the form:
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input: where:

step (
↓
u,

↓
y, z

↓
, f
↓

) z = G(u, y)

output: f = f(u, y)

In other words the call to the routinestep must compute from the current design
vector u and the current state vectory the next, improved state vectorz and the
objective function valuef . The arrows indicate in an obvious way, which variables
are input and which variables are output. Then the pseudo-time iteration can be
performed by a simple, conceptional loop of the following form:

init(u, z); y = 0
while(‖y − z‖ ≫ 0)

y = z
step(u, y, z, f)

use(z, f)

Of course the while condition is just conceptual and must be replaced by some-
thing more specif in a real implementation. Provided thatstep and all routines called
by it are available as source code one may use a suitable AD tool to generate an
adjoint call of the form

bstep(
(0)

bu
↓

,
↓
u,

(0)

by
↓

,
↓
y,

↓

bz, z
↓
,

↓

bf, f
↓

) ,

where mathematically

bu = Gu(y, u)⊤bz + fu(y, u)⊤bf and by = Gy(y, u)⊤bz + fy(y, u)⊤bf .

It should be noted that for the dual variablesbu, by, by andbf (where the prefix
b representsbar) the information flow is opposite to that for the underlying primal
variablesu, y, z, f . The dual variablebf is usually set to1 in optimization. Other
positive values may be used to effect a scaling of the dual variables. The zeros on top
of bu and by indicate that these vectors must be initialized to zero because adjoint
subroutines deal with dual variables in an incremental fashion. The adjoint code can
now be employed in an augmented loop of the following form:

Coupled basic and adjoint iteration:

init(u, z, by); y = 0; bz = 0
while(‖z − y‖+ ‖by − bz‖ ≫ 0)

y = z; bz = by; bu = 0; by = 0; bf = 1
bstep(bu, u, by, y, bz, z, bf, f)

use(z, f, bu, by)

[2]
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Again the stopping criterion is only conceptual. Before discussing the problems
one may face in generating this first order loop let us note what happens if one
differentiates the routinebstep once more in the forward mode. Then one obtains a
second order adjoint routinedbstep of the following form:

dbstep(
(0)

bu
↓

,
↓
u,

↓

du,
(0)

dbu
↓

,
(0)

by
↓

,
↓
y,

↓

dy,
(0)

dby
↓

,
↓

bz, z
↓
, dz

↓
,

↓

dbz,
↓

bf, f
↓

, df
↓

)

Here the prefixd representsdot, i.e. differentiation in the direction defined by the
input tangentsdu anddy. In contrast to ‘barring’ the ‘dotting’ of variables does not
alter the information flow, including the initialization requirement compared to the
original variables. Correspondingly the pseudo-time loopnow takes the somewhat
more complicated form:

init(u, z, by, dz, dby); y = 0; bz = 0; dby = 0
while(‖z − y‖+ ‖by − bz‖+ ‖dz − dy‖+ ‖dby − dbz‖ ≫ 0)

y = z; bz = by; bu = 0; by = 0; dbu = 0; dby = 0
dy = dz/λ; dbz = dby/λ
dbstep(bu, u, du, dbu, by, y, dy, dby, bz, z, dz, dbz, bf, f, df)

use(z, f, bu, by, dbu, dby)

Whendu is set to a Cartesian basis vector in the design spaceU the resulting sec-
ond order adjoint vectordbu can be shown to converge to the corresponding column
of the projected HessianH(λ) provided|λ| = 1. If one generatesdbstep in the
so-called vector mode such that ‘dotting’ means generatingn = dim(u) directional
derivatives then one obtains the whole projected HessianH(λ) as defined in [1]. Natu-
rally the spatial and temporal complexity then also grows bythe factorn. Even though
this second level of vector differentiation looks quite complicated it is comparatively
easy to implement, once the first reverse differentiation process has been completed
successful. That may prove quite difficult for the followingdiverse reasons.

First there is unfortunately in the AD community no agreement on how exactly the
adjoint routinebstep should handle the primal variables, here in particular the outputs
z andf . For our purposes it would be most convenient ifz andf have on return from
bstep exactly the same values as on return fromstep, so that the functionality of the
latter is in fact incorporated into the former. In the overloading based tool ADOL-C
the routinesgradient and reverse have this combined functionality, albeit without
generating anything like a problem specific adjointbstep. The situation is rather
different for source transformation tools like TAPENADE, which we have used here
to extend astep represented by a collection of Fortran codes.

Irrespective of the software technology, adjoint routineslike bstep always perform
two successive sweeps, the first propagates primal values forward, just likestep but
with logging, and the second, reverse sweep, propagates dual values backward. Since
the latter must restore or recompute the original primal values in opposite order it is in
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some sense natural that the output variablesz andf should have on exit frombstep
again the same values as on entry. Generally, we may label an adjoint routineprimally
consistentif it transforms the primal variable exactly as the underlying undifferenti-
ated routine andprimally constantif on exit all primal variables have been restored
to their values on entry. When the given adjointbstep is primally constant we can
follow it up by a call tostep itself, such that the combination of both has the effect of
a primally consistent adjoint. Obviously this simple trickto turn a primally constant
adjoint into a primally consistent adjoint incurres a lot redundant calculations as the
original code is effectively executed twice.

In our implementation we replaced in the coupled iteration [2] the call to the
TAPENADE generatedbstep by the pair of successive calls

(ysave,usave)← (y,u) ; bstep(bu, u, by, y, bz, z, bf, f)
(y,u)← (ysave,usave) ; step(u, y, z, f)

[3]

Unfortunately, we found no convenient way around this redundancy. Furthermore,
we had to add the save and restore operations on(u, y) for the following reason.
Some AD tools generate adjoints that are neither primally consistent nor primally
constant, but leave the values of the primal variables (hereu, y, z andf ) on exit in
an undefined state. This undesirable uncertainty is sometimes justified by potential
gains in efficiency for calculations with significant linearcontents. In our view the
chance of significant reductions in complexity is rather slight and certainly does not
outweigh the danger of wrong results and extra confusion in the mind of potential
users. Naturally, we recommend that all AD tools should provide in future both, the
primally consistent and the primally constant adjoint mode. While we need here the
former the latter is also extremely useful, for example for reversing call trees in the
so-called joined mode. The implementation of primal consistency in adjoints merely
require a save of all primal variables at the end of the forward, logging sweep, and
their restoration upon completion of the reverse sweep.

Unfortunately, we encountered another serious implementation problem. It has
less to do with the modes provided by AD tools but arises from the nature of aerody-
namics codes. The problem is that what we called here the state and represented by
a single vectory is in reality a heterogeneuos collection of scalars, vectors, matrices
and even tensors. The values of these quantities are often interrelated, as some may
for example be fluxes representing products of velocities and densities. Then the state
representation is to some extent redundant. Moreover some of these state components
may reside in static local variables or common blocks ratherthan being explicit calling
parameters. Finally, and most importantly some or all of these state components are
immediately updated in place at each iteration. Thus the tidy separation of old state
vectory and new state vectorz as well as the corresponding adjoint vectorsby andbz,
which we assumed above may well be almost impossible to realize. We therefore look
for an implementation that only needs to touch explicitily the primal variables(u, f)
and their duals(ū, f̄).
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Suppose we represent the motley crew of state variables thatoccur as calling
parameters by the listy1, . . . , yN so that the supplied subroutine takes the form:

input: where:

step(
↓
u,

↓

y1
↓

, . . . ,
↓

yN
↓

, f
↓

) y1, . . . , yN = G(u, y1, . . . , yN)

output: f = f(u, y1, . . . , yN) ,

and the basic iteration is given by:

init(u, y1, . . . , yN)
while(y1,. . . ,yN vary)

step(u, y1, . . . , yN, f)
use(y1, . . . , yN, f)

Correspondingly we obtain an adjoint of the form:

bstep(
(0)

bu
↓

,
↓
u,

↓

by1
↓

, . . . ,
↓

byN
↓

,
↓

y1
↓

, . . . ,
↓

yN
↓

,
↓

bf, f
↓

)

Providedbstep is primally consistent (which might be ensured again by the
doubling up trick discussed above) we now obtain the couplediteration:

init(u, y1, . . . , yN, by1, . . . , byN);
while(y1, . . . , yN or by1, ..., byN vary) do

bu = 0; bf = 1
bstep(bu, u, by1, . . . , byN, y1, . . . , yN, bf, f)

use(f, y1, . . . , yN, bu)

To obtain asymptotically the correct results one does not really need to initialize
the adjointsby1, . . . , byN , which may start from zero or some arbitrary value. Hence,
there is no longer a need to even find out what the state components are, provided they
are suitably initialized somewhere in the original code. All one has to do now is to
resetbu andbf at each iteration to the zero vector and the scalar one, respectively.
Again due to the uncertain state of primal variables in TAPENADE generated adjoints
we had to save all of them before the call tobstep and then restore them before a
subsequent call tostep just as in [3].

5. Application to aerodynamic shape optimization

As a first test case we optimize the glide ratio of an inviscid NACA0012 airfoil
under transonic flight conditions (α = 2◦, Ma = 0.8). The CFD solver taken for this
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Figure 1. Glide ratio simulation of the NACA0012 airfoil (α = 2◦, Ma = 0.8). De-
sign variables: 20 Hicks-Henne coefficients. The figure illustrates the sensitivities,
evaluated by TAPENADE in forward as well as adjoint mode, with respect to two of
the Hicks-Henne functions for the initial airfoil
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Figure 2. Glide ratio optimization of the NACA0012 airfoil (α = 2◦, Ma = 0.8).
Design variables: 20 Hicks-Henne coefficients. The figure illustrates the convergence
history of the single-step one-shot (optimization) procedure in comparison to a simu-
lation run of the initial airfoil
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Figure 3. Glide ratio optimization of the NACA0012 airfoil (α = 2◦, Ma = 0.8).
Design variables: 20 Hicks-Henne coefficients. The figure illustrates the initial as
well as the optimized airfoil

case is a simplified 2D version of the FLOWer code (Krollet al., 1999), using an ex-
plicit central finite volume scheme stabilized by artificialdissipation and Runge-Kutta
time integration (Jamesonet al., 1981) acting on structured meshes. The thickness of
the airfoil is kept constant. This is ensured by a camberline-thickness decomposition
of the airfoil, while the thickness distribution never changes. For the parameteriza-
tion of the camberline we choose 20 coefficients of Hicks-Henne functions (Hickset
al., 1978), which are just added to the camberline and thereforedefine their defor-
mation. The changes in the surface mesh of the resulting airfoil geometry are propa-
gated into the mesh by applying Reuther’s mesh deformation technique (Jamesonet
al., 1994).

All the above described routines are coded in Fortran and finally put together
into one compilation unit. Each pseudo-time step is effected by a call of the form
step(u, y1...yN, f) as described in Section 4. All the derivatives needed and ex-
plained in Section 4 are generated by the AD tool TAPENADE.

For validation Figure 1 illustrates the sensitivities withrespect to two of the Hicks-
Henne functions, evaluated for the initial airfoil. As expected, the derivatives evalu-
ated in forward as well as adjoint mode are asymptotically consistent. We prefer the
reverse mode because it yields all gradient components simultaneously. The second
derivatives are provided by the forward on reverse approach. Figure 2 illustrates the
convergence history of the single-step one-shot procedurein comparison to a simula-
tion run of the initial airfoil. Finally, Figure 3 shows the initial as well as the optimized
airfoil.
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