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ABSTRACT. This paper concerns mathematical methods, algorithmic techniques and software
tools for the transition from simulation to optimization. We focus in particular on applications
in aerodynamics. The methodology is applicable to all areas of scientific computing, where
large scale governing equations involving discretized PDEs are treated by custom made fixed
point solvers. To exploit the domain specific experience and expertise invested in these
simulation tools we propose to extend them in a semi-automated fashion. First they are
augmented with an adjoint solvers to obtain (reduced) derivatives and then this sensitivity
information is immediately used to determine optimization corrections.

RESUME. Cet article concerne des méthodes mathématiques, de techniques algorithmiques et
d’outils de programmation pour le passage de la simulation a [’optimisation. On s intéresse
plus particulierement aux applications en aérodynamique. La méthodologie est applicable a
tous les secteurs du calcul scientifique, pour lesquels des EDPs discrétisées sont traitées en
utilisant des solveurs basés sur des méthodes usuelles de point fixe. En vue d’exploiter
l’expérience et [’expertise acquises dans le domaine spécifique de ces outils de simulation, on
propose leurs extensions de facon semi-automatique. Tout d’abord, on rajoute la résolution
de l’adjoint afin d’obtenir les dérivées réduites. Cette information sur les sensibilités est
immediatement utilisée pour déterminer les corrections d optimisation.
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1. Common obstacles to optimization with PDEs

For many actual or potential optimization users the trasifrom existing simu-
lation models and tools to optimal design is anything butpéén Often the prospect
of redesigning and reimplementing their models to interfadgth a classical NLP
(non-linear programming) package is so daunting that tha @ employing calculus
based optimization methods is abandoned all together. dizdlyefor discretizations
of PDEs the specifications of Jacobian sparsity patterngtangrovision of partial
derivative values can be extremely laborious. Moreovertdwsheer size and lack of
structure that effort may not even lead to an efficient sdleethe purpose ogystem
simulation i.e. the resolution of a nonlineatate equation

c(y,u) = 0 with ¢: Y xU =Y.

Hereu € U is a design vector, which may be kept fixedcég, u) = 0 is solved for
the correspondingtate vectory = y.(u) € Y. In aerodynamics may represent
a parameterization of a wing shape, which determines tegetlh appropriate free
stream boundary conditions the flow figldround the wing. In climatological studies
u is a vector of model parameters amés a vector of prognostic variableéss. ocean
and atmosphere flow velocities and temperature. In the figietion space setting one
may assume that the linearized operaip= V,c has a bounded inverse, but often
the Jacobian obtained for a suitable discretization is sdgeldy that no Newton-like
solver can be realized. In (Heinkenschl@tsal., 2001; Hazraet al, 2005; Biros
et al, 2002) one finds frameworks for constrained optimizatiorwases where the
linearized state equations can be solved reasonably yapidl

Instead we address the situation where one has to make doaviiked point
iteration for solvinge(y, u) = 0

yr+1 = G(yk,u) for k=0,1,...

which frequently may be interpreted as pseudo-time stgppman underlying insta-
tionary version of the state equation.

For example, in aerodynamics, one can use quasi-unsteadylttions which are
solved by explicit central finite volume schemes stabiligartificial dissipation and
Runge-Kutta time integration (Jamesatral,, 1981). These schemes are most efficient
in combination with geometric multigrid (Jameson, 1986a8aoret al,, 1997).

There is some steady progress in simulation models and akeatomputing
power. Nevertheless we have to assume that in many applicateas a single state
equation solve to full accuracy takes several hours or eags dn a single machine.
Compared to the effort of gaining feasibility for givarin this way, the evaluation of
an objective

fly,u): Y xU — R™,

which may represent a fitting functional or other performeairaices is usually a
cheap byproduct. Hence the transition from simulation tiinaigation may appear at
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first quite simple. Consequently there are many softwars tbat implement assorted
direct search strategies based on computing solutigmgth c¢(yx, ur) ~ 0 and then
f (yk, ux) at a cloud of sampling points; in the design domaity.

Disregarding frequent claims of global convergence to glabinima on nondif-
ferentiable problems, one can expect that local minimahwlapproximately located
by Nelder Mead type algorithms (Neldet al,, 1964) if ¢(y,u) and f(y, u) are at
least once continuously differentiable. Instead of thedinmodels on which Nelder
Mead is based, one may of course fit otharrogate objectivéunctions through the
points evaluated at any stage. To construct a reasoreggense surfacef that kind
or to approximate a single gradient by differences one nettie very leastlim(u)
evaluations. Hence there is no hope to achieve what mighaltexche principle of
bounded cost deterioration

Cost Optimization ~ Cost Simulation

for optimal design.

In the computational practice one tries very hard to rediieg(u) by allowing
only certainprinciple modeperturbations in the design domain. Nevertheless, com-
pletely derivative-free optimization calculations rgra@volve fewer than a hundred
function evaluations and the use of evolutionary algorghinat aim at locating global
minima can easy lead to thousands if not millions of samplatpoAt a recent engi-
neering conference several speakers reported of strlietulzaerodynamical design
optimization studies that tied up hundreds of computerséweral weeks. Similar
brute force calculations are also standard in the Germamative industry, for ex-
ample to optimize the placement of welding point with regalthe resulting crash
test properties. As far as practical optimization with PC#Sdd models is concerned
this must be considered the state of the art.

Apart from the very important ease-of use issue two reasensften advanced for
the preference of evolutionary algorithms. First, theiligtto climb out of local min-
ima and hopefully to reach nearly globally minimal valuespécially on adaptively
discretized and iteratively solved PDEs many of the localima may be generated
by ‘roughness’ of the actually computed function, whichlsoacorrectly seen as an
obstacle to the calculation of derivatives. In the contéxtixad point solvers this
difficulty can be partly overcome by using the sequence

discretize — differentiate — iterate
rather than
discretize — iterate — differentiate.

As a negative consequence the derivatives calculated avidmger be strictly consis-
tent with the underlying function values. This suggests$ ¢ime might as well pull the
differentiation all the way in front and prefer the sequence

differentiate — discretize — iterate.
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We note that the popular debate whethéscretize should preceedptimize
or not makes little sense in the context of one-shot appesackm any case on non-
linear problems one should always distinguish between thegssesptimize and
differentiate, which is often synonymous wittinearize. The second reason often
given by users of evolutionary algorithms is the desire tdgren multi-objective op-
timization, for which calculus based methods are widelysidered inadequate. We
content that this is a misconception and will pursue the @ggh of (Daset al., 1998)
to trace the Pareto (hyper) surface.

2. AD tools

The forward and reverse mode of algorithmic or automatitedéhtiation (AD)
were already proposed in the mid-fifties and mid-sixtiespeetively. The develop-
ment of corresponding software tools started in earnestiorthe mid-eighties and
has yet to reach the professional level that would be apfaiedior the complexity of
the task at hand. This caveat concerns in particular theseyer adjoint mode, while
forward differentiation represents no difficulty even wtegplied to the adaptive and
iterative solvers of interest here. For example Bischof diffsrentiated the com-
mercial CFD code FLUENT using ADIFOR 2.0 (Bischef al, 2001), Giering and
Kaminski have differentiated the CFD code NSC2KE using T@&ke(inget al., 2005)
and Hascoet has applied TAPENADE for sonic boom reductias@déet al., 2003).

In order to achieve bounded cost deterioration irrespedithe dimension of the
design domain the reverse mode must be employed. The DLRs ddd@Wer (For-
tran) (Kroll et al,, 1999) and TAUij (C-Code, 2D version of TAUijk) (HeinrichQ26)
have been correctly differentiated in the reverse modegusihF and ADOL-C
(Schlenkrichet al,, 2006), respectively. However, in both cases there was sidton
erable effort in terms of man power. To a large extent thatis b the complicated
information flow and extensive memory traffic generated ®yréverse mode. In par-
ticular in the context of iterative solvers the easy, safe, efficient use of the reverse
mode still requires some improvements of the AD tools.

3. One-step one-shot optimization on fixed point solvers

The problem of augmenting fixed point solvers for PDEs withs##rity and op-
timization calculation has been considered by the authorsg the last few years
(Griewanket al., 2002; Griewank, 2006; Griewardt al., 2005).

For a given objectivef(y, ) we require to fulfill the state equatiary,u) =
P(y — G), while G(y,u) = y — P~!cis an iteration function and an appropriate
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preconditioner. We assume a uniform contraction [i@g|| < p < 1 and define the
shiftet Lagrangian function

N(y,g,u) = G(y,u)'§+ f(y,u)
1T - _
= f(y,u)— (P 10) T+y' 7.
Rather than first fully converging the primal state using
ye+1 = G(yg,up) —  primal feasibility aty.

and then fully converging the dual state applying
Uk+1 = Ny(yk, Yk, ur) —  dual feasibility aty,

before finally performing an “outer” optimization loop

Uky1 = Up — H;lNu(yk,gk,uk) — optimality atu, ,

we suggest an extended single-step one-shot iteratiore dbtim

Yk+1 G (yr, ur) Ny(yr, ur)

Uerr | _ | Gyrswr) "Gk + fy(ye,ur) " | Ny Yk, Ur, ur)
k1| | Gu(Wrswr) "k + fulyr,ur) | T Nu(yr, Yk, ur)
Uk41 up — Hy, Mg uy — Hy "N (yie, G, ur)

For computing the optimization correctiaf.; — ux one has to choose the sym-
metric positive definite matri¥{,, > 0, which we will refer to as th@reconditioner
of the approximate reduced gradient As discussed in (Griewandt al., 2002) the
yr anday are not the exact adjoints gf anduy but represent approximations with
the same limit.

For simplicity we assume that thié; converge to an ideal limitZ,, which must
reflect the parameterization of the design doniaimhe construction of a suitablé,
may be interpreted as the design of a feed back state camtbalsed on the ‘output’
function N, to stabilize the KKT (Karush-Kuhn-Tucker) point. The rarcéfiions
of results from the theory of discrete dynamical systemse(esg. (Hinrichseret
al., 2005) ) on our nonlinear optimization tasks have not yehteemined but will
be explored in the proposed project.

The gradientN,, N,,) and thus the adjoint&yy+1, ux+1) can be computed by
algorithmic differentiation provideds and f are available as a “grey boxi.e. the
source code of the solver is available and suited for the@gtin of AD techniques.
Alternatively, of course a user supplied adjoint solver barutilized. By differenti-
ating the step functiod- in the reverse mode we implement tiifferentiate —
iterate strategy mentioned above. To obtain good sensitivity mimtion it is impor-
tant that the size of the adjoint discrepad¢y—y be included into the overall stopping
criterion. Assuming only that the largest eigenvalues gfare nondefective, it was
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shown in (Griewanlet al., 2005) that for fixed design; = u the adjointsy; con-
verge with the same R-factor as thg but that the error ratid|gx. — 7|/ |yx — x|
grows proportionally to the iteration counter Second order adjoints were found to
lag behind by a factor df2, which might delay the construction of the preconditioner
H, somewhat.

Provided we have convergence of the extended iterationJabebian at a limit
point (y., ¥, u.) takes the form

5 O (Y1, Ukt 1, Ukt 1)

Jo = —
a(ykaylmuk) (y*7g*,u*)
G, 0 G
= Nyy G; Nyu

~H'N,, —-H'G] 1-H !Ny,

We found that the imposition of contractivity with respexttnorm of the diagonal

form (|I.1I3 + [I.113 + |\.||?])0'5 leads to very tight conditions oH... Hence we prefer
a spectral analysis of the extended fixed point iteratiorctviplaces less restrictions
on the choice ofd,.

A sufficient condition for contractivity in some norm of thetended fixed point
iteration is that the spectral radigof J, be smaller than 1. Whenever we can define
H such that

L—p _ log(p)

~

1—p = log(p)

< const

over a range of problems, the goallmfunded retardation may be considered at-
tained.

It was shown in (Griewank, 2006) that the eigenvalued,ofire the zeros of the
equation

det(A—1)H.,+H(\)) =0 ,
where

HO) = [-GL(G) — A1) 1] N, {—(Gy —fﬂ)‘lGu "

and

R 2 _ Nyy N?J“
Nyw 1= V3, )N = [Nuy Nk

Here N, is the Hessian of the Lagrangian afd1) its projection onto the feasible
tangent space, which must be at least semi-definite at loicainizers.
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To exclude real eigenvalues> 1 it is necessary and sufficient tht, is positive
definite, which was already assumed anyway. To exclude igathealues\ < —1 we
derived in (Griewank, 2006) the more interesting necessamgition that

H. = HON)/1-X) if A<-1

On a simple 2D test problem with positive definitg,,. it was found in (Griewank,
2006) that the choicél, = H(—1) worked quite well. However, on closer examina-
tion one finds that in general checking the above conditioamnfinite subinterval
of (—o0, —1] is not enough to ensure that, satisfies the test for all. Since we
have so far also disregarded the likely possibility of coemmigenvalues, it becomes
clear that finding thé{, for which p is less than (let alone minimal) requires further
investigation.

There is some indication that it may sometimes be advantegyaw alternate
between various versions df or even to modify the original solver, so that it
has more desirable spectral properties. For example ifigdinealues oG, were
real one could eliminate alternating modes in the convargaf G by consider-
ing yxr1 = G%*(yk,ur) = G(G(yk,ur),ur)) as basic step. A cheaper modifi-
cation then also yielding a strictly positive spectrum wbbk to take the average
Ye+1 = [yr + G(yk, ux)]/2. More general one might consider a nonlinear Chebychev
iteration of the form

q q
Yht1 = ZajGJ(yk,u) with Zaj =1
=0 =0

Possibly, once could then also apply cyclically- 0 different preconditioners during
the substeps, but that is pure speculation at this stage.

When H, is defined ad7(1) or H(—1) as defined in Equation [1] it can be com-
puted as a family oflim(U) second order adjoint vectors by another level of algo-
rithmic differentiation. As we will see this requires in fiaular the calculation of a
dim(U) dim(Y") matrix ofdim(U) directions in the state space. For more general def-
initions of H, one may have to estimate certain parameters from the cuteestion
behavior, so that many practical issues remain to be redolve

Whereas near the optimal and feasible solution point thegorditioner ensures an
asymptotic contraction rate, a line search has to be applitte earlier stage of the
iteration to enforce convergence. Preliminary examimetisuggest the augmented
Lagrangian

i e 164 i i _
Py, 9,u) = 5l1Gly, v) —yl3 + 51Ny (v, 9, w) —gl3+N-3'y ,

which is a smooth, exact penalty function, (see (Pillo, 3994 he gradient of the
merit functionp can be expressed in the factorized form

Vyp a(l—Gy)"T —BN, -1 0 G-y
Vgp| = - -1 gl-G,) O Ny —9y
Vup —aG) ~BN., H||-H'N,



94 REMN - 17/2008. Shape design in aerodynamics

When the weightsy and 8 are selected such that the block matrix on the right
is nonsingular, it follows from the general contractivitgsamption onGG that the
KKT points of the original problem correspond exactly totistaary points of the
augmented Lagrangiary, g, v). Moreover we find that the step increment

_ _ _ T
8= S(yvyvu): [G_ya Ny_ya -H 1Nu}
of the extended iteration yields descent on the merit fematiheno, 5 andH are cho-

sen adequately. More specifically we obtain the directidealvative as the quadratic
form

T ral a
Vyp T a(l —Gy) _gNyy__ 1 —3Gy
Vap| s=—s —%Nyy—]l B(1—-Gy) —5Nyu|s ,
Vup -2G, —8Nyu H

whereG, = 3(G, + G, ) denotes the symmetrization of the mattky. For suitable
choices ofy, 5 andH the smallest eigenvalue of the symmetrized block matrixhen t
right can be bounded away from zero. Then one can design adiaeh procedure
for determiningy;, such that the iterates

Wit 1, Yot uksr1] = (1 =) [Yr, Uk, ur]

+ Yk [G (g ur) s Ny (Yhs Grs un) s —H i

must converge to a KKT point. Sind€, and thugp involves already first derivatives
of G andf it will be a challenge to design an efficient line-search thess not require
the evaluation of second derivatives, although that wolsld lae possible in principle.

4. Implementation at the software level

In this section we discuss how the original ‘primal statedrdtion y;.1 =
G(yk,ur) can be augmented by the ‘dual state’ iteratipn: = Ny (Yk, Gk, uk)-
Mathematically this is easily done and the cheap gradientlref automatic differ-
entiation guarantees that the operations count for evaty#tte combined gradient
VN = (Ny, N,) is no more than five times that for evaluating the fa¥ f) and
thus N itself. This favorable complexity result presupposes thidita to store all
intermediate quantities generated during one evaluatiqiizof). It should be em-
phasized that this ‘logging’ of intermediates is normalhhorequired for one eval-
uation of (G, f) at a given argumen(y, ), rather than the sequence of iterations
yr+1 = G(yk,ur). Typically the resulting memory requirement is also a srmall-
tiple of that for evaluating=(y, ») itself. Hence there are theoretically no serious
obstacles to generating an efficient adjoint iteration. khlsv, from a software point
of view the situation is not quiet as straightforward.

First, let us consider the ideal situation, where one statation and one objective
evaluation can be wrapped into a user supplied subroutlhefdhe form:
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input: where:

step (4.2, /) == G(uy)
1

output: f=I(uy)

In other words the call to the routirgtep must compute from the current design
vector v and the current state vectgrthe next, improved state vecterand the
objective function valugf. The arrows indicate in an obvious way, which variables
are input and which variables are output. Then the pseunde-iieration can be
performed by a simple, conceptional loop of the followingfio

init(u, z); y=0
while(||y — z|| > 0)
y==z
Step(u7 y’ Z’ f)
usgz, f)

Of course the while condition is just conceptual and mustdmaced by some-
thing more specif in a real implementation. Provided 8tap and all routines called
by it are available as source code one may use a suitable AQxdagenerate an
adjoint call of the form

(0) 1 (0) 1 | |
bStep(bft,u,by,y,bz,f,bf,f) ,
! |

where mathematically
bu = Gyu(y,u) bz + fu(y,u)"bf and by = Gy(y,u) bz + fy(y,u) "bf.

It should be noted that for the dual variables by, by andbf (where the prefix
b represent$ar) the information flow is opposite to that for the underlyingnpal
variablesu, y, z, f. The dual variabléf is usually set tal in optimization. Other
positive values may be used to effect a scaling of the du@btas. The zeros on top
of bu and by indicate that these vectors must be initialized to zero bseadjoint
subroutines deal with dual variables in an incrementalifashThe adjoint code can
now be employed in an augmented loop of the following form:

Coupled basic and adjoint iteration:

init(u, z,by); y=0; bz=0

while(|[z — y|| + [|by — bz|| > 0)
y=z; bz=0by; bu=0; by=0; bf =1 [2]
bstep(bu, u, by, y, bz, z,bf, f)

usez, f, bu, by)
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Again the stopping criterion is only conceptual. Beforecdissing the problems
one may face in generating this first order loop let us notetviagpens if one
differentiates the routinbstep once more in the forward mode. Then one obtains a
second order adjoint routirdbstep of the following form:

@ 1 © ©; I 0 | Lol

dbstep(bu, u, du, dbu, by, y, dy, dby, bz, z,dz,dbz,bf, f,df)
! Loy 1 bl 1l

Here the prefixi representdot, i.e. differentiation in the direction defined by the
input tangentsglu anddy. In contrast to ‘barring’ the ‘dotting’ of variables doestno
alter the information flow, including the initializationqairement compared to the
original variables. Correspondingly the pseudo-time loov takes the somewhat
more complicated form:

init(u, z, by, dz,dby); y=0; bz=0; dby=0
while(||z — y|| + ||by — bz|| + [|dz — dy|| + ||dby — dbz| > 0)
y=2z2; bz=>by; bu=0; by =0; dbu =0; dby =0
dy = dz/X; dbz = dby/\
dbstep(bu, u, du, dbu, by, y, dy, dby, bz, z,dz, dbz, bf, f, df )
use z, f, bu, by, dbu, dby)

Whendu is set to a Cartesian basis vector in the design spaite resulting sec-
ond order adjoint vectafbu can be shown to converge to the corresponding column
of the projected Hessiai/ (\) provided|\| = 1. If one generatesbstep in the
so-called vector mode such that ‘dotting’ means generatirg dim(u) directional
derivatives then one obtains the whole projected Hed3igx) as defined in [1]. Natu-
rally the spatial and temporal complexity then also grow#isfactom. Even though
this second level of vector differentiation looks quite g@irated it is comparatively
easy to implement, once the first reverse differentiatiatess has been completed
successful. That may prove quite difficult for the followidigerse reasons.

First there is unfortunately in the AD community no agreetmerhow exactly the
adjoint routinebstep should handle the primal variables, here in particular thtpats
z andf. For our purposes it would be most convenient#nd f have on return from
bstep exactly the same values as on return fretep, so that the functionality of the
latter is in fact incorporated into the former. In the ovading based tool ADOL-C
the routinegyradient andreverse have this combined functionality, albeit without
generating anything like a problem specific adjdistep. The situation is rather
different for source transformation tools like TAPENADEhieh we have used here
to extend astep represented by a collection of Fortran codes.

Irrespective of the software technology, adjoint routililesbstep always perform
two successive sweeps, the first propagates primal valuesifd, just likestep but
with logging, and the second, reverse sweep, propagatésaluas backward. Since
the latter must restore or recompute the original primaleain opposite order itis in
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some sense natural that the output variablasd f should have on exit frorbstep
again the same values as on entry. Generally, we may labéjaintroutineprimally
consistentf it transforms the primal variable exactly as the undevtyundifferenti-
ated routine angrimally constantf on exit all primal variables have been restored
to their values on entry. When the given adjdistep is primally constant we can
follow it up by a call tostep itself, such that the combination of both has the effect of
a primally consistent adjoint. Obviously this simple trickturn a primally constant
adjoint into a primally consistent adjoint incurres a lolmedant calculations as the
original code is effectively executed twice.

In our implementation we replaced in the coupled iteratidhthe call to the
TAPENADE generatebstep by the pair of successive calls

(ysave,usave)- (y,u); bstep(bu, u, by, y, bz, z,bf, f) [3]
(y,u) < (ysave,usave); step(u,y,z,f)

Unfortunately, we found no convenient way around this retdunty. Furthermore,
we had to add the save and restore operationguop) for the following reason.
Some AD tools generate adjoints that are neither primallysistent nor primally
constant, but leave the values of the primal variables (hegez and f) on exit in
an undefined state. This undesirable uncertainty is sorastjastified by potential
gains in efficiency for calculations with significant lineagntents. In our view the
chance of significant reductions in complexity is rathegtdliand certainly does not
outweigh the danger of wrong results and extra confusioménnhind of potential
users. Naturally, we recommend that all AD tools should jatein future both, the
primally consistent and the primally constant adjoint modéhile we need here the
former the latter is also extremely useful, for example farersing call trees in the
so-called joined mode. The implementation of primal cdaesisy in adjoints merely
require a save of all primal variables at the end of the fodwargging sweep, and
their restoration upon completion of the reverse sweep.

Unfortunately, we encountered another serious implenientproblem. It has
less to do with the modes provided by AD tools but arises froenrtature of aerody-
namics codes. The problem is that what we called here the atat represented by
a single vectoy is in reality a heterogeneuos collection of scalars, vectmatrices
and even tensors. The values of these quantities are ottenndlated, as some may
for example be fluxes representing products of velocitiestmmnsities. Then the state
representation is to some extent redundant. Moreover sbthese state components
may reside in static local variables or common blocks rattheam being explicit calling
parameters. Finally, and most importantly some or all of¢hgtate components are
immediately updated in place at each iteration. Thus thed@paration of old state
vectory and new state vectaras well as the corresponding adjoint vectgysandbz,
which we assumed above may well be almost impossible tamalie therefore look
for an implementation that only needs to touch explicitig primal variablesu, f)
and their dualga, f).
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Suppose we represent the motley crew of state variablesottwair as calling
parameters by the ligtl, . . ., y N so that the supplied subroutine takes the form:

input: where:
! 1

Step(zlt,yl,...,y]\f,f) yl,...,yN = G(u,yl,...,yN)
i Ll

output: f=flu,yl,...,yN),

and the basic iteration is given by:

init(u,y1,...,yN)

while(y1,...,yN vary)
step(u,yl,...,yN, f)

us€yl,...,yN, f)

Correspondingly we obtain an adjoint of the form:

© | | Lol Lol
bstep(blu,u,byl,...,byN,yl,...,yN,bf,f)
1 1 1 1 1

Providedbstep is primally consistent (which might be ensured again by the
doubling up trick discussed above) we now obtain the couipdedtion:

init(u,y1,...,yN,byl, ..., byN);
while(y1,...,yN orbyl,...,byN vary) do
bu=0;bf =1
bstep(bu, u, byl,...,byN,yl,...,yN,bf, f)
use f,yl,...,yN,bu)

To obtain asymptotically the correct results one does ratyr@eed to initialize
the adjointdy1, ..., by N, which may start from zero or some arbitrary value. Hence,
there is no longer a need to even find out what the state compoaie, provided they
are suitably initialized somewhere in the original codel @gxle has to do now is to
resetbu andbf at each iteration to the zero vector and the scalar one, cthaplg.
Again due to the uncertain state of primal variables in TARBIE generated adjoints
we had to save all of them before the callltstep and then restore them before a
subsequent call tetep just as in [3].

5. Application to aerodynamic shape optimization

As a first test case we optimize the glide ratio of an inviscAM0012 airfoil
under transonic flight conditions((= 2°, Ma = 0.8). The CFD solver taken for this
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Figure 1. Glide ratio simulation of the NACA0012 airfoit(= 2°, Ma = 0.8). De-
sign variables: 20 Hicks-Henne coefficients. The figuresiltates the sensitivities,
evaluated by TAPENADE in forward as well as adjoint modeh waspect to two of
the Hicks-Henne functions for the initial airfoil
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Figure 2. Glide ratio optimization of the NACAO0012 airfoitbv(= 2°, Ma = 0.8).
Design variables: 20 Hicks-Henne coefficients. The figlustilates the convergence
history of the single-step one-shot (optimization) prazedn comparison to a simu-
lation run of the initial airfoil
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Figure 3. Glide ratio optimization of the NACA0012 airfoibv(= 2°, Ma = 0.8).
Design variables: 20 Hicks-Henne coefficients. The figuustiates the initial as
well as the optimized airfoil

case is a simplified 2D version of the FLOWer code (Keilhl., 1999), using an ex-
plicit central finite volume scheme stabilized by artific@sipation and Runge-Kutta
time integration (Jamesaat al., 1981) acting on structured meshes. The thickness of
the airfoil is kept constant. This is ensured by a cambeitliekness decomposition

of the airfoil, while the thickness distribution never clgas. For the parameteriza-
tion of the camberline we choose 20 coefficients of Hicks4ttefunctions (Hickset

al., 1978), which are just added to the camberline and therefefiae their defor-
mation. The changes in the surface mesh of the resultingilaggometry are propa-
gated into the mesh by applying Reuther’'s mesh deformagicmnique (Jamesaat

al., 1994).

All the above described routines are coded in Fortran andlfipat together
into one compilation unit. Each pseudo-time step is effédte a call of the form
step(u, yl...yN, f) as described in Section 4. All the derivatives needed and ex-
plained in Section 4 are generated by the AD tool TAPENADE.

For validation Figure 1 illustrates the sensitivities wigspect to two of the Hicks-
Henne functions, evaluated for the initial airfoil. As exfe, the derivatives evalu-
ated in forward as well as adjoint mode are asymptoticallysezient. We prefer the
reverse mode because it yields all gradient componentdtsineously. The second
derivatives are provided by the forward on reverse approkijure 2 illustrates the
convergence history of the single-step one-shot procdduwemparison to a simula-
tion run of the initial airfoil. Finally, Figure 3 shows theiiial as well as the optimized
airfoil.
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