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ABSTRACT. The paper addresses issues related to the development of a geometrical modelling
system and its connection with shape parameterisation and computational grid update. In
particular, it is thought that the use of parameterisations based on the modification of an
existing shape instead to exploit the direct representation of the geometry results in an
increase of flexibility and accuracy. Selected examples related to aircraft design illustrate the
capability of the system.

RESUME. On décrit un systeme pour la manipulation de modéles géométriques, ainsi que sa
relation avec la paramétrisation de la forme et la modification de maillages de calcul. En
particulier, ['utilisation d’une paramétrisation qui se base sur la modification d’une
géométrie existante devrait étre plus précise et flexible qu 'une procédure qui s’appuie sur une
représentation directe de [’objet. Des exemples issus de la conception aéronautique illustrent
le systeme.
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1. Introduction

Shape parametrisation (Samareh, 2001; Castonguay et al., 2007) is perhaps the
most critical issue of an optimisation process, that appears to be heavily constrained
by the design parameters. An insufficient number of design variables or an inadequate
choice of them will lead to poor optimisation results. In addition, design variables
might be selected in such a way that they are close to engineers that will use the auto-
matic optimisation system. Indeed, semi-empirical knowledge is often parametrised
with respect to some geometrical quantities and it could be advantageous at least to
exploit this knowledge through the use of linear inequality constraints. The parametri-
sation may address the direct representation of the geometry or the modification of an
initial shape, the latter resulting at our knowledge more flexible and more accurate.

When the design problem is applied to complex shapes, the shape parametrisa-
tion becomes a difficult task. The parametrisation problem will definitively be solved
by the implementation of the parametrisation directly within the CAD representation
(Daumas et al., 2002; Fudge et al., 2005), as it has been proposed into modern CAD
tools, but only if it is completely under the user control. The use of commercial CAD
systems will be feasible only if they will allow in the future easy communication with
external software, which is yet seldom the case. An alternative might be the use of the
so-called CAD-free approach (Mohammadi et al., 2004; Fudge et al., 2005; Daoud et
al., 2005).

In addition, important issues are related to the implementation of specific
parametrisation techniques requested by the user and to the necessity to control the
overall optimisation chain in particular when dealing with MDO problems. It appears
to be more attractive to work directly from mathematical models of the geometry
extracted from the CAD model, in particular with those used in the grid generation
process in order to establish a strong link between geometry modification and grid
surface update.

The geometry modelling system which is the object of the paper exploits a data
base extracted from the CAD system, that is in addition used for grid generation pur-
pose. The geometrical data base contains the coordinates of corners (curves ends),
the mathematical definition of support curves and surfaces, and topological relations
that describe the links between the different geometrical entities. Curves and sur-
faces are defined into the parametric space. In addition, surfaces are characterised
with respect to defining control nodes which are linked to the shape parametrisation.
Modification of the coordinates of those nodes results in a new definition of the sup-
port surfaces. Updated support curves and corners are obtained through geometrical
intersections. The geometry grid update maintains the topology of the original grid
unchanged and is well suited when combined with a mesh deformation technique for
the three-dimensional grid update.

The transfer of information from the modified shape to the computational grid has
to be addressed in terms of flexibility, but above all in terms of accuracy. This is the
reason why a mesh deformation strategy is in most cases more accurate than to use
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remeshing procedures. The mesh deformation is obtained by the resolution of either
discretisation of elasticity models, as in (Nielsen et al., 2002), or an adhoc discretized
system, relying in many cases on fictive springs controling edges lengths with lineal
springs, (Batina, 1989), or elements deformation with torsional springs, (Degand et
al., 2002). What is important is not to obtain a very good grid quality — although this
improves the quality of the solver solution — during the overall optimisation process,
but to maintain the same quality of that of the initial grid. Otherwise, noise related
to non-homogeneous grid quality will be introduced in the optimisation process. This
is not only true when associated to deterministic optimisation methods but also for
stochastic ones.

2. Elementsof unstructured grid generation
2.1. CAD representation

In three dimensions, the domain to be discretised can be viewed as a region
bounded by surfaces which intersect along curves (Figure 1). The portions of these
curves and surfaces needed to define the three dimensional domain of interest are
called curves and surfaces components, respectively. In addition boundary curves and
surfaces are oriented. This is important in the grid generation process as it is used
to define the location of the region that has to be discretised. The orientation of a
boundary surface is defined by the direction of the inward normal. The orientation
of the boundary curves is defined with respect to the boundary faces which contain
them. Each boundary curve is common to two boundary surfaces and will have oppo-
site orientations with respect to each of them. The geometrical definition is in general
provided through a parametric representation by using a CAD system and forms the
so-called geometrical support, which represents the mathematical support of the geo-
metrical elements.

A support curve can be described by a piecewise parametric representation (Figure
2). In this representation, the curve is subdivided into n, arcs, and the position vector
r of a generic point on each arc is expressed as a function of a single real parameter
u, which by convention varies into the interval [0, 1]:

r = [z,y,2] [1]

This function may be represented by a polynomial whose rank may change from arc
to arc and which can be expressed as:

r=r(u) =ag+aju+a®+...+au" [2]
where each ay, is a vector formed by three coefficients:

ag = [aiv azv ai] [3]
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SUPPORT CURVE

SURFACE SUPPORT FOINTS

Figure 1. Surface geometrical support

which represents the components of a;, with respect to a Cartesian reference system
(z,v, 2), whereas n is the rank of the polynomial. Relation [2] can be rewritten as
follows

r(u) = AU [4]
where

A =[ag,a,as, - ,a,] [5]
and
" [6]

A point on the curve can then be identified by the number of the arc on which it is lying
and the value of the parametric coordinate u, which is usually called local parametric
coordinate.

U= [1Lu,u? -, u"]

The surfaces are represented by using a similar scheme. They are subdivided into
patches which form a regular grid on the so-called parametric plane (Figure 3). On
this plane, we can define with respect to each patch the local parametric coordinates
w and v which vary in the interval [0, 1]. The position r of a node on the surface can
then be expressed as a polynomial expansion in « and v on each patch:

2
r(u,v) = ag,0 + ar,ou + A910 + A2 0u” + a1 1UV + ... + ap KLU V" [7]
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Figure2. Curve parametric representation

The total rank of the polynomial is nm, whereas n and m represent the rank of the
polynomial with respect to variables « and v. Here again, the quantities a;; are
formed by their components with respect to the Cartesian reference system (z, y, 2):

ap = [ai,l, 1 ai,z] [8]
Equation [7] can be rewritten in the following form

r(u,v) = UAV [9]
where

A = [a,] [10]

for k=(0,..,n) and [=(0,..,m). The quantities U and V" have a shape similar to those of
Equation [6].

2.2. Unstructured grid generation

The advancing front technique (Peraire et al., 1990) is here described, but other
techniques like those based on Delaunay triangulation (Weatherhill, 1990; George,
1991) may be used as alternatives for unstructured mesh generation. The grid gener-
ation problem consists of subdividing an arbitrary complex domain into a consistent
assembly of elements. The consistency of the generated mesh is guaranteed if the
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generated elements cover the entire domain and the intersection between elements oc-
curs only on common points, sides or triangular faces in the three-dimensional case.
The final mesh is built in a bottom-up manner. The process starts by discretising each
boundary curve. Nodes are placed on the boundary curve components and then con-
tiguous nodes are joined with straight line segments. In a latter stage of the generation
process, these segments will become sides of some triangles. The length of these seg-
ments must therefore, be consistent with the desired local distribution of mesh size.
This operation is repeated for each boundary curve in turn.

1
le—ei PARAMETER PLANE

Figure 3. Surface parametric representation

The next stage consists of generating triangular planar faces. For each two-
dimensional region or surface to be discretised, all the edges produced when discretis-
ing its boundary curves are assembled into the so-called initial front. The relative
orientation of the curve components with respect to the surface must be taken into ac-
count in order to give the correct orientation to the sides in the initial front. The front
is a dynamic data structure which changes continuously during the generation pro-
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cess. At any given time, the front contains the set of all the sides which are currently
available to form a triangular face. A side is selected from the front and a triangular
element is generated. This may involve creating a new node or simply connecting to
an existing one. After the triangle has been generated, the front is updated and the
generation proceeds until the front is empty. The size and shape of the generated tri-
angles must be consistent with the local desired size and shape of the final mesh. In
the three-dimensional case, these triangles will become faces of the tetrahedra to be
generated later.

For the generation of tetrahedra, the advancing front procedure is taken one step
further. The front is now made up from the triangular faces which are available to
form a tetrahedron. The initial front is obtained by assembling the triangulations of
the boundary surfaces. Nodes and elements will be simultaneously created. When
forming a new tetrahedron, the three nodes belonging to a triangular face from the
front are connected either to an existing node or to a new node. After generating a
tetrahedron, the front is updated. The generation procedure is completed when the
number of triangles in the front is zero.

BOUNDARY EDGES BOUNDARY FACES 3D DOMAIN

—— DISCRETIZATION PROCESS e

Figure 4. Discretisation process

2.3. Mesh spacing control

The inclusion of adequate mesh control is a key ingredient in ensuring the genera-
tion of a mesh of the desired form. Control over the characteristics is obtained by the
specification of the spatial distribution of mesh parameters by means of a background
mesh. The background mesh is used for interpolation purposes only and is made up
of triangles in two dimensions and tetrahedra in three dimensions. A transformation
matrix T, which is related to a metric matrix, is defined at the nodes of the background
mesh. At any point within an element of the background grid, the transformation T
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is computed by linearly interpolating its components from the element nodal values.
The background mesh employed must cover the region to be discretised. The gen-
eration process is always carried out in the normalised space. The transformation T
is repeatedly used to transform regions in the physical space into regions in the nor-
malised space. In this way, the process is greatly simplified, as the desired size for a
side, triangle or tetrahedron in this space is always unity. After the element has been
generated, the coordinates of the newly created point, if any, are transformed back to
the physical space by using the inverse transformation.

The construction of a background grid type control of the spacing is not an easy
task when dealing with mesh generation for complex three-dimensional geometries.
Alternative approaches to control the grid spacing have been proposed like those
based on the use of sources distribution (Weatherhill et al., 1994) or elementary solids
(Formaggia, 1991). All these methods use the same information for both the discreti-
sation of the surfaces and the volume. It may be advantageous to take into account
two background meshes: one related to the discretisation of the surfaces and the other
related to the three-dimensional domain discretisation, the latter being built from the
knowledge of the surfaces discretisation provided through the first one (Ghidoni et
al., 2006).

3. Geometry modelling system

A geometrical data base is extracted from the CAD model. It contains the coordi-
nates of the corners, the mathematical definition of support curves and surfaces, and
topological relations that describe the links between the different geometrical entities.
The information contained in the data base are in particular used by the surface grid
generator that provides in addition to nodes coordinates and elements connectivities
the parametric coordinates of the nodes related to the support curves and surfaces
description. Those quantities represent the genuine tie between the geometrical math-
ematical model and the geometry discretisation. By maintaining frozen the parametric
coordinates it is possible to update automatically the geometry discretisation when its
mathematical description is modified. Note that, except for the original model de-
scription, grid consistency is not ensured, but a first guess is obtained.

Each support surface patch (curve arc) may be defined with respect to control
nodes. The control nodes are introduced within the model in such a way that, for each
patch (arc), Equation [9] (Equation [4]) can be solved with respect to the components
of the matrix (vector) A assuming that the values of the vectors r, U and V have
been previously defined. As an example, a polynomial of rank n may be described
by using n + 1 control points. Thus, any modification of the components of the vec-
tor r of the control points, assuming that the related values of vectors U and 'V are
frozen, will result in a new set of values for the components of A and consequently in
a new mathematical representation of the surface patch (curve arc). Within an optimi-
sation process, the control nodes will be directly associated to the parametrisation. A
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modification of support surfaces means redefinition of support curves (intersection of
surfaces) and of corners (intersection of support curves).

3.1. Surface intersection

For each control point ¢ on the support curve, its parametric coordinates on the
curve defining surfaces j (surfaces whose intersection produces the curve, j = 1,2)
are computed as the value of the parameters that minimizes the distance between the
node and the surface. This is equivalent to solve

8I‘j 6I‘j _
[I'Z — I'](U,’U)] - [%, %] =0 [11]
which corresponds to find the foot of the normal at surface j dropped from node .
This is done by using the initial geometrical model description.

Starting from these initial values, it remains to solve the system of equations
1 (u1,v1) — ro(us,vd) = 0 [12]

with respect to the parametric coordinates 1, v; and us, the value of v9 being frozen.
The new coordinates of the curve control point are computed from Equation [9] and
used in order to update the support curve definition.

3.2. Curve intersection

The corners coordinates are defined by computing the parametric coordinates of
the corner defining curves j (surfaces whose intersection produces the curve) taken
two by two as the value of the parameters that minimizes the distance between the two
curves which is equivalent to solve

or; .
[rl(ul)—rz(m)]-a—J =0;j=1,2 [13]
u
with respect to the parametric coordinates u; and u». The new corner coordinates are
computed from Equation [4].

3.3. Surface grid update

The geometrical model description having been updated, the new position of the
grid nodes on the geometry curves and surfaces can be computed from the knowledge
of their parametric coordinates. The use of the parametric coordinates associated to the
original model description do not ensured grid consistency, but can be used as a first
guess for a mesh optimisation process which can be applied either in the parametric
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or in the physical space. The above described geometry grid update maintains the
topology of the original grid unchanged and is well suited when combined with a
mesh deformation technique for three-dimensional grid update. The overall process is
summarised in Figure 5.

Extract Models from -Geometry mathematical models extracted from CAD system
= -Curves & surfaces discretisation from Grid Generation System
Geome“y & Grids -Geometry defining nodes from the geometry mathematical

v
Geometry De'!m!ng - Association of geometry defining nodes to shape modification
Nodes Association elements related to parameterisation
A 4
Shape Modification ‘ ‘ - Transfer of shape modification to geometry defining nodes
r
Rebuild Geometrical - Redefine corners, curves & surfac_es rnaihamat_lcal rnode_ls
- Recompute new parametric coordinates associated to grid nodes
Models if needed
\ 4
i i - Recompute new grid coordinates from the new geometry
‘ Rebuild Surface Grid ‘ mathematical models and the associated parametric coordinates
4

2 = - Recompute 3D grid nodes coordinates (mesh deformation or
| Rebuild 3DGrid | | -Recompute 30 g

Figure5. Mesh update procedure

4. Mesh deformation algorithm

The modification of the grid on the body needs to be transfered to the tridimen-
sional mesh. This can be provided by using a mesh deformation strategy which, as
previously mentioned, has to be carefully designed in order to maintain the same grid
quality of that of the initial grid during the optimisation process.

In the following, x; will indicate the position vector of node ¢ and &; the set of
elements belonging to the patch P; of elements surrounding a given internal node .
K; is instead the set formed by the nodes on the boundary of P;.
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4.1. Spring analogy based algorithm

To move the mesh, it is first assumed that each node i is connected to each adjacent
node j by a fictitious spring under the force F;; defined by

Fij = Kij(xj — x;) [14]

where K;; is the spring constant which in general will depend on some local grid
features and on the flow properties for adaptation. The resulting mesh is for each node
1 the solution of the equilibrium system:

> Fi;j=0 [15]
JEK;:
which is also equivalent to minimize the energy of the overall spring system
1
5 Z Kij(Xj - Xi)2 [16]
JEK;
Equation [15] may be rewritten as
D Ki(Ax; — Ax;) = = Y Kij(x] —x7) [17]
JEK; JEK;
where Ax; = x; — x? represents the deviation of the actual position x; from its initial
value x9.

In order to modify the grid in such a way to maintain basic characteristics of the
original one, additional terms are introduced which modify the spring energy relation
[16] as follows

1 2
5 2 Kij [(xj —xi) = Rij(x] — x7)] [18]
JEK;
where R;; is a mesh adaptation transformation matrix. The equivalent equilibrium
system equation takes the form
Y OKij(x;—xi) = Y KiRij(x) — x?) [19]
JEK; JEK;
Note that in the case the following conditions occur

R=1, xj—xizx?—x? [20]

where T denotes the unity matrix, Equation [19] is identically satisfied and the grid
nodes do not move. Equation [19] is equivalent to

D Kij(Axj - Ax) = > Ky (R — 1) (x§ — x7) [21]
JEK; JjeEK;:
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where the unknowns are now expressed in terms of the deviation between the actual
and initial values of the position vector x;.

For the solution of Equation [21], the following iterative algorithm may be adopted

AxItt = Ax! + RH! [22]
where
RH, = Y K;j(Ax} — Ax)) = Y Ki; Ry — 1) (x§ — x7) [23]
JEK; JEK;

and [ indicates the iteration numbering. The iterative process is stopped when the
quantity

oxitt = Axb — Axl = xH — %! [24]

i J—

is less than a predefined small quantity.

4.2. Mesh deformation due to surface grid modification

This deals in general with fluid-structure interaction and shape optimisation ap-
plications for which the modification of the surface grid has to be transfered in the
overall computational domain. On the basis of the finite element approximation the-
ory related to Lagrangian simplex elements, let denote by S¢* the transformation
matrix (parametric to physical space) of the surface element on the body skin related
to the final position vector x and by S°° that related to the initial position vector x°.
The transformation matrix R is defined as

R =g (5%)7 [25]

The matrix R is first computed on the skin boundary and then propagated through the
entire domain by solving the equation

> Kij(R;j —R;) =0 [26]
JEK;

while maintaining its value on the skin fixed. The initial value of the matrix R. is set
to be the unity matrix within the overall domain.

4.3. Node movement on grid boundaries
In the case nodes are allowed to move on boundaries, the node movement algo-

rithm has to be adapted in such a way that those nodes remain on the CAD defining
surfaces. The boundary nodes can be divided in three categories:
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1) corners whose coordinates have to be frozen,
2) nodes that lie on curves, and
3) nodes that lie on surfaces.

In order to obtain the new coordinates on the boundaries, the parametric coordinates
deviation associated to the CAD elements is computed by projecting the physical co-
ordinates displacement along the tangent to the boundary and then the physical co-
ordinates are obtained, previous the computation of the new parametric coordinates,
by using Equations [2] or [7] for nodes that have to be located on curves or surfaces,
respectively.

The curves are parametrised through a single parameter «. Let denote by u! the
parametric coordinate corresponding to the physical coordinate r’ of the node i at
iteration /. By using the relation

0
Ar = & Au [27]
ey
the displacement in the parametric space at iteration /+1 is computed according to the
expression

or Oor , Or
I+1 _ l or . l l l
Aui - Auz + (8u |z RHz) / (au i 8u | > [28]
where
8r or
50 1= 3. lul [29]

On the surfaces, we can define the parametric coordinates » and v. Let denote by
ul and v! the parametric coordinates corresponding to the physical coordinates r! of
the node ¢ at iteration /. In a similar way that for curves, starting from the relation

6r or
Ar = — Au + Av 30
the displacement in the parametrlc space at iteration [+1 is computed according to the
expression

I+1 l
0 0
a(2) " ea(w) ven [y 1)
where
or or or
|l_ |(u1,v ) v g ‘iE % ‘(ui,vi) [32]
and
or or]1T [or or

is the first fundamental matrix of the surface.
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5. Parametrisation

The parametrisation may address the direct representation of the geometry or the
modification of an initial shape, the latter resulting at our knowledge more flexible
and more accurate. The initial shape is recovered when the perturbation is equal to
zero. Four levels of parametrisation are presently implemented in the system, that are
characterised by the following attributes.

5.1. Node

It corresponds to a rotation around an axis complemented by a 3D translation.
The set of design variables are formed by the angle of rotation and the displacement
associated to the translation. The corresponding geometry modification for a node 4
on the geometry can be described according to

Ar; = x, + cosf (r) — x.) —sinf [(r) —x.) Ab] + Ary [34]
In the previous relation, r? is the position of node 4 in the initial grid, 6 is the angle

of rotation, b is the unit vector along the rotation axis, Ar; is the displacement vector
related to the imposed translation and x . is a point on the axis defined as

X. =Xo + [(t? —xo) -b] b [35]

where xq is a fixed point along the axis.

5.2. Line

It corresponds to a perturbation function which acts along a line and is built as a
linear combination of basis functions. The perturbation is added to the initial geometry
along the normal vector of the surfaces linked to the line definition or transferred along
selected coordinates axis. The design variables are the coefficients of the expansion.
The perturbation function can be described according to

q(u) = Agi H'(u) [36]

where v represents the parametric coordinate along the line and H* are general shape
modification functions. The design variables are the parameters Ag;. Various shape
functions, including Hicks-Henne functions (Hicks et al., 1978), Bernstein polynomi-
als and B-spline functions (Farin, 1989), may be used. Among those, the approach
based on B-splines is preferred whereas the functions have a more compact support
and allow to modify only locally the shape (Figure 6).
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Figure 6. Example of B-spline functions

5.3. Surface

It corresponds to a perturbation function which is computed as a tensor product
of linear combination of 1D basis functions. The perturbation is added to the initial
geometry along the normal vector of the surfaces linked to the parametrisation. The
design variables are the coefficients of the expansions.

gs(u,v) = ¢i*(u) g/ (v) [37]

where ¢* and g7 corresponds to perturbation functions along the » and v coordinate
axis, respectively. As alternative, we might take the following representation

¢s(u,0) = D) Agi; HY (u) Hf (v). [38]

i g

5.4. Master geometry

A master represents a fine discretisation of a basic component. The deviation be-
tween the actual master and that associated to the initial geometry provides a geomet-
rical perturbation to be transferred to the surfaces linked to the parametrisation. The
design variables are the parameters that describe the master. An example of master
parametrisation is given in the next section.
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6. Wing parametrisation

The wing parametrisation described in this section has been designed on the basis
of the following consideration:

1) design variables might be selected in such a way they are close to engineers that
will use the automatic optimisation system,

2) semi-empirical knowledge is often parametrised with respect to geometrical
quantities and it could be advantageous at least to exploit this knowledge through the
implementation of linear inequality constraints.

6.1. Wing sections parametrisation

The present parametrisation is based on the splitting of an airfoil normalised by its
chord in its thickness (symmetric part, Figure 7) and camberline (antisymmetric part
or mean line) distributions (Figure 8). The thickness distribution is approximated by
two B-splines whose curve defining polygons (P; [i = 0,...,4] and P;[i = 4, ..., 8],
respectively) are built in order to satisfy the following conditions:

1) Py = (.CL'(),Z()) = (070) and Pg = (3:8738) = (170);

2) Py = (Ztmaz, trmax /2) where zypq, and tmazx are the position of the maxi-
mum thickness and its value, respectively;

3) P53 and Pj are fixed by prescribing the continuity of the two B-splines at node
4, but also the continuity of their slope (equal to zero) and of their curvature, denoted
by crv4;

4) the abscissa of nodes 1 and 2 are prescribed by the knowledge of the slope at
node 0 (co when z; — 0) and of the curvature radius at the leading edge, denoted by
ro. Their ordinates, denoted by z; and z,, respectively, are left free;

5) Py is prescribed by the knowledge of the trailing edge angle (¢¢.) and of the
distance between nodes 7 and 8, denoted by drs;

6) the co-ordinates of node 6 are left free.

In brief, the thickness distribution is approximated by B-spline representations whose
parameters are:

To, 21, 22, Ttmazx tmaa:, Crvy4, Te, 26, ¢te; d78- [39]

Within the optimisation system, the geometry modification is performed by using per-
turbations of the initial shape and differences between initial and actual approximation
of the thickness distribution are computed.

In the case of the camberline, a B-spline curve perturbation of its initial shape is
directly used. The parameters are the co-ordinates Q; of the polygon defining knots
of the spline.
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Figure 8. Camber modification parameters

In short, the node position q(t) on the wing section shape can be modified by using
the following formula

a(t) = (z(t), 2(t) = +Z (P; — P¥) BI'(t +ZQJ B™Mt)  [40]

where the symbol * refers to the original shape, ¢t € [0, 1] is the parametric abscissa
and B}* are the B-spline functions of order n.

6.2. Wings parametrisation

The wing is in general defined by:

1) platform defining parameters, such as wing area (S), wing aspect ratio (AR),
wing sweep angle (Sw) and the wing taper ratio (T'R) at some spanwise stations.
Those parameters are not in general all independent;

2) global wing section shape defining parameters, such as the twist (T'w) and the
maximum thickness (T'mazx) of key wing sections;
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3) local wing section shape defining parameters, that define the local shape of key
wing sections. They may be represented by relation [40].

Each key wing section is defined with respect to a local frame, centred at the section
leading edge and having the x-axis coincident with the section chord. Normalised co-
ordinates are introduced by scaling each length with the chord length, which means
that z € [0, 1]. Those sections without a design variables specified value are modified
from the design variables associated to neighbouring sections by using a linear rela-
tionship. It is recommended to apply the linear interpolation to the deviations between
initial and modified geometry and not directly to the latter.

Starting from the knowledge of the values of the wing defining parameters (modi-
fied or frozen values), a model generator will provide a new representation of the wing
shape, that corresponds to a fine geometry discretisation, named master discretisation.
By maintaining the same number of discretisation nodes, the shape modification may
be easily computed as the deviation of the node coordinates between the actual master
and the initial one.

The technique described in this section can be applied to any wing-like geometry,
such as wings, horizontal and vertical tails and pylons.

7. Conclusions

A geometry modelling technique has been described. Instead to use the parametri-
sation capability of modern CAD systems, we prefer to manipulate a mathematical
geometry model extracted from them. This choice is dictated by the necessity to gen-
uinely control the overall optimisation chain and to be able to implement within the
system specific parametrisation technique based on the user experience. In particular,
it is thought that the use of parametrisations based on the modification of an existing
shape instead to exploit the direct representation of the geometry results in an increase
of flexibility and accuracy. As the geometrical model is the same that the one used for
grid generation purposes, it allows to easily transfer the geometry modification to the
computational grid. Particular attention has to be paid to the overall accuracy of the
grid update procedure.

Figures 9 to 12 illustrate the capability of the geometrical modelling system. Fuse-
lage sections reduction that implies recomputation of the wing/body intersection and
several front fuselage modifications are presented.
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Figure 9. Fuselage section modification
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Figure 12. Front fuselage stretching
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