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ABSTRACT. The essential numerical features of multilevel strategies developed for parametric 
shape optimization are reviewed. These methods employ nested parameterization supports of 
either shape, or shape deformation, and the classical process of degree elevation resulting in 
exact geometrical data transfer from coarse to fine representations. The algorithms mimick 
classical multigrid strategies and are found very effective in terms of convergence 
acceleration. In particular, for a drag reduction problem involving a three-dimensional 
Eulerian transonic flow simulated by an unstructured-grid finite-volume method, the complete 
algorithm is found to be noticeably superior to the natural algorithm simply based on 
progressive degree elevation. 
RÉSUMÉ. On décrit les principaux éléments numériques de stratégies multiniveaux développées 
pour l’optimisation paramétrique de forme. Ces méthodes s’appuient sur la construction de 
supports emboîtés de paramétrisation de la forme, ou de la déformation de forme, et sur le 
processus classique d’élévation du degré qui permet le transfert géométrique exact de la 
représentation grossière à la fine. Les algorithmes miment les stratégies multigrilles 
classiques et se révèlent efficaces pour accélérer la convergence. En particulier, pour un 
problème de réduction de traînée régi par un écoulement transsonique eulérien 
tridimensionnel simulé par une méthode de volumes-finis en maillage non structuré, 
l’algorithme complet s’est révélé supérieur à l’algorithme naturel s’appuyant simplement sur 
l’élévation progressive du degré. 
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1. Introduction, hierarchical approaches in analysis and design

In recent years, the achievements in Computational Fluid Dynamics (CFD) have
opened the way to optimization, mostly shape-optimization, and design in compress-
ible aerodynamics and coupled disciplines. Aerodynamic design is a field at the inter-
face between several classical disciplines and in which numerical simulations require
assembling a number of technical elements either related to geometry (mesh and/or
CAD), solvers for a detailed analysis of the physical situations, optimizers to devise a
convergent loop permitting to optimize, or simply improve one or more performance
indices, or software engineering. Thus, a number of acute topics in numerical analy-
sis, multi-disciplinary engineering and software development are raised by these prob-
lems. These include non exhaustively the following:

– multi-disciplinary-optimization (MDO) or concurrent engineering from both
technical and organizational viewpoints (design platforms);

– treatment of multi-criterion problems: identification of Pareto fronts, dynamic
games;

– model reduction, meta-models and sensitivity analysis (response surface, Krig-
ing, artificial neural networks);

– cost-efficient optimizers (BFGS, SQP, etc.);
– robust optimizers for multi-modal or non-differentiable optimization problems

(evolutionary computing: genetic or particle-swarm algorithms, etc.); and hybridiza-
tion with deterministic optimizers;

– software engineering: automatic-differentiation, code coupling; parallel and
asynchronous algorithms;

– CAD and parameterization in shape optimization, and interface with mesh gen-
eration and adaptation.

Hence the field of optimum-shape design in aerodynamics is unsurprisingly very
active, as the program of several recent courses and workshops demonstrate (Haase et
al., 2005; Winter-Althaus et al., 2006; Périaux et al., 2006).

The present contribution relates to the development of cost-efficient optimization
strategies relying on multilevel shape parameterization.

Our developments focus on the definition, mathematical analysis and experimen-
tation of numerical methods for shape optimization for applications in which the cost
functional evaluation relies on the prior solution of a complex set of partial-differential
equations (PDEs), such as those governing compressible aerodynamics (e.g. the Euler
equations), or related coupled disciplines such as structural mechanics (e.g. elasticity),
or electromagnetics (e.g. the Maxwell equations). These PDEs are very commonly
solved by Finite Elements or Volumes, by techniques that, although becoming increas-
ingly standard, are still very costly when the accuracy requirement is high.

The important development of multigrid methods in recent years has demonstrated
that such techniques not only permit to accelerate the iterative convergence of solution
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procedures, but also have the more general merit of a better control on grid dependency
and convergence. In fact, a linear convergence rate can be demonstrated assuming
adequate iterative termination criteria are devised, that is, when the grid-convergence
control is enforced properly.

Thus, our efforts are mostly concentrated on improving the convergence rate of
numerical procedures both from the viewpoint of cost-efficiency and accuracy, with
the perspective of reducing the design cost, but also of mastering the election and
control of the design parameters, geometrical ones in particular, in a more rational
way, perhaps supported by error estimates.

Technically, our efforts tend to contribute to the following challenges:

– construct multilevel (multi-scale) shape-optimization algorithms;
– identify critical algorithmic ingredients (transfer operators, smoothers);
– evaluate efficiency, theorize convergence via error estimates or an appropriate

modal analysis.

We note that prior to us, several other authors have applied multilevel principles
in shape optimization. In particular, (Jameson, 1988; Jameson et al., 1998) has used
a multigrid method to solve both flow and continuous-adjoint equations with great
success. Ta’asan (Arian et al., 1995) introduced the concept of one-shot methods in
which these equations are solved in a simultaneous multigrid iteration. Lewis and
Nash in (Lewis et al., 2000; Lewis et al., 2005) have introduced a multigrid approach
to differential systems in which different approximations to the optimization prob-
lem associated with a hierarchy of meshes are coordinated according to a multigrid
strategy. Their algorithm is a nonlinear programming adaptation of the multigrid con-
struction. We also point out the recent theoretical review of such methods by Borzì
(Borzì, 2006). A somewhat different concept was introduced by A. Dervieux and col-
laborators who proposed a technique of Hierarchical Preconditioning (Dervieux et
al., 2001) in which the multilevel geometrical data structure of agglomeration multi-
grid is exploited to define a hierarchical optimization algorithm. The major concepts
related to this approach have also been presented (Dervieux et al., 2006).

Besides, other types of hierarchical concepts have been introduced in the litera-
ture to enhance the efficiency. In particular, certain very efficient optimizers have
been developed to employ several models to represent with different degrees of ac-
curacy the same physical situation, the coarsest model having the merit to be very
economical to evaluate. In this area, let us cite the concept of low/high-fidelity mod-
els in (Anderson et al., 2000; Alexandrov et al., 2001). (Séfrioui, 1998; Séfrioui et
al., 2000) has adapted a genetic algorithm to introduce a technique of islands in the
population of individuals in order to perform a robust working-space exploration at
the coarsest level combined with an accurate exploitation at the fine level.

Here, as a sequel of (Désidéri, 2003; Désidéri et al., 2004; Abou El Majd et
al., 2005; Désidéri et al., 2006; Désidéri et al., 2007; Désidéri, 2006), we review the
construction of multilevel algorithms, in the context of parametric shape optimization.
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Embedded search spaces are defined based on a geometrical hierarchy of nested shape
parameterizations of Bézier type. We first consider two-dimensional geometries for
which shapes are directly parameterized. Then, we recall the concept of Free-Form
Deformation which allows us to extend the multilevel geometrical representation to
three-dimensional cases. Then we provide some details on how the usual optimization
algorithms (simplex, steepest-descent) can be formulated in the context of a multilevel
shape parameterization. We then present results of optimum-shape design in 3D aero-
dynamics governed by the compressible Euler equations solved by a finite-volume
method using unstructured grids. We finally conclude with some perspectives.

2. Nested Bézier parameterizations for multilevel shape representation

We begin with the simplest situation of a two-dimensional geometry for which we
employ a Bézier shape representation:

x(t) =

n
∑

k=0

Bk
n(t) xk , y(t) =

n
∑

k=0

Bk
n(t) yk [1]

in which the parameter t varies from 0 to 1, n is the degree of the parameterization,

Bk
n(t) = Ck

n tk (1 − t)n−k [2]

is a Bernstein polynomial, Cn
k =

n!

k!(n − k)!
, and

Pk =

(

xk

yk

)

(k = 0, 1, ..., n) [3]

is the generic control point. The coordinates of these control points are split into two
vectors

X = {xk} , Y = {yk} , k = 0, 1, ..., n, [4]

and we refer to the vector X as the support of the parameterization, and the vector
Y as the design vector. Typically, we optimize the design vector for fixed support
according to some physical criterion, such as drag reduction in aerodynamics. The
somewhat unsymmetrical roles dispensed to the vectors X and Y are chosen to reduce
(to n essentially) the dimension of the search space in the optimization phase, which
is the most numerically costly and subject to numerical stiffness.

We also use the notation:

x(t) = Bn(t)T X , y(t) = Bn(t)T Y , [5]

in which the vector Bn(t)T =
(

B0
n(t), B1

n(t), ..., Bn
n(t)

)

. In all this article, only
supports for which the sequence {xk} is monotone increasing are said to be admis-
sible and considered throughout. Thus, the function x(t) is monotone-increasing and
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defines a one-to-one mapping of, say, [0,1] onto itself. Recall also the simple formula
for the derivative:

dx(t)

dt
= n

n−1
∑

k=0

Bk
n−1(t) (xk+1 − xk) = n Bn−1(t)

T ∆X [6]

in which ∆ denotes the forward-difference operator (∆xk = xk+1 − xk) as well as
the associated n × (n + 1) matrix.

In the prototypical case of an airfoil, we use such a parametric representation for
both the upper and lower surfaces separately. The vertical slope at the leading edge is
enforced by the conditions:

x0 = x1 = 0 , y0 = 0 [7]

for both surfaces which assures a smooth match; at the trailing edge, we simply have:

xn = 1 , yn = 0 [8]

for a continuous match.

Our geometrical construction employs the degree-elevation process, well-known
in the Computer-Aided Design literature (see for example (Farin, 1990)). This process
permits to cast [1] into the following equivalent Bézier parameterization of degree
n + 1:

x(t) =

n+1
∑

k=0

Bk
n+1(t) x′

k , y(t) =

n+1
∑

k=0

Bk
n+1(t) y′

k [9]

in which the new control points P ′
k = (x′

k, y′
k) are obtained from the former by convex

combinations:

P ′
0 = P0 , P ′

k =
k

n + 1
Pk−1 + (1−

k

n + 1
) Pk (k = 1, 2, .., n) , P ′

n+1 = Pn

[10]

obtained by multiplying [1] by (1 − t) + t and grouping together the monomials in
tk(1 − t)n+1−k, for each k.

Figure 1 represents the RAE2822 airfoil and the lower and upper control poly-
gons of degree-16 Bézier least-squares curvefits. The RAE2822 airfoil is a classical
geometry in computational aerodynamics, known for its low-drag performance in the
transonic regime. This shape has been tabulated by the European Project ECARP
(Périaux et al., 1998).

From a theoretical viewpoint, our construction guarantees rigorously nested search
spaces, and exact upward transfer operators (from low to high-degree parameteriza-
tion). This is illustrated on Figure 2 in which the supports of three nested parame-
terizations of the airfoil are sketched, without reference to the corresponding sets of
ordinates.
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Figure 1. RAE2822 airfoil, examples of degree-16 Bézier curvefits of the upper and
lower surfaces (superimposed), and corresponding control polygons
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Figure 2. One-dimensional example of embedded parameterizations: the triangles
represent the supports X of three nested Bézier parameterizations of degree 4, 8 and
16 of an RAE2822 airfoil obtained from the first by 4 and 12 successive degree eleva-
tions; the symbols pointing upward (resp. downward) are associated with the upper
(resp. lower) surface; the degree-4 support has been optimized to regularize the con-
trol polygon associated with the degree-16 airfoil representation
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Note that in the case of Figure 2, apart from the specified endpoints, the abscissas
of the degree-4 support X are not a subset of the abscissas of any support of a higher
degree parameterization. Nevertheless, any Bézier curve given on the degree-4 support
can be expressed exactly on any other support of higher degree provided it results, as
in this example, from the degree elevation process. The parameterizations are nested,
or embedded in one another in this sense precisely.

3. FFD for multilevel three-dimensional shape deformation

A critical issue in aerodynamic design is the choice of the shape parameterization.
Parameterization techniques for practical 3D aerodynamic shape optimization have to
fulfill several criteria:

– the parameterization should be able to take into account complex geometries,
possibly including constraints and singularities ;

– the number of parameters should be as small as possible, since the stiffness of
the shape optimization numerical formulation increases abruptly with the number of
parameters ;

– the parameterization should allow to control the smoothness of the resulting
shapes.

A survey of shape parameterization techniques for multi-disciplinary optimization,
which are analyzed according to the previous criteria, is proposed in (Samareh, 2000).
Following his recommendation, conclusions, the Free-Form Deformation (FFD) tech-
nique (Sederberg et al., 1986) is adopted in the present study, since it provides an easy
and powerful framework for the deformation of complex shapes, such as generic or
elaborate aerodynamic configurations.

The FFD technique originates from the Computer Graphics field (Sederberg et
al., 1986). It allows the deformation of an object in a 2D or 3D space, regardless
of the representation of this object. Instead of manipulating the surface of the ob-
ject directly, by using classical B-Splines or Bézier parameterization of the surface,
the FFD technique defines a deformation field over the space embedded in a lattice
which is built around the object. By modifying the space coordinates inside the lat-
tice, the FFD technique deforms the object, regardless of its geometrical description.
In particular, the initial geometry, in our applications, is usually defined by a general,
Finite-Element-type unstructured simplicial grid.

More precisely, consider a three-dimensional hexaedral lattice embedding the ob-
ject to be deformed. Figure 3(a) shows an example of such a lattice built around
a typical wing. A local coordinate system (ξ, η, ζ) is defined in the lattice, with
(ξ, η, ζ) ∈ [0, 1] × [0, 1] × [0, 1]. As a result of the deformation, the displacement
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∆q of each point q inside the lattice is here defined by a third-order Bézier tensor
product:

∆q =

ni
∑

i=0

nj
∑

j=0

nk
∑

k=0

Bi
ni

(ξq) Bj
nj

(ηq) Bk
nk

(ζq) ∆Pijk . [11]

Bi
ni

, Bj
nj

and Bk
nk

are again Bernstein polynomials of order ni, nj and nk.
(∆Pijk)0≤i≤ni,0≤j≤nj ,0≤k≤nk

are weighting coefficients, or control points displace-
ments, which are used to monitor the deformation and are considered as design vari-
ables during the shape optimization procedure. The critical point is that only the shape
deformation is represented, not the shape itself.

This technique is illustrated by Figure 3. A lattice is built around a wing and a
Bézier tensor product of degree ni = 4, nj = 1 and nk = 1 is defined over this
lattice. Corner control points (filled markers) are supposed to be frozen in order to
keep leading and trailing edges fixed during the deformation, whereas other control
points (empty markers) are allowed to move vertically (Figure 3(a)). When these
control points are moved, their displacements define a continuous deformation inside
the lattice according to [11], yielding a shape deformation. The deformed lattice and
shape can be seen in Figure 3(b)).

The FFD technique described above is well suited to complex shape optimization,
thanks to the following properties:

– the initial shape can be exactly represented (no deformation occurs when all
weighting coefficients are zero);

– the deformation is performed whatever the complexity of the shape (this is a
free-form technique);

– geometric singularities can be taken into account (the initial shape including its
singularities is deformed);

– the smoothness of the deformation is controlled (the deformation is ruled by
Bernstein polynomials);

– the number of design variables depends on the user’s choice (the deformation is
independent of the shape itself);

This technique nicely deals with multilevel representation thanks to the Bézier de-
gree elevation property. To apply the degree elevation process within the FFD frame-
work, one should simply apply the standard degree elevation process for each direction
of the tensor product. The process is illustrated by Figure 4. Degree elevation in the
direction ξ is applied to the shape obtained previously using a deformation of degree
4-1-1 (Figure 4(a)). Figure 4(b) shows the result when the degree is elevated to 6-1-
1 and Figure 4(c) when it is elevated to 8-1-1. One can notice that the shape is not
modified, whereas the lattice counts an increasing number of control points.
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η

ζ

ξ

(b) Deformed FFD lattice 4-1-1

Figure 3. Example of Free-Form Deformation: by moving some control points of the
lattice, a deformation field is defined continuously inside the lattice, yielding a shape
deformation

4. Multilevel variants of classical optimization algorithms

With the support of the nested geometrical representations constructed in the pre-
vious sections, we can now define precisely our algorithms which combine standard
iterations (simplex method, particle-swarm optimizer or steepest-descent) with a mul-
tilevel geometrical treatment. To be specific, we consider for simplicity the two uni-
form and nested parameterization supports of Figure 5 associated with representations
of shape, or shape-deformation of degree 4 and 8 of a two-dimensional problem. Let
γ denote the shape to be optimized, and J(γ) the intrinsic cost function to be mini-
mized. Let Bn(X, Y ) denote the Bézier curve of degree n associated with the control
points (X, Y ). Then, the parametric cost function is taken to be

jn(Y ) := J
(

Bn(X, Y )
)

[12]

where X is fixed (and possibly subsequently adapted).
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Figure 4. Example of degree elevation process: by using the degree elevation process
in the direction ξ, the number of control points is increased while the initial shape is
not modified
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SUPPORT OF FINE-LEVEL PARAMETERIZATION
n = 8 (7 d.o.f.’s)

n = 4 (3 d.o.f.’s)
COARSE LEVEL

0 8
1 2 3 4 5 6 7

0 4
1 2 3

Figure 5. Nested supports of parameterizations of degree 4 and 8; the degrees of
freedom associated with both endpoints (k = 0 or n) are fixed

Then the classical steepest descent method can be combined with a two-level pa-
rameterization in the following algorithm, in which E8

4 is the rectangular matrix rep-
resenting the degree-elevation process from n = 4 to 8:

1) partially solve coarse-level parametric optimization problem :

For i = 1, 2, ..., K do : Y ′i = Y ′i−1 − ρi ∇jCOARSE

(

Y ′i−1
)

[13]

Here, jCOARSE = j4 and Y ′i ∈ R
5 (but with only 3 d.o.f.’s since y0 = y4 = 0)

2) transfer optimum-shape design vector onto upper level

Y K = E8
4 Y ′K =⇒ Y K ∈ R

9 [14]

3) solve fine-level parametric optimization problem:
Reset Y 0 = Y K and for i = 1, 2, ... until convergence:

Y i = Y i−1 − ρi ∇jFINE

(

Y i−1
)

[15]

Here, jFINE = j8 and Y i ∈ R
9 (but with only 7 d.o.f.’s since y0 = y8 = 0) =⇒ final

solution Y ∗ ∈ R
9.

In fact, in the above algorithm, all the evaluations are performed on the upper level.
Now, since the supports are nested (embedded),

X(8) = E8
4 X(4) [16]

the above transfer (item 2) is exact :

B8

(

X(8), Y K
)

= B4

(

X(4), Y ′K
)

[17]

and in terms of shape, the upper-level iteration begins with the last update coming
from the previous lower-level iteration.

Similarly, the two-level “ideal V-cycle” based on steepest descent is defined by the
schematic of Table 1.
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Table 1. Schematic of two-level ideal V-cycle
Upper level

For i = 1, 2, ..., K do :
Y i = Y i−1 − ρi ∇jFINE

`

Y i−1
´

=⇒ Y K ∈ R
9 V

Upper level
Reset Y 0 := Y K + E8

4
Y ′∗ and do :

Y i = Y i−1 − ρi ∇jFINE

`

Y i−1
´

(i ≤ K)

=⇒ Y K := Y 0new
↘↘↘ ↗↗↗

Lower level
Minimize jCOARSE (Y ′) :=

jFINE

“

Y K + E8

4
Y ′

”

=⇒ Y ′∗ ∈ R
5

Note that above algorithm is said to be ideal if the coarse-level problem is solved
to complete convergence regardless the method (evolutionary algorithm, simplex
method, steepest-descent, (P)CG, BFGS, etc). Additionally, the iteration is formu-
lated as a correction algorithm since the coarse-level problem defined in terms of a
correction vector to be applied to the unknown (upper-level) design vector.

The V-cycle being defined, more elaborate strategies mimicking classical multigrid
iterations can be devised. Once the nested supports have been constructed from a
coarse parameterization, all multigrid-type strategies (saw-tooth, V or W-cycle, Full-
Multi-Grid (FMG), (Wesseling, 1992)) can be implemented; at any point in the graph,
the current approximate optimum shape admits an exact representation on the fine
level.

Note that nested supports of parameterization of shape-deformation are far sim-
pler to construct and handle than nested grids (particularly in the unstructured-grid
finite-volume formulation). Consequently, the present multilevel parametric shape
optimization algorithms are easy to implement.

In particular, iterations involving all intermediate levels could easily all be consid-
ered without particular implementation difficulties.

5. Application to aerodynamics design

5.1. Test-case description

The test-case considered here corresponds to the optimization of the wing shape
of a business aircraft (courtesy of Piaggio Aero Industries) in a transonic regime. The
free-stream Mach number is M∞ = 0.83 and the incidence α = 2◦. Initially, the
wing section corresponds to the NACA 0012 airfoil. An unstructured mesh, composed
of 31 124 nodes and 173 445 elements, is generated around the wing, including a
refined area in the vicinity of the shock (Figure 6). Flow fields are obtained by solving
compressible Euler equations using a finite-volume method.
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Figure 6. Initial wing shape and mesh in the symmetry plane

The goal of the optimization is to reduce the drag coefficient CD subject to the
constraint that the lift coefficient CL should not decrease more than 0.1%. The con-
straint is taken into account using a penalization approach. Then, the resulting cost
function is:

JOPT =
CD

CD0

+ 104 max(0, 0.999−
CL

CL0

). [18]

CD0 and CL0 are respectively the drag and lift coefficients corresponding to the initial
shape (NACA 0012 section).

The FFD lattice is built around the wing with ξ, η and ζ in the chord-wise, span-
wise and thickness directions respectively. The lattice is chosen in order to fit the
planform of the wing. Then, the leading and trailing edges are kept fixed during the
optimization by freezing the control points that correspond to i = 0 and i = ni.
Moreover, control points are only moved vertically. Results are presented for three
parameterizations. The coarsest one corresponds to ni = 3, nj = 1 and nk = 1.
Therefore, (4 − 2) × 2 × 2 = 8 degrees of freedom are taken into account in the
optimization. The medium parameterization corresponds to ni = 6, nj = 1 and
nk = 1 and counts (7 − 2) × 2 × 2 = 20 degrees of freedom. Finally, the finest
parameterization corresponds to ni = 9, nj = 1 and nk = 1 and counts (10 −
2) × 2 × 2 = 32 degrees of freedom. In this study, the Nelder-Mead simplex method
(Nelder et al., 1965) is used as optimization algorithm. Three strategies corresponding
to different ways of handling the geometrical parameterization are compared:

– basic method (test A): single parameterization until full convergence;
– progressive degree elevation (test B): 3 levels (coarse, medium and fine) are

considered successively using the degree elevation transfer;
– FMOSA (test C): using the same 3 levels of parameterization as the ones of test

B in a strategy including a FMG-like approach defined in Table 2.



162 REMN – 17/2008. Shape design in aerodynamics

Table 2. V-cycle fully multilevel algorithm; the parameterization-support adaptions
(→) are possible at fixed degree prior to degree-elevation+relaxation↗ but have not
been made in the present tests; again ↘ indicates the formulation of a correction
problem over the embedded support inherited from the last adaption; the degrees re-
fer to the parameterization in the vertical direction; the indicated figures 10 and 70
correspond to iteration counts

Fine 10 10
(degree 9) ↗ ↘ ↗
Medium 10 10 → 0 10 10
(degree 6) ↗ ↘ ↗ ↘ ↗

Coarse 70 → 0 70 70
(degree 3)

5.2. Aerodynamic coefficients

The aerodynamic coefficients obtained for each method are compared in Table 3.
The lift coefficient is approximately maintained or slightly increased by the shape op-
timization process. Important reductions of the drag coefficient are reported. As ob-
served, the multilevel strategies improve significantly the aerodynamic performance.

Table 3. Comparison of aerodynamic coefficients and cost function values
Method CL CD Cost

Reference 0.31920 0.02635 1.
Test A Single fine param. 0.31978 0.1703 0.64539
Test B Degree elev. 0.31888 0.01629 0.61823
Test C FMOSA 0.31890 0.01581 0.60027

5.3. Convergence history plots

Figure 7 depicts the convergence history of the basic method (single parameteriza-
tion) for three different parameterizations. With a coarse parameterization, a very fast
convergence is observed, but the value of the cost function at convergence is not sat-
isfactory (poor accuracy). Increasing the number of geometrical parameters results in
an improved aerodynamic performance, but a larger number of iterations is required.
However, one can notice that the optimization using the fine parameterization has not
converged yet after 1 100 iterations, yielding a performance worse than previously
obtained with the medium parameterization.

Figure 8 shows a comparison of the convergence for the three strategies under con-
sideration. The method based on a progressive degree elevation is significantly better
than the classical single parameterization approach. FMOSA is still more efficient,
yielding a shape of better fitness using a smaller computational effort.
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5.4. Flows

A comparison of the flowfields for the final shapes obtained with the different
strategies is presented in Figures 9 to 12. The Mach number field on the wing surface
and Mach number contours in the symmetry plane are represented. Visibly, this drag
reduction exercise results in a strong reduction of the shock wave. Using a single fine
parameterization, the shock reduction is not as important, whereas in the multilevel
approaches, the shock at the root section disappears.

6. Conclusions and perspectives

We have shown in this study that multilevel strategies are better equipped to al-
leviate the numerical stiffness in numerical shape optimization, which in the para-
metric formulation increases very rapidly with the number of degrees of freedom
(Désidéri, 2006).

Besides, adequate parameterization adaption techniques have been devised and
tested in model problems (Désidéri et al., 2007) as well as in three-dimensional flow
problems (Duvigneau, 2006). These procedures which readjust the parameterization
support to regularize the shape representation, were also found to be very effective
in accelerating the convergence process. From a theoretical point of view, we have
also proposed (Désidéri, 2006; Désidéri et al., 2006) a shape reconstruction or inverse
problem as a simple model to analyze the convergence mechanism of our parametric
shape optimization method. There, we have identified a pertinent eigensystem asso-
ciated with a linear iteration. This analysis comforts us in the analogy with multigrid
methods supporting our algorithms, but at the same time, raises a number of differ-
ences and theoretical questions requiring further investigation, currently being carried
out.

Ultimately, we observe that the multilevel geometrical structure could also be used
to support a hierarchical method in which reduced models are used on lower levels.
These reduced models can be based on:

– variable physics: e.g. Euler on coarse levels, Navier-Stokes on upper;
– variable numerics: use of a hierarchy of meshes, and/or simplified state-cost

functional dependency (response surface, artificial neural networks, etc), and/or alter-
nate optimizer (e.g., evolutionary on coarsest level for robustness, simplex method on
intermediate level, deterministic on fine level for accuracy; hybridization), etc.

Thus, a great number of promising algorithmic variants can be devised.
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Figure 7. Basic method: convergence history plot for three different single parame-
terizations
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Figure 8. Comparison of the convergence history for the three strategies
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Figure 9. Mach number field on the wing and Mach number contours in the symmetry
plane: initial shape

Figure 10. Mach number field on the wing and Mach number contours in the symme-
try plane: single fine parameterization
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Figure 11. Mach number field on the wing and Mach number contours in the symme-
try plane: progressive degree elevation strategy

Figure 12. Mach number field on the wing and Mach number contours in the symme-
try plane: FMOSA strategy
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