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ABSTRACT. This paper proposes an efficient and robust procedure for the design optimization 
of turbomachinery cascades in inviscid and turbulent transonic flow conditions. It employs a 
progressive strategy, based on the simultaneous convergence of the design process and of all 
iterative solutions involved (flow analysis, gradient evaluation), also including the global 
refinement from a coarse to a sufficiently fine mesh. Cheap, flexible and easy-to-program 
Multigrid-Aided Finite Differences are employed for the computation of the sensitivity 
derivatives. The entire approach is combined with an upwind finite-volume method for the 
Euler and the Navier-Stokes equations on cell-vertex unstructured (triangular) grids, and 
validated versus the inverse design of a turbine cascade. The methodology turns out to be 
robust and highly efficient, the converged design optimization being obtained in a 
computational time equal to that required by 15 to 20 (depending on the application) 
multigrid flow analyses on the finest grid. 
RÉSUMÉ. Cet article propose une procédure robuste et efficace pour l’optimisation de formes 
de turbomachines en écoulements transsoniques, turbulents et non visqueux. On utilise une 
stratégie progressive, basée sur la convergence simultanée du processus de design et de 
toutes les solutions itératives considérées (écoulement, gradient), incluant également le 
raffinement de maillage (de grossier à suffisamment fin). Peu coûteuse, flexible et simple à 
programmer, une approche différences finies/multigrilles est utilisée pour le calcul des 
dérivées de sensibilités. L’approche complète est associée à une méthode de volumes finis 
décentrée pour les équations d’Euler et de Navier-Stokes en maillages non structurés 
(triangulaires), et validée considérant un problème inverse de cascade de turbine. Cette 
méthodologie apparaît robuste et efficace, la solution convergée étant obtenue en un temps de 
calcul équivalent à 15 à 20 (en fonction de l’application considérée) calculs de l’écoulement 
sur le maillage plus fin. 
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1. Introduction

In the last years, many CFD researchers have devoted their efforts to the develop-
ment of robust and efficient gradient-based optimization procedures for the automatic
design of fluid-dynamic components. The most ambitious technique developed so far
is the so-called one-shot method (Kuruvila et al., 1995; Held et al., 2002), which com-
bines the objective function and the governing equations, so as to define and solve a
unique problem. The alternative, iterative formulation of the optimization problem
consists of computing the flow on a trial geometry, evaluating the objective function
gradient, and, accordingly, modifying the shape. Concerning its efficiency, a pro-
gressive optimization strategy has been proposed in (Dadone et al., 2000b), based on
the simultaneous convergence of the design process and of all iterative solutions in-
volved (flow analysis, gradient evaluation), also including the global refinement from
a coarse to a sufficiently fine mesh. Greater advantage has been taken from the use of
multiple grid levels by the methods proposed in (Kuruvila et al., 1995; Mohammadi
et al., 2001; Beux et al., 1994), where the descent algorithm and the design variables
work according to multigrid (Brandt, 1977) concepts.

Perturbed shapes and finite differences can be used to evaluate the sensitivities.
This method is easy-to-program, is invariant with respect to the grid type, to the flow
modelization and to the discretization scheme, and can be combined with black-box
commercial codes. Its drawback is the large amount of computational work, almost
proportional to the number of design parameters. To overcome this low efficiency, ad-
joint methods, in both continuous and discrete form, have been developed and widely
tested, see, e.g., (Jameson, 1988): all sensitivities are computed by solving a unique
adjoint system, independently of the number of design parameters. This approach is
very efficient, but a very cumbersome, analytical or symbolic, differentiation of the
governing equations is required. An alternative, much simpler, approach has been
proposed in (Mohammadi, 1997), where it is shown that when the objective function
depends on surface integrals, its gradient is not significantly influenced by the flow
derivatives, which can be dropped out. The cost of the gradient evaluation becomes
negligible, but all applications proposed so far lead to an improvement, rather than to a
complete optimization, of the performances of the component under design. An alter-
native approach, which also takes advantage of the multigrid concepts, but differently
from (Kuruvila et al., 1995; Mohammadi et al., 2001; Beux et al., 1994), has been
recently proposed by the authors (Catalano et al., 2003a): this Multigrid-Aided Finite-
Difference (MAFD) technique should be invariant with respect to the grid type, to the
flow modelization and to the discretization scheme, as the standard finite-difference
approach. To date, it has been tested, in combination with the progressive optimization
strategy of (Dadone et al., 2000b), versus the inviscid transonic flow past a 3D turbine
nozzle (Catalano et al., 2003a), using a structured, cell-centered, flow solver and ver-
sus the inviscid (transonic and subsonic) and laminar flow past airfoils (Catalano et
al., 2005a), using an unstructured, cell-vertex, flow solver.
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This paper proposes the application of the MAFD progressive optimization strat-
egy to the inverse design of turbine cascades in inviscid and turbulent transonic flow
conditions, using the aforementioned unstructured, cell-vertex, flow solver.

2. Flow solver

An unstructured cell-vertex triangular grid is used to discretize the 2D Euler and
Navier-Stokes equations governing the flows considered in this paper.
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Figure 1. Second-order reconstruction

A left state and a right state are linearly reconstructed on the two sides of each
interface (ij), obtained by connecting either the barycenters or the circumcenters of
two neighboring triangles. Similarly to the 1-D case, a unique left-neighboring cell
is used to define the flow gradient employed in the reconstruction (Catalano, 2002):
it is defined as the cell Cji which contains the prolongation of the side (ji), plotted
as a dot-dashed line in Figure 1. Standard one-dimensional limiters are also applied
straightforwardly. The flux-difference-splitting of (Roe, 1986) is then used to solve
the Riemann problem defined at each interface. It is noteworthy that this rather simple
method allows to capture discontinuities very sharply, despite the 1-D physics of the
Riemann solver (Catalano et al., 2003b). Figure 2 provides the Mach number contours
for the flow in a circular-arc bump channel, with Minl = 1.4, computed on a grid
composed by 15 256 cells. Figure 3 shows a zoom of the Mach number contours
and of the grid in the λ-shock region: the shocks are captured in two or three cells;
moreover, the λ-shock is clearly described, and the blending of the downstream Mach
number contours reveals the presence of the resulting contact discontinuity.

A standard finite-element Galerkin discretization is used for the viscous terms.
Turbulent computations have been performed by means of a standard formulation of
the two-equation k − ω model of Wilcox (Wilcox, 1988).
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Figure 2. Circular-arc bump channel: Mach number contours (∆M = 0.05)

Figure 3. circular-arc bump channel: zoom of the Mach number contours (∆M =
0.05) and of the grid in the λ-shock region

The discretized governing equations are solved by means of a four-stage Runge-
Kutta scheme, coupled with an Implicit Residual Smoothing procedure: (Catalano et
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al., 2005b) fully describes the technique here employed to define the smoothing lines
on cell-vertex unstructured grids.

A standard V-cycle Full MultiGrid (FMG) (Brandt, 1977) has been also imple-
mented both to accelerate convergence to steady state and to compute the MAFD
sensitivities. Finer grids are created during the nested iteration by means of a global
uniform refinement.

3. Blade parameterization

A good parameterization of the blade profile should allow to explore a wide range
of complex and innovative geometries, without slowing down the convergence of the
optimization process. To achieve the first of the above requirements, a sufficient num-
ber of design parameters is needed. The most obvious choice consists of keeping the
mesh points on the blade surface as control points; however, since a perturbation of a
design parameter would produce only a local perturbation of the flow solution (thus
deteriorating the convergence of the optimization problem), a smoothing of the blade
profile is required (Mohammadi et al., 2001), which restricts the flexibility of the rep-
resentation. A widely employed parameterization consists of combining a number of
existing profiles (shape functions), using the corresponding weights as design param-
eters, see (Dadone et al., 2000a; Kuruvila et al., 1995; Jameson, 1988). An other very
common approach is based on the use of interpolation functions, and, in particular, of
Spline curves or Bézier-Bernstein polynomials, using some points of the blade or the
control points as design parameters, respectively (Farin, 1993).

All cited parameterizations do not use an orthogonal basis as vector of design
parameters, which would be the best choice for the optimal convergence of the design
problem (Kuruvila et al., 1995) since it avoids to work with a set of functions weakly
independent. In this paper, a new method is proposed for the definition of a set of
orthogonal shape functions fk, k = 1, ..., np; orthogonality is, here, defined with
respect to the following inner product:

(fi, fj) =
∮

fifjdx. [1]

and np is great as needed for a good representation of complex and innovative aero-
dynamic shapes f . In particular, the method is applied to the design of 2D turbine
blades with wedged trailing edge. With minor modifications, it can be easily applied
to the parameterization of blades with rounded trailing edge and of other aerodynamic
components, such as compressor blades and airfoils.

A set of airfoil-like profiles p`, ` = 1, ..., np, is generated by using the Bézier-
Bernstein polynomials

bn(q) =
n∑

j=0

bj
n!

j!(n− j)!
qj(1− q)n−j , q ∈ [0, 1] [2]
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where bj , j = 0, ..., n contains the coordinates of the j th Bézier-Bernstein control
point. The first (b0) and the last (bn) control points coincide, so as to obtain a wedged
trailing edge. The Bézier-Bernstein polynomials are here scaled so as to fix the leading
edge in (0, 0) and the trailing edge in (1, 0). Thus, the number of independent profiles,
p`, reduces to np = n− 2.

The first curve, p1, is obtained by fixing the (n+1) Bézier-Bernstein control points
bj so as to draw a reasonable aerodynamic profile. Figure 4 shows the location of the
(thirteen) control points employed and the first curve obtained after scaling.
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Figure 4. Control points and corresponding Bézier-Bernstein polynomial obtained

Additional (np− 1) aerodynamic profiles p` can be generated by shifting the con-
trol points along y, b0 and bn remaining unchanged. Then, the set of orthogonal shape
functions f`, ` = 1, ..., np, is finally obtained as follows: the first curve remains un-
changed, namely f1 = p1; the other curves f`, ` = 2, ..., np, are obtained from the
curve p` and from the orthogonal shape functions fj , 1 ≤ j < `, previously computed,
according to the Gram-Schmidt orthogonalization process:

f` = p` −
`−1∑

j=1

∮
p`fjdx

∮
f2

j dx

fj [3]

Finally, the shape functions f`, ` = 2, ..., np are empirically scaled so that the maxi-
mum of f` is equal to the maximum of f1.

All computations proposed in this paper employ the six orthogonal profiles shown
in Figures 5 and 6.

When considering an airfoil or an axial compressor blade, the orthogonal profiles
can be simply combined, using the design variables as weights. For a turbine blade,
an alternative procedure is suggested:
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Figure 5. Symmetrical orthogonal shape functions
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Figure 6. Antisymmetric orthogonal shape functions

1) combine the antisymmetric profiles to define the camberline at each point i:

c(i) =
Nξ∑

` = 1
` even

ξ` f
(i)
` ; [4]

2) rotate the resulting camberline so as to impose the prescribed exit angle; derive
a new curve c(x(i)

c , y
(i)
c );

3) use the symmetrical profiles to define the blade thickness at each point of the
camberline:
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t(i) =
Nξ∑

` = 1
` odd

ξ` f
(i)
` ; [5]

4) obtain the blade profile by adding the thickness t(i) in the direction normal to
each point i of the camberline:

x(i) = x
(i)
c + t(i) · n(i)

x

y(i) = y
(i)
c + t(i) · n(i)

y .
[6]

4. Multigrid-aided finite-difference sensitivities

The MAFD procedure proposed in this paper aims at reducing the computational
work required by the flow computation on perturbed geometries, while maintaining
the advantages cited in the Introduction.

According to the so-called dual viewpoint of the multigrid (MG) technique, a con-
stant term is computed at each MG cycle and added to the right-hand side on the
coarser grid level. This term can be written as:

Rh(RU Ũ `
h)−RdRh(Ũ `

h) [7]

where RU and Rd are suitable restriction operators for the solution and for the defect
from the fine level h to the coarse level H and Rh is the flow residual. As known,
this term represents an approximate value of the relative local truncation error (RLTE)
between the finer grid and the coarser one (Brandt, 1977). Moreover, the method
works accordingly to three following important remarks: i) the multigrid strategy
solves the flow equations on coarser grid levels with the same accuracy of the finer
level, thanks to the addition of the RLTE term. Moreover, ii) a correct choice of the
design parameters should give a smooth perturbation of the blade profile, that can be
seen effectively on a coarser level. Finally, iii) the approximate RLTE, which mainly
represents the difference of accuracy between two nested grid levels, is not affected
by a small, smooth perturbation of one design parameter.

On the basis of these three considerations, the proposed method allows to compute
the difference between the flow solutions of perturbed geometries using a coarser grid
level and a value of the RLTE computed only once, using the unperturbed geometry.
The entire procedure can be summarized as follows:

1) store the flow solution for the current geometry computed on the finest mesh;
2) compute and store the RLTE between the finest and the coarsest grid solutions

for the current configuration, using the same subroutines already written for the MG
cycle; set ` = 1;
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3) assign small positive and negative perturbations to the `th design parameter;
4) restrict the current fine-mesh flow solution, previously stored, onto the coarsest

grid level, without intermediate solver applications;
5) approximately compute (with the same level of convergence) the flow solutions

for the perturbed geometries on the coarsest level employed, adding the stored RLTE
to the right-hand-side of the flow equations, as done in the MG technique;

6) compute and prolongate (to the finest grid level) the solution corrections;
7) update the flow solution on the finest mesh and compute the objective function;
8) in case of discontinuities, smooth the objective function, using a simple high-

frequency filter;
9) evaluate the sensitivity derivative as:

Dξ`
I =

I(ξ` + ∆ξ`)− I(ξ` −∆ξ`)
2∆ξ`

≈ ∂I

∂ξ`
[8]

10) if ` < Nξ, increase ` of one and go to step 3.

Centered finite differences have been preferred with respect to one-side differences
for robustness, rather than for accuracy. It is noteworthy that almost identical perfor-
mances are obtained with a step-size ∆ξ ranging from 10−3 to 10−5, provided that
the convergence level (log10 of the flow residual) of the coarse-grid solution for the
perturbed shapes, Rps, is related to the current convergence level of the finest grid
solution, Rfgs, by the following empirical relation:

Rps = Rfgs − 1 + 0.5(3 + log10∆ξ). [9]

It is also noteworthy that the coarse-grid evaluation of the perturbed flow fields is very
efficient, while preserving the fine-grid accuracy: the coarser grid levels have a much
lower number of cells and allow the use of a higher time step (the time step is at least
doubled at each coarsening). The cost to compute the approximate derivatives still
depends on the number of design parameters, Nξ, but has been drastically reduced.
Moreover, the entire procedure can be easily parallelized: in such a case, the required
computational work would become additionally reduced and become possibly inde-
pendent of Nξ (if Nξ is smaller than the number of available processors).

5. Progressive optimization

The simultaneous convergence of the design process and of the flow analysis, also
including the global refinement from a coarse to a sufficiently fine mesh, is the basis
of the progressive optimization strategy proposed in (Dadone et al., 2000b) and here
employed: less accurate sensitivity derivatives (i.e. with partially converged flow solu-
tions computed on coarser levels) are used when the geometry is far from the optimal
one; then, the convergence level of the flow solution and the number of mesh points are
increased while approaching the optimum. Starting the optimization on coarser grids



208 REMN - 17/2008. Shape design in aerodynamics

and using partially converged flow solutions drastically reduce the computational cost
of the entire optimization procedure, without affecting its robustness and capability of
finding the optimum, as demonstrated by the large number of applications proposed
so far. This approach is adapted to the MAFD computation of sensitivities here pro-
posed, furnishing the following MAFD progressive optimization algorithm (see also
(Catalano et al., 2003a)):

1) start with an initial set of design variables;
2) start the flow computations on a coarse grid;
3) advance the flow solver for several iterations;
4) compute the objective function gradient, ∇I , by means of the MAFD approach;
5) update the design variables according to the relation:

ξl+1
` = ξl

` − a` Dξ`
I [10]

where a` are positive parameters;
6) repeat steps 3 to 5 until the gradient of the objective function is sufficiently

decreased (from one to two orders of magnitude);
7) refine the mesh by doubling the number of intervals in each direction and inter-

polate the computed flow solution to the finer grid;
8) repeat steps 3 to 5 until the gradient of the objective function has decreased half

to one order of magnitude more;
9) repeat steps 7 and 8 until the finest grid is reached;

10) repeat steps 3 to 5 until the gradient of the objective function has sufficiently
decreased.

The coefficient a` in eq. (10) is evaluated as a` = b·c`. The coefficient b represents
the minimum value of a` and is given by:

b =
∆ξc

κ |∇`I|0max

, [11]

where ∆ξc is a typical (order of magnitude) change of the design parameters, κ is a
constant ranging from 40 to 100 and depending on the test case, and |∇`I|0max is the
largest absolute value assumed by the sensitivity derivatives of the objective function
after the first global step through steps 1 to 5. At the beginning of the computations,
c` is set to 1, then it is increased by 50% if the corresponding sensitivity derivative
of the objective function maintains its sign, while it is decreased by 50% if the sign
changes. This approach allows large changes for the design variables whose sensitivity
derivatives maintain the same sign, while it assigns small changes to design variables
whose sensitivity derivatives are changing their sign. This technique is more efficient
than the method of steepest descent, corresponding to c` equal to one, due to the
approximate gradient evaluation.



MAFD progressive optimization 209

6. Validation of the solver for turbulent computations

The well-know transonic flow about the RAE2822 airfoil reported in (Cook et
al., 1979) as Case 9, has been considered to test the flow solver employed for turbu-
lent computations (see (Catalano et al., 2003b)). The undisturbed Mach number is
M∞ = 0.73, the angle of attack is 2.8◦ and the Reynolds number is Re = 6.5× 106.
The grid employed is obtained by subdividing a C-mesh with 256×64 cells (160 points
are on the surface). A constant stretching is imposed in direction normal to the sur-
face, the resulting y+ being always less than 1. Figure 7 shows the Mach number
contours computed by the present method, using the circumcenters to generate the
dual mesh. Figure 8 provides the corresponding distribution of the pressure coeffi-
cient. The comparison with the experimental results of (Cook et al., 1979) is rather
good, except in the shock region, as also found by other authors. Finally, Figure 9 re-
ports the distribution of the skin friction coefficient (non-dimensionalized with respect
to the free-stream conditions), which also in this case is in good agreement with the
experimental data (computed from those provided in (Cook et al., 1979) with a differ-
ent definition), except beyond the shock. Velocity profiles at different axial stations
are provided in (Catalano et al., 2003b).

Figure 7. RAE-2822 airfoil: Mach number contours (∆M = 0.05)

7. Results

The inverse design of a 2D turbine blade, in both inviscid and turbulent transonic
flow conditions, has been approached in this paper to validate the proposed strategy,
namely to check its capability to reach the optimum and its efficiency: the target
shape, defined by known values of the design parameters ξj , is used to compute a
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target pressure distribution, p̂, that must be matched by the pressure distribution p
computed on the trial shape: accordingly, the objective function is defined as

I(ξ) =
1

2S

∫

S

[p− p̂]2 d S. [12]
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Figure 8. RAE-2822 airfoil: pressure coefficient
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Figure 9. RAE-2822 airfoil: skin friction coefficient

All applications have been obtained with the same code and with the addition
of a simple high-frequency filtering (smoothing) of the target and of the computed
pressure distributions, when evaluating the sensitivities, since a sharp shock is cap-
tured by the flow solver on the suction side of the blade. The known target blade has
been preliminary defined by combining the six orthogonal (three symmetric and three
antisymmetric) base functions provided in Figure 5 and 6, with weights (or design
parameters) ξ1 = 2.2, ξ2 = 3.5, ξ3 = −0.4, ξ4 = −0.1, ξ5 = −0.1 and ξ6 = 0.1, see
the solid line plotted in Figure 10. In all cases, the initial profile, plotted as a dashed
line in Figure 10, is defined by the design parameters ξ1 = 1.5, ξ2 = 5.0, ξ3 = 0.0,
ξ4 = 0.0, ξ5 = 0.0 and ξ6 = 0.0. Both the MG and the progressive optimization
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employ three grid levels, the finest mesh being composed of 9 351 nodes and 18 432
triangles (97 nodes on the blade).

target
initial
optimal

Figure 10. Target, initial and optimal profiles

Transonic inviscid flow conditions have been considered for the first test-case:
incidence angle α = 0◦, outlet isoentropic Mach number M2,is = 0.9. The Mach
number contours and the target pressure distribution for this test-case are shown in
Figures 11 and 12, respectively, a sharp shock being located on the rear part of the
suction side.

Figure 11. Mach number contours (inviscid flow conditions) ∆M = 0.05
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Figure 12. Target pressure distribution (inviscid flow conditions)

Figure 13 proposes the convergence histories of the flow residual, of the objective
function and of the magnitude of the objective function gradient. One work unit is
defined as one (converged) MG computation of the target flow.
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Figure 13. Convergence histories (inviscid flow conditions)

The optimization procedure is firstly applied on the coarsest level, which cannot
take advantage of the MAFD procedure. Two grid refinements have been set both for
log10|∇I| ≤ −3.5. The whole optimization process is stopped when log10|∇I| ≤
−5.0 at the finest level, which is even excessive for engineering applications. The
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first grid refinement is performed after 1.6 work units. At the second grid level, the
MAFD technique employs the coarser mesh to compute the sensitivity derivatives and
the second refinement is located at work ≈ 2.4. Figures 13 indicates that the work
required to obtain the more than satisfactory convergence level of -5.0, on the finest
mesh, is about 15. The optimal blade (symbols) is perfectly superposed to the target
configuration (solid line), see Figure 10. As well, the optimal pressure distribution
accurately matches the target pressure distribution, see Figure 12.

The MAFD progressive optimization has been finally tested under turbulent flow
conditions, using the same target and initial profiles: Re = 106, outlet isoentropic
Mach number M2,is = 0.75, incidence angle α = 0◦, inlet turbulence intensity Tu =
4%. Figure 14 provides the corresponding Mach number contours (y+ always lower
than one). The target pressure distribution is shown in Figure 15.

Figure 14. Mach number contours (turbulent flow conditions) ∆M = 0.05

Figure 16 provides the convergence histories of the optimization. The two grid
refinements are performed after 3 and 5 work units, respectively. Figure 16 indicates
that the work required to obtain the fully satisfactory convergence level of -5.0, on the
finest mesh, is about 20. Also in this case, the optimal pressure distribution matches
the target one, see Figure 15.

8. Conclusions

A very efficient and robust progressive-optimization procedure using Multigrid-
Aided Finite-Differences for the computation of the sensitivity derivatives has been
proposed and combined with an upwind finite-volume method for the Euler and the
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Navier-Stokes equations on cell-vertex unstructured triangular grids. The entire ap-
proach is cheap, flexible and easy-to-program; it also turns out to be robust and highly
efficient, the converged design of a 2D turbine blade, under inviscid and turbulent tran-
sonic flow conditions, being obtained in a computational time equal to that required
by 15 to 20 multigrid flow analyses on the finest grid.
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Figure 15. Target pressure distribution (turbulent flow conditions)
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Figure 16. Convergence histories (turbulent flow conditions)
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