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Abstract

This present investigation studies the effect of viscous dissipation in mag-
netohydrodynamics fluid flow over an exponential surface subject to the
influence of thermal radiation and thermal diffusion. The coupled nonlinear
guiding equations responsible for the flow, heat and mass transports presented
as partial differential equations are revamped to the associated ordinary
differential equation by application of the associated similarity variables
and solved by Galerkin Weighted residual method (GWRM). The results of
various parameters encountered are analyzed with graphs while the Sherwood
number, Nussetl number, and local skin friction are computed and discussed.
The study demonstrates, among other things, that the fluid has a strong
thermal conductivity at low Prandtl numbers and that heat diffuses from the
surface more quickly at low Prandtl numbers in comparison with the higher
values.

Keywords: Heat sink/source, thermal radiation, thermal diffusion, Galerkin
Weighted residual method.
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1 Introduction

The phenomenon of boundary layer flow of the continuous stretching sheet
has great importance in manufacturing industries such as; wire drawing,
paper production, metal rolling, drawing of plastic film, and metal spin-
ning e.t.c. The foundational knowledge of the study was first reviewed by
Sakiadis [1] while working on the boundary layer flow over a continuous
stretching surface with constant speed and other authors like Crane [2],
Carragher and Crane [3] and Wang [4] contributed widely to the literature
with the early investigation. Due to its many industrial uses, it has gained
scientific interest and received much study in the literature. Magyari and
Keller [5] studied the flow of heat and mass transfer across an exponentially
stretched continuous surface, using an analytical method and numerical solu-
tion. Partha et al. [6] justified that the thickness of the thermal boundary layer
declines under the enhanced influence of the mixed convection parameter
while working on a surface that is exponentially stretching with convection
heat transfer in the part of laminar flow. El-Aziz [7] investigated the impact
of viscous dissipation on micropolar fluid through an exponentially stretching
sheet. The finding observed for forced convective flow alone, that variation
in the micropolar parameter causes a higher rate of cooling of the sheet.
Other authors like (Nadeem et al. [8, 9], Sanjayanand and Khan [10], Seini
and Makinde [11], Bidin and Nazar [12]) worked on exponential stretching
surface or sheet and their results agreed with the literature.

Some works had also been carried out on the exponentially stretch-
able sheet with the inclusion of the porosity parameter which is subject to
vast industrial application as mentioned above. In the presence of thermal
radiation, Sharma and Gupta [13] conducted an analytical study on MHD
boundary layer flow and heat transport via a porous exponential stretchable
surface. The result shows among other results obtained that the shear stress
at the surface improved with the enhanced permeability which consequently
magnified the temperature field within the boundary layer. A porous medium
with an exponentially stretching porous sheet was the subject of Mandal and
Mukhopadhyay’s [14] investigation into the heat transport phenomenon of
fluid flow, while Olumide et al. [15] investigated the combined effects of
thermal radiation, heat absorption, and viscous dissipation on transport phe-
nomena of heat and mass through an exponentially stretchable porous sheet.
Other researchers such as Ahmad et al. [16], Singh [17] and Mukhopadhyay
et al. [18] extended their findings with the inclusion of porosity parameter in
the literature.
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Motivated by the above work down, this study is being conducted to
look at the significance of viscous dissipation on Magnetohydrodynamics
fluid flow through an exponential surface under the influence of thermal
radiation and thermal diffusion via Galerkin Weighted Residual Technique.
The dynamics of different embedded parameters are plotted and discussed
accordingly.

2 Mathematical Formulation

Considered here, is a stretching sheet steady-state with, momentum, thermal
and mass boundary layers of two-dimensional layer flows. The plate has a
surface temperature Tw and a surface concentration Cw whereas, the ambient
temperature is presented as T∞ as well as far-field concentration is taken as
C∞. The sheet is adopted to the variable magnetic force B(x) utilized in
a vertical trajectory to the flow while the induced magnetic appearance is
disregarded due to the small magnetic Reynolds number. The coefficient of
heat Source/sink is taken to be Q∗ while the reaction rate is R. The steady
flow governing equations of this study can be written as,

Continuity Equation;
∂u

∂x
+
∂v

∂y
= 0 (1)

Momentum Equation;

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
− σB2(x)

ρ
u (2)

Figure 1 Flow configuration and coordinate system.
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Energy Equation;

u
∂T

∂x
+ v

∂T

∂y
=

k

ρCp

∂2T

∂y2
− 1

ρCρ

∂qr
∂y

+
ν

Cp

(
∂u

∂y

)2

+
Q∗(T − T∞)

ρCp

(3)

Concentration equation

u
∂C

∂x
+ v

∂C

∂y
= Dm

∂2C

∂y2
+
DmKT

Tm

∂2T

∂y2
−R(C − C∞) (4)

subject to the aforementioned assumption. In this case, (u, v) stands for the
(x, y)-directional velocity components. The names of other notations are
contained in the nomenclatures. The domain of the model

u = Uw = U0e
x/L, v = 0,

T = Tw = T∞ + T0e
x/(2L)

C = Cw = C∞ + C0e
x/(2L) at y = 0

u→ 0, T → T∞, C → C∞ as y →∞ (5)

agreed with Noran et al. [19] and Seini and Makinde [11] while refer-
ence; temperatures, concentrations and length, are utilized as T0, C0 and L
respectively. By using the Rosseland approximation, the radiative heat flux is
condensed as

qr =
−4σ∗

3k∗
∂T 4

∂y
(6)

Symbolically, σ∗ conveys Stefan-Boltzmann constant, as k∗ indicates the
mean of absorption coefficient. Here, in accordance with Saqib et al. [20]
as well as Akinbo and Olajuwon [21], the term T 4 can be stated as a linear
function of temperature by expanding T 4 in a Taylor series, assuming that the
temperature differences within the flow are such that

T 4 = T 4
∞T + 4T 3

∞(T − T∞)− 6T 2
∞(T − T∞)2 + · · · (7)

leaving out the higher order components in (T −T∞) that go beyond the first
degree, brings about

T 4 ≈ 4T 3
∞T − 3T 4

∞ (8)
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Here, Equation (9) is the result of substituting Equations (8) and (6) in (3).

u
∂T

∂x
+ v

∂T

∂y
=

(
k

ρCρ
+

16σ∗T 3
∞

3k∗ρCρ

)
∂2T

∂y2
+

ν

Cρ

(
∂u

∂y

)2

+
Q0(T − T∞)

ρCρ
(9)

By assuming the variable magnetic intensity B(x) of the kind proposed
by Seini and Makinde [11], we arrive at a similar solution.

B(x) = B0e
x/(2L) (10)

where B0 is the magnetic intensity that is constant. Thus, Equation (1) is
satisfied via the introduction of

u =
∂ψ

∂y
and v = −∂ψ

∂x
(11)

We obtained the transformed equations of the model in line with Seini
and Makinde [11] and Anuar [22] by using

u = U0e
x/Lf ′(η), v = −

(
νU0

2L

)1/2

ex/(2L)(f(η) + ηf ′(η)),

η =

(
U0

2νL

)1/2

yex/(2L), T = T∞ + T0e
x/(2L)θ(η)

C = C∞ + C0e
x/(2L)∅(η) (12)

on Equations (2), modified Equation (9) as well as Equations (4)–(5) result in

f ′′′(η) + f(η)f ′′(η)− (f ′(η))
2 −Mf ′(η) = 0 (13)(

1 +
4

3
Ra

)
θ′′(η) + Prf(η)θ′(η)− Prf ′(η)θ(η)

+PrEc(f ′′(η))2 + PrQθ(η) = 0 (14)

∅′′(η) + Scf∅′(η)− Scf ′(η)∅(η)− Scβ∅(η) + Srθ′′(η) = 0 (15)

Which agreed with Noran et al. [19] and Seini and Makinde [11]. Here,
M = 2σB2

0L/ρU0 elucidates magnetic parameter, Ra = 4σ∗T 3
∞/k

∗k poses
radiation parameter, Pr = νρCρ/k is the Prandtl number, Ec = U2

0 /T0Cp
presents Eckert number and Sc = ν/Dm indicates Schmidt number,



588 B. J. Akinbo and B. I. Olajuwon

β = 2LR/Uw forms chemical reaction and Sr = T0KT /C0Tm is the Soret
number and Q = Q0L

2/U0ρCp (See Hussain et al. [23]). The corresponding
boundary conditions are as follows

f ′(0) = 1, f(0) = 0, θ(0) = 1, ∅(0) = 1 (16)

f ′(η)→ 0, θ(η)→ 0, ∅(η)→ 0 as η →∞ (17)

3 Solution to the Problem

In applied mathematics, non-linear differential equations are frequently
unavoidable. They are analyzed using many techniques, including the Homo-
topy Perturbation Method and Variation Iteration Method among others.
Here, because the Galerkin Weighted Residual Method (GWRM) is effective
at handling both linear and non-linear differential equations, it was chosen for
this case. Razaq and Aregbesola [24] provided the precedent, and therefore
considered basic trial functions of the form

f(η) =
12∑
i=0

aie
− iη

4 , θ(η) =
13∑
i=1

bie
− iη

4 , ∅ =
13∑
i=1

cie
− iη

4 (18)

Putting (16) in place, we have

a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10

+ a11 + a12 = 0 (19)

b1 + b2 + b3 + b4 + b5 + b6 + b7 + b8 + b9 + b10 + b11

+ b12 + b13 − 1 = 0 (20)

c1 + c2 + c3 + c4 + c5 + c6 + c7 + c8 + c9 + c10 + c11

+ c12 + c13 − 1 = 0 (21)

and for f ′(0) = 1, we have

− 1

4
a1 −

1

2
a2 −

3

4
a3 − a4 −

5

4
a5 −

3

2
a6 −

7

4
a7 − 2a8 −

9

4
a9

− 5

2
a10 −

11

4
a11 − 3a12 − 1 = 0 (22)

Thus, (17) is settled automatically. Also, invoking Equation (18) in Equa-
tions (13)–(15) resulted in residual functions Rf , Rθ and R∅ (See Akinbo
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Table 1 Result analysis with Noran et al. [19]
Noran et al. [19] Present Results

Ra M Pr Sc Q β |f ′′(0)| −θ′(0) −∅′(0) |f ′′(0)| −θ′(0) −∅′(0)
0 1.912633 1.144381 0.586786 1.912620 1.144381 0.586776
1 1.912633 0.690717 0.586786 1.912620 0.690709 0.586776
2 1.912633 0.526667 0.586786 1.912620 0.526591 0.586776

0 1.281933 0.753584 0.621791 1.281809 0.753562 0.621763
1 1.629195 0.715307 0.600183 1.629178 0.715291 0.600160
2 1.912633 0.690714 0.586782 1.912620 0.690709 0.586776

1 1.912633 0.554890 0.586786 1.912620 0.690709 0.586776
2 1.912633 0.873488 0.586786 1.912620 1.044676 0.586776
3 1.912633 1.132214 0.586786 1.912620 1.326490 0.586776

0.24 1.912620 0.293147 0.616260 1.912620 0.690709 0.616254
0.62 1.912620 0.293147 1.051421 1.912620 0.690709 1.051421
0.78 1.912620 0.293147 1.195670 1.912620 0.690709 1.195670

0 1.912633 1.082728 0.690762 1.912620 0.398760 0.586776
0.5 1.912633 1.241676 0.690762 1.912487 −1.455819 0.58669
1.0 1.912633 1.373379 0.690762 1.912632 −0.43666 0.586776

1 1.912633 0.690717 0.586786 1.912620 0.690709 0.586776
2 1.912633 0.690717 0.766369 1.912620 0.690709 0.766369
3 1.912633 0.690717 0.906532 1.912620 0.690709 0.906532

and Olajuwon [25, 26] for more details). The residual is multiplied by e−
j
4
η,

where j ∈ Z, integrated under the appropriate domain. The MATHEMAT-
ICA package is used to solve the generated algebraic equations.

Validation of the model was ensured by comparing it with Noran
et al. [19] for the local skin-friction, Nusselt Number and Sherwood number
by setting Ec = 0, and Sr = 0. The findings were in line with one another
as indicated in Table 1.

4 Discussion

Equations (13)–(15) constrain to (16) and (17) have been computed using
the Galerkin Weighted Residual Method to gain a physical understanding of
the issue. The resulting effects of various parameters are addressed accord-
ingly. Also, the local skin-friction, Nusselt number, and Sherwood number
in terms of |f ′′(0)|, −θ′(0) and −∅′(0), respectively were computed, for
engineering applications. It is remarkable to note that the shear stress along
the plate improves for large values of (M) which significantly boosts the
local skin-friction and accelerates the flow. On the same hand, the Nusselt
number gains strength as Pr > 0 and Q > 0. This in turns enhances the
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Table 2 The skin-friction coefficient, local Nusselt number and local Sherwood number
M β Ec Sr Pr Sc Ra Q |f ′′(0)| −θ′(0) −∅′(0)
1 1.629178 0.295172 0.624503
3 2.158736 0.063548 0.621462
5 2.581130 −0.104279 0.623312

1 1.629178 0.295172 0.624503
3 1.629178 0.295172 0.957535
5 1.629178 0.295172 1.192222

1 1.629178 0.295172 0.624503
3 1.629178 −0.289906 0.678011
5 1.629178 −0.874984 0.731520

0.1 1.629178 0.295172 0.624503
0.5 1.629178 0.295172 0.601295
1.0 1.629178 0.295172 0.572285

0.72 1.629178 0.295172 0.624503
1.0 1.629178 0.320056 0.624188
3.0 1.629178 0.320976 0.630680

0.24 1.629178 0.295172 0.624503
0.62 1.629178 0.295172 1.072497
0.78 1.629178 0.295172 1.219742

1 1.629178 0.295172 0.624503
2 1.629178 0.228782 0.626164
3 1.629178 0.193045 0.627135

0 1.629169 0.027577 0.640937
0.3 1.629191 0.621207 0.626648
0.8 1.632064 1.050596 0.599618

rate of heat transfer while the rate of mass transfer is boosted as Sherwood
number increases on the account of large values of the chemical reaction and
Schmidt number. (see Table 2).

When analyzing the model computationally, we varied each parameter
as seen in the figures below while keeping M = 1, Sr = 0.1, β = 1,
Pr = 0.72, Sc = 0.24, Q = −0.5, Ra = 0.1, Ec = 0.1 constant.

The dynamics of the magnetic parameter (M ) on velocity and temper-
ature fields are respectively illustrated in Figures 2 and 3. The outcome
quantitatively meets expectations since increase in M causes greater resis-
tance to the motion of the fluid, which reduces the thickness of the momentum
layer. This phenomenon is subject to the presence of Lorentz force over in
the variation in magnetic field. This force reduces the velocity field by acting
against the motion of the fluid thereby reducing its movement. This may be
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Figure 2 Effect of M on velocity field f ′(η).

Figure 3 Effect of M on temperature field θ(η).

put to use in materials processing operations (Shahid et al. [27]), also essen-
tial for the boundary layer control in aerodynamics. In addition, the frictional
heating that results from the interaction of M , subsequently increases the
temperature field with a direct increasing impact on thermal boundary layer
thickness.
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Figure 4 Effect of Sr on concentration field ∅(η).

Figure 5 Effect of Ec on temperature field θ(η).

Figure 4 depicts the effect of Soret number (Sr) in concentration profile.
The mass transport from lower to higher solute concentrations by temperature
gradient is significantly influenced by the Soret effect (Hayat et al. [28]).
A rise in Sr conveys the impact of temperature gradient on mass diffusion
which strengthens the concentration field and boosts its boundary layer
thickness.

The dynamics of Eckert number (Ec) which expresses a relationship
between a flows kinetic energy and the boundary layer enthalpy is revealed
in Figure 5. Higher variation on Ec enhances the temperature profile until it
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Figure 6 Effect of Pr on temperature field θ(η).

reaches its maximum value inside the boundary layer before abruptly falling
monotonically and meeting the specifications for the distant field boundary
conditions. To that end, an improvement in (Ec) indicates an increase in the
rate of kinetic energy conversion to internal energy and the fluid close to the
plate gets heated due to the heat addition caused by frictional heating, which
raises the temperature field and the thickness of the thermal boundary layer
that goes along with it (Koriko et al. [29]).

Figure 6 depicts the behaviours of Prandtl number Pr(0.72, Air) in
the temperature profile. An increase in Pr reduces the temperature field,
together with the thickness of the thermal boundary layer. This result agreed
with the literature as low values of Pr indicate that thermal diffusivity is
dominant. However, when the values are large, the behaviour is dominated by
the momentum diffusivity. For instance, the typical value for liquid mercury,
which is around 0.025, shows that thermal diffusivity predominates because
heat conduction is more significant than convection. When Pr is small, the
heat diffuses more quickly than the higher values in the application.

Figure 7 illustrates the impact of Schmidt number (Sc) on the concentra-
tion field, discussed at the range of values 0.24(H2), 0.62(H2O), 0.78(NH3)
and 2.62(C9H12) for diffusing chemical species. Increase in Sc due to low
molecular diffusivity results in rapid falls on the concentration profile. This
outcome agreed with the expectation as inflation in Sc causes the momen-
tum diffusion to dominate thereby suppressing the mass diffusion which
consequently reduces the thickness of the concentration boundary layer.
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Figure 7 Effect of Sc on concentration field ∅(η).

Figure 8 Effect of Ra on temperature field θ(η).

Figure 8 shows the influence of the radiation parameter (Ra) on the
temperature profile. A rise in Ra causes a deterioration in the mean absorp-
tion coefficient thereby enhancing the temperature distribution across the
boundary layer that consequently boosts the temperature field and strengthens
the corresponding thermal boundary layer thickness.

Figure 9 presents the behaviours of the heat sink (Q) on the temperature
profile. It is noticed that asQ < 0, the temperature profile ultimately declines
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Figure 9 Effect of Q on temperature field θ(η).

Figure 10 Effect of β on concentration field ∅(η).

and consequently compresses the thermal layer thickness. This outcome
agreed with the expectation as a rise in Q enhances cooling. This may be
used for cooling of heat on the surface in Science related disciplines.

Figure 10 demonstrates the dynamics of chemical reaction (β) on the
concentration field. A rise in β reduces the concentration buoyancy impact
which consequently decreases the concentration of the fluid and lowers its
layer thickness.
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5 Conclusion

In this work, a steady-state two-dimensional boundary layer model has been
carried out to investigate the viscous dissipation effect on magnetohydro-
dynamics fluid flow over an exponential surface in the presence of thermal
radiation and thermal diffusion effect. Using the similarity method and
the accompanying dimensionless variables, the resulting partial differential
equations that characterize the problem are converted to dimensionless equa-
tions. We then solve the equations by Galerkin Weighted Residual Method
(GWRM) and a comparison of the result with the previous work done shows
a perfect agreement. At small values of Pr, fluid possesses high thermal
conductivity and the heat diffuses away more quickly from the surface
than higher values. Various values of (Sc), such as 0.24(H2), 0.62(H2O),
0.78(NH3) and 2.62(C9H12) for most encountered chemical species in appli-
cations, diminishes the diffusion properties of the fluid of which its aftermath
lowers the concentration layer thickness.

Nomenclatures
ν Kinematic viscosity
ρ Fluid density
k Thermal conductivity
Cρ Specific heat at constant pressure
Dm Mass diffusivity coefficient
qr Radiative heat flux
R Reaction rate parameter
Q Heat source/sink
Tm Mean fluid temperature
T Temperature
C Concentration
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