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ABSTRACT. In this work, the formulation of the SHB8PS finite element is reviewed in order to 
eliminate some persistent membrane and shear locking phenomena. This is a solid-shell 
element based on a purely three-dimensional formulation. In fact, the element has eight 
nodes as well as five integration points, all distributed along the “thickness” direction. 
Consequently, it can be used for the modeling of thin structures, while providing an accurate 
description of the various through-thickness phenomena. The reduced integration has been 
used in order to prevent some locking phenomena and to increase computational efficiency. 
The spurious zero-energy modes due to the reduced integration are efficiently stabilized, 
whereas the strain components corresponding to locking modes are eliminated with a 
projection technique following the Enhanced Assumed Strain (EAS) method. 
RÉSUMÉ. Dans cette étude, la formulation de l’élément SHB8PS est revisitée dans le but 
d’éliminer certains blocages persistants en membrane et cisaillement transverse. Rappelons 
que cet élément est de type coque épaisse obtenue à partir d’une formulation purement 
tridimensionnelle. Il possède donc huit nœuds et cinq points d’intégration répartis selon la 
direction de l’épaisseur. Ainsi, il peut être utilisé pour modéliser des structures minces tout 
en prenant correctement en compte les différents phénomènes à travers l’épaisseur. Afin 
d’améliorer ses performances de calcul et d’éviter certains blocages, l’intégration réduite a 
été employée. Les modes de hourglass générés par la sous-intégration sont efficacement 
stabilisés et les modes de blocages persistants sont éliminés par une technique de projection 
pouvant se mettre sous le formalisme de la « méthode de déformation postulée ». 
KEYWORDS: SHB8PS solid-shell, hourglass, shear and membrane locking, assumed strain 
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1. Introduction 

For the past ten years, much effort has been devoted to the development of solid-
shell elements dedicated to the finite element modeling of thin structures (Domissy 
1997; Cho et al., 1998; Hauptmann et al., 1998, 2001; Lemosse 2000; Sze et al., 
2000; Abed-Meraim et al., 2001, 2002; Legay et al., 2003; Vu-Quoc et al., 2003; 
Chen et al., 2004; Kim et al., 2005; Alves de Sousa et al., 2005, 2006, 2007; Reese, 
2007). This interest is motivated by several requirements that are common in many 
industrial applications. Most of the earlier developed methods were based on 
enhanced assumed strain fields and consisted of either the use of a conventional 
integration with appropriate control of all locking phenomena, or the application of a 
reduced integration technique with hourglass control. Both approaches have been 
extensively investigated and evaluated on various structural applications as reported 
in the work of (Dvorkin et al., 1984; Belytschko et al., 1993; Zhu et al., 1996; 
Wriggers et al., 1996; Klinkel et al., 1997, 1999; Wall et al., 2000; Reese et al., 
2000; Puso et al., 2000). 

Among the pioneering research work dealing with thin structure modeling by 
means of three-dimensional elements without rotational degrees of freedom, we can 
mention (Graf et al., 1986) who developed 8, 16 and 18-node three-dimensional 
elements based on hybrid/mixed formulation. Xu et al., (1993) proposed a 16-node 
displacement-based isoparametric element with 40 degrees of freedom and plane-
stress assumptions. Sze et al., (1993) modified the 8-node hexahedral hybrid 
element, first proposed by (Pian et al., 1986), by introducing adjustable parameters 
in order to avoid too stiff behavior and to recover shell, plate and beam solutions. In 
the meantime, (Kim et al., 1993) developed an 18-node hexahedral element for large 
deflection analysis of composite shell structures, in which the constitutive law was 
modified in order to uncouple the normal transverse stress. Likewise, for general and 
composite shell analysis, a multilayer element was obtained by (Buragohain et al., 
1994) from a hexahedral element with 8 nodes per face. 

As opposed to pioneering approaches of degenerated three-dimensional elements 
originated by (Ahmad, 1970), which utilize modified constitutive laws or those 
based on plane-stress assumptions, some authors followed an opposite approach, 
which consists of formulating shell elements that allow the reproduction of the 
behavior of three-dimensional structures. An example of such an approach is the 
shell element developed by (Buechter et al., 1994), which has four nodes with 
7 degrees of freedom and a fully three-dimensional constitutive law. 

On the other hand, numerous efficient plate and shell elements have been 
developed based on mixed formulations or shear projection techniques in order to 
avoid locking problems. Among them the reader can refer to (Bathe et al., 1985, 
1986; Onate et al., 1992; Cheung et al., 1992; Ayad et al., 1995, 1998; Chapelle et 
al., 1998, 2003). Despite the good performances of shell elements in bending-
dominated problems and for structural applications, some limitations in certain 
applications (connection with brick elements, contact treatment, forming process 
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simulation, springback analysis…) have been behind the motivation of the recent 
development of finite element technology combining the advantages of both solid 
and shell elements. 

The SHB8PS element is one such recently developed element, based on a purely 
three-dimensional formulation (Abed-Meraim et al., 2001, 2002; Legay et al., 2003). 
This solid-shell element has numerous advantages, one can quote: 

– the ability to model thin, three-dimensional structures using just a few elements 
along the thickness, while correctly describing the various through-thickness 
phenomena (bending, elasto-plasticity…); 

– simplified meshing of complex structural forms, where shell and solid elements 
must coexist, without any compatibility problems between different families of 
elements (continuum and structural elements for instance); 

– computational efficiency due to its large admissible aspect ratios (allowing for 
optimal meshes) and to the use of reduced integration and elimination of shear and 
membrane locking by appropriate techniques; 

– simple and attractive formulation (hexahedral geometry, eight nodes, only three 
translational degrees of freedom per node) thus avoiding complex and tedious pure-
shell element formulations. 

In this work, the formulation of the SHB8PS element is enriched with new 
projections in order to eliminate some membrane and shear locking phenomena that 
were still present in the original formulation. Despite the geometry of the element 
(eight-node hexahedron), several modifications are introduced in order to provide it 
with shell features. Among them, a shell-like behavior is aimed, for the element, by 
modifying the three-dimensional constitutive law so that the plane-stress conditions 
are approached and by aligning all of the integration points along a privileged 
direction, called the thickness. 

The reduced integration is used in order to improve the computational efficiency 
of the element and to prevent some membrane and shear locking phenomena. The 
spurious zero-energy deformation modes due to this reduced integration are 
efficiently controlled by a stabilization technique following the approach 
of (Belytschko et al., 1993). First, the corresponding hourglass modes are shown 
to be the vectors of the kernel of the stiffness matrix aside from the rigid body 
modes. To circumvent this stiffness matrix rank deficiency, the hourglass modes are 
explicitly given using a basis of the vector space of the discretized displacements, 
and then efficiently stabilized. 

In order to eliminate the various locking (transverse shear, membrane), the 
discrete gradient operator is projected onto an appropriate sub-space. This projection 
technique can be derived from the formalism of the assumed strain method. This 
approach is also shown to be justified within the framework of the Hu-Washizu 
mixed variational principle. It is well-known that the procedure for choosing an 
assumed strain field is substantially complex since each term of the discrete gradient 
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operator has to be handled separately in order to eliminate the components 
responsible for the membrane and transverse shear locking. 

It is important to note that the SHB8PS element was first developed within an 
explicit formulation and implemented into the explicit dynamic code 
EUROPLEXUS in order to simulate impact problems (Abed-Meraim et al., 2001, 
2002). This explicit version was also used to simulate bird ingestion by aircraft gas 
turbine engines as well as other accidental situations proposed by SNECMA. Next, 
an implicit version of the element was formulated and implemented into the quasi-
static implicit code INCA for elastic-plastic stability applications (Legay et al., 
2003). More recently, this version was implemented into the quasi-static implicit 
code ASTER, developed by EDF, due to very good results obtained in various 
applications. 

In spite of the built-in projection aimed to eliminate locking phenomena, the 
former (explicit and implicit) formulations of SHB8PS showed a relatively slow 
convergence in the case of the pinched hemispherical test problem. The driving force 
behind the new developments was the persistence of some locking modes in certain 
applications. More specifically, this work has mainly focused on the projection 
techniques in order to much better eliminate the locking phenomena. The newly 
developed version of SHB8PS is presented in this paper, which clearly demonstrates 
its fast convergence. In many well-known benchmark problems, this new formulation 
proves to be free of the locking phenomenon and converges very quickly towards the 
reference solutions. 

2. Formulation of the SHB8PS element 

2.1. Kinematics and interpolation 

SHB8PS is a hexahedral, eight-node and isoparametric element with linear 
interpolation. Its five integration points are spread along the ς  direction in the local 
coordinate frame. Figure 1 shows the reference geometry of the element as well as 
the location of the integration points. The coordinates ix , i = 1, 2, 3 of a point in the 

element are related to the nodal coordinates iIx  using the classical linear 

isoparametric shape functions IN  (I = 1, …, 8) and the relations: 

8

1

( , , ) ( , , )i iI I iI I
I

x x N x Nξ η ζ ξ η ζ
=

= =∑  [1] 
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Figure 1. Reference geometry of the element and integration points 

The convention of implied summation for repeated subscripts will be used 
hereafter, unless specified otherwise. The lowercase subscripts i  go from one to 
three and represent the directions of the spatial coordinates. The uppercase ones I  
go from one to eight and correspond to the nodes of the element. 

With this convention, the interpolation of the displacement field iu  inside the 

element in terms of the nodal displacements iIu  is similar: 

( , , )i iI Iu u N ξ η ζ=  [2] 

2.2. Discrete gradient operator 

The displacement field interpolation (Equation [2]) allows the strain field to be 
related to the nodal displacements. The linear part of the strain tensor is written: 

( ) ( ), , , ,
1 1
2 2ij i j j i iI I j jI I iu u u N u Nε = + = +  [3] 

Then, the classical tri-linear shape functions for eight-node hexahedral elements 
are considered: 

[ ]
1
8( , , ) (1 )(1 )(1 )

, , 1,1 ,   = 1,...,8
I I I IN

I

ξ η ζ ξ ξ η η ζ ζ
ξ η ζ

= + + +

∈ −
 [4] 

These shape functions transform a unit cube in the reference space ( ), ,ξ η ζ  to a 

general hexahedron in the ( )1 2 3, ,x x x  space, as illustrated in Figure 2 below: 
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Figure 2. Reference space ( ), ,ξ η ζ  and physical space ( )1 2 3, ,x x x  of the element 

Combining Equations [1], [2] and [4] leads to the expansion of the displacement 
field as a constant term, linear terms in ix  and some terms depending on the hα  
functions: 

0 1 2 3 1 1 2 2 3 3 4 4

1 2 3 4

1, 2,3
,  ,  ,   

i i i i i i i i iu a a x a y a z c h c h c h c h

i
h h h hηζ ζξ ξη ξηζ

= + + + + + + +

=

= = = =







 [5] 

When this equation is evaluated at the element nodes, the three systems of eight 
equations are obtained as seen below: 

0 1 2 3 1 1 2 2 3 3 4 41 2 3

1, 2,3 
i i i i i i i i id a s a x a x a x c h c h c h c h

i

= + + + + + + +

=




 [6] 

In the equation above, the id  and ix  vectors respectively indicate the nodal 
displacements and coordinates and are defined as: 

1 2 3, 8

1 2 3 8

( , , ....., )

( , , , ....., )

T
i i i i i

T
i i i i i

d u u u u

x x x x x

=

=





 [7] 

The vectors s  and hα  ( )1, ..., 4α =  are given by: 
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1

2

3

4

(1,1,1,1,1,1,1,1)

(1,1, 1, 1, 1, 1,1,1)

(1, 1, 1,1, 1,1,1, 1)

(1, 1,1, 1,1, 1,1, 1)

( 1,1, 1,1,1, 1,1, 1)

T

T

T

T

T

s

h

h

h

h

=

= − − − −

= − − − −

= − − − −

= − − − −










 [8] 

The unknown constants jia  and icα  in Equation [5] are found by introducing the 

ib  (i = 1,..., 3) vectors from (Hallquist, 1983), defined as: 

,          (0,0,0)       1, 2,3T
i i Hallquist Formb N i= =  [9] 

The explicit expressions for the derivatives of the shape functions evaluated at 
the origin of the ( ), ,ξ η ζ  frame are given in (Belytschko et al., 1984). The 
following orthogonality properties are first demonstrated, involving the vectors bi 
and the vectors 1 2 8( , , ..., )T

i i i ix x x x= , 1 2 8( , , ..., ) T

i i i id u u u= , s , 1h , 2h , 3h , 4h : 

0    ,     0    ,     

0    ,     8

, 1,...,3       , =1,...,4

T T T
i i i j ij

TT

b h b s b x

h s h h

i j

α

α α β αβ

δ

δ

α β

⋅ = ⋅ = ⋅ =

⋅ = ⋅ =

=







  [10] 

In order to calculate the constants jia  and icα , Equation [6] is multiplied by T
jb  

and Thα , respectively. Then, using the previously derived orthogonality conditions, 
one obtains: 

3

1

1
where:   ( )

8

    ,    T T

ji j i i i

T

j j
j

a b d c d

h h x b

α α

α α α

γ

γ
=

= ⋅ = ⋅

= − ⋅



  
    

∑
 [11] 

The displacement field can be expressed in the following form, very convenient 
for the subsequent developments: 

0 1 1 2 2 3 3 1 1 2 2 3 3 4 4( )T T T T T T T
i i iu a x b x b x b h h h h dγ γ γ γ= + + + + + + + ⋅  [12] 
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By differentiating this last equation with respect to jx , one obtains the 
displacement gradient as follows: 

( )
4

, , ,
1

T T T T
i j j j i j j iu b h d b h dα α α α

α

γ γ
=

= + ⋅ = + ⋅ 
 
 

∑  [13] 

This allows us to express the discrete gradient operator, relating the strain field to 
the nodal displacements, as: 

,

,

,

, ,

, ,

, ,

                        ( )

where:     ( ) ,             

s

x x

y y

x
z z

s y
x y y x

z
y z z y

x z z x

u B d

u

u
d

u
u d d

u
d

u

u

u
u
u

∇ = ⋅

∇ = =
+

+

+

 
 
               
 
 
 

 [14] 

This discrete gradient operator finally takes the following practical matrix form: 

,

,

,

, ,

, ,

, ,

0 0
0 0
0 0

0
0

0

T T
x x

T T
y y

T T
z z

T T T T
y y x x

T T T T
z z y y

T T T T
z z x x

b h
b h

b h
B

b h b h
b h b h

b h b h

α α

α α

α α

α α α α

α α α α

α α α α

γ
γ

γ
γ γ

γ γ
γ γ

+

+

+
=

+ +
+ +

+ +

 
 
 
 
 
 
 
 
  

 [15] 

It is noteworthy that this form of the discrete gradient operator is very useful 
since it allows each of the non-constant strain modes to be handled separately, so 
that the assumed strain field can be easily built. Moreover, it is easy to show that the 
αγ  vectors that enter the expression of B  matrix verify the following orthogonality 

conditions: 

0,      T T
jx hα α β αβγ γ δ⋅ = ⋅ =   [16] 
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These properties will be useful in the subsequent hourglass stability analysis of 
the SHB8PS element. They will also help in choosing an assumed strain field and in 
evaluating the stabilization stiffness. 

2.3. Hourglass modes for the SHB8PS element 

The hourglass modes of the SHB8PS element are analyzed following the 
approach first introduced by (Belytschko et al., 1993). For the SHB8PS element, 
these spurious modes are shown to originate in the particular position of the 
integration points (along a line). They are characterized by a vanishing energy, while 
inducing a non-zero strain. This pathological behavior is explained by the difference 
between the kernel of the discrete and the continuous stiffness operators. It is 
recalled that the shell-like behavior of the SHB8PS element is obtained by 
modifying its three-dimensional constitutive law to approach the plane-stress 
conditions and by aligning the five integration points of the element along a 
particular direction, called the thickness. This reduced integration also aims to 
increase the computational efficiency and to avoid some shear locking phenomena in 
bending-dominated problems. Accordingly, the elastic stiffness is obtained by Gauss 
integration: 

5

1

 ( ) ( ) ( ) ( )
e

TT
e I I I I

I

K B C B d J B C Bω ζ ζ ζ ζ
=Ω

= ⋅ ⋅ Ω = ⋅ ⋅∑∫  [17] 

where ( )IJ ζ  is the Jacobian of the transformation between the unit, reference 
configuration and the current configuration of an arbitrary hexahedron. Table 1 
below gives the coordinates of the five integration points of the SHB8PS element, as 
well as the associated weights, which represent the roots of the Gauss-Legendre 
polynomial: 

Table 1. Coordinates and weights of the integration points of the SHB8PS element 

 ξ η ζ ω 

P(1) 0 0 -0,91 0,24 

P(2) 0 0 -0,54 0,48 

P(3) 0 0 0 0,57 

P(4) 0 0 0,54 0,48 

P(5) 0 0 0,91 0,24 
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For the five Gauss points ( 1, ..., 5)I =  above, with coordinates 

0,  0,I I Iξ η ζ= = ≠  the terms , ( 3, 4;  1, 2, 3)ih iα α = =  vanish. Consequently, the 

operator B  defined by Equation [15] reduces to 12B , where the sum on the index α  
only goes from 1 to 2: 

2

,
1 2

,
1 2

,
12 2

12

, ,
1 1 2

, ,
1,2 12

, ,
1 1,2

0 0

0 0

0 0

0

0

0

T T
x x

T T
y y

T T
z z

T T T T
y y x x

T T T T
z z y y

T T T T
z z x x

b h

b h

b h
B

b h b h

b h b h

b h b h

α α
α

α α
α

α α
α

α α α α
α α

α α α α
α α

α α α α
α α

γ

γ

γ

γ γ

γ γ

γ γ

=

=

=

= =

= =

= =

+

+

+
=

+ +

+ +

+ +

 
 
 
 
 
 
 
 
 
 
 
 
 

∑
∑

∑
∑ ∑

∑ ∑
∑ ∑

 [18] 

In order to study the kernel of the stiffness matrix, a basis for the discretized 
displacements is built. Then, the reduced integration is shown to diminish the rank of 
the discrete stiffness. Indeed, according to Equation [17], the rank of the stiffness 
matrix eK  is related to that of the B  matrix. In other words, one should seek the 

zero-strain modes d  that verify at each Gauss point: 

( ) ( ) 0s Iu B dζ∇ = ⋅ =  [19] 

Using the expression [18] for the discrete gradient operator computed at the 
integration points and making use of the orthogonality relations [10] and [16], the 
kernel of the stiffness can be explicitly derived. This naturally reveals the six rigid 
body modes only found in the kernel of a fully integrated stiffness: 

    0   0 0
0 , , 0 , , 0 ,
0 0 0

ys z
s x z

s x y
−

− −

          
          
                       

 [20] 

The first three column vectors correspond to the translations along the Ox , Oy  
and Oz  axes, respectively. The three remaining vectors refer to the rotations about 
the Oz , Oy  and Ox  axes, respectively. In addition to these six rigid body modes, 

the following six vectors are also found in the kernel of the stiffness matrix eK : 
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3 4

3 4

3 4

0 0 0 0
0 , , 0 , 0 , , 0
0 0 0 0

h h
h h

h h

           
           
           
           

 [21] 

The hourglass modes corresponding to Ox  axis are shown in Figure 3 for a 
hexahedron with a single integration point, located at the origin of the reference 
frame. Similar modes are obtained for the Oy  or Oz  axes by axis permutation. 

 

Figure 3. Hourglass modes in x-direction for a one-point quadrature hexahedron 

Unlike the one-point quadrature hexahedron (Belytschko et al., 1993) comprising 
twelve hourglass modes given by Figure 3, only six hourglass modes are found for 
the SHB8PS element. They are composed of 3h  and 4h  vectors as expressed in 
Equation [21] and illustrated in Figure 4 below: 

 
 
 
 
 
 
 
 
 
Figure 4. Hourglass modes in x-direction for the SHB8PS element 
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2.4. Stabilization and hourglass control 

The control of the six hourglass modes of the SHB8PS element, as revealed by 
Equation [21], is achieved by adding a stabilization stiffness to the stiffness matrix 

eK . This part is drawn from the approach of (Belytschko et al., 1993), who applied 
an efficient stabilization technique together with an assumed strain method for the 
eight-node hexahedral element with uniform reduced integration. The stabilization 
forces are deduced in the same way. It is important to note that this stabilization part 
is treated completely independently from the assumed strain projection part, the later 
being intended to eliminate the locking phenomena. This projection technique will 
be applied in Section 2.5. 

The starting point consists of decomposing the discrete gradient operator B  into 
two parts as follows: 

12 34B B B= +  [22] 

The first term in this additive decomposition is given by Equation [18]. The 
second term 34B  is precisely the one that vanishes at the Gauss points. It is given by 
the following matrix form: 

4

,
3 4

,
3 4

,
34 4

34

, ,
3 3 4

, ,
3,4 34

, ,
3 3,4

0 0

0 0

0 0

0

0

0

T
x

T
y

T
z

T T
y x

T T
z y

T T
z x

h

h

h
B

h h

h h

h h

α α
α

α α
α

α α
α

α α α α
α α

α α α α
α α

α α α α
α α

γ

γ

γ

γ γ

γ γ

γ γ

=

=

=

= =

= =

= =

=

 
 
 
 
 
 
 
 
 
 
 
 
 

∑
∑

∑
∑ ∑

∑ ∑
∑ ∑

 [23] 

 
In the standard displacement approach, the stiffness and internal forces are 

defined as: 

 

  
e

e

int

T
e

Tf

K B C B d

B dσ

Ω

Ω

=

= ⋅ ⋅ Ω

⋅ Ω

∫

∫
 [24] 
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By introducing the additive decomposition [22] of the B  matrix, the stiffness 
matrix becomes: 

12 12 12 34

34 12 34 34

  

       
e e

e e

T T
e

T T

K B C B d B C B d

B C B d B C B d

Ω Ω

Ω Ω

= ⋅ ⋅ Ω + ⋅ ⋅ Ω

+ ⋅ ⋅ Ω + ⋅ ⋅ Ω

∫ ∫

∫ ∫
 [25] 

which can be simply written as: 

12e STABK K K= +  [26] 

The first term, 12K , is the only one taken into account when the stiffness is 
evaluated at the Gauss points as defined above. It reads: 

5

12 12 12 12 12
1

( ) ( ) ( ) ( ) 
e

TT
I I I I

I

K B C B d J B C Bω ζ ζ ζ ζ
=Ω

= ⋅ ⋅ Ω ⋅ ⋅=∑∫  [27] 

The second term, STABK , represents the stabilization stiffness since it vanishes if 
evaluated at the Gauss points: 
 

12 34 34 12 34 34   
e e e

T T T
STABK B C B d B C B d B C B d

Ω Ω Ω

= ⋅ ⋅ Ω + ⋅ ⋅ Ω + ⋅ ⋅ Ω∫ ∫ ∫  [28] 

In a similar way, the internal forces of the element can be written as: 

12
STABint intf f f= +  [29] 

The first term, 12
intf , is the only one taken into account when the forces are 

evaluated at the Gauss points: 

5

12
1

12 12
  ( ) ( ) ( ) ( )

e

I I I I
I

T Tintf B d J Bσ ω ζ ζ ζ σ ζ
=Ω

= ⋅ Ω = ⋅∑∫  [30] 

The second term STABf  of Equation [29] represents the stabilization forces and 
should be consistently calculated according to the stabilization stiffness given by 
Equation [28]. 
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Since the stabilization stiffness and forces cannot be calculated properly at the 
integration points, we will calculate them in the co-rotational coordinate system 
proposed by (Belytschko et al., 1993), in order to prevent the hourglass mode 
phenomena. An intermediate stage for this approach consists of projecting B  onto a 

B  matrix, in order to eliminate the remaining locking problems. 

2.5. Assumed strain field and orthogonal projection 

The discrete gradient operator is projected onto an appropriate sub-space in order 
to eliminate shear and membrane locking. This projection technique can be derived 
from the formalism of the assumed strain method. It is also shown that this approach 
can be justified within the framework of the Hu-Washizu nonlinear mixed variational 
principle (see for instance Korelec et al., 1996). Indeed, this three-field variational 
principle reads: 

( )( , , ) ( ) 0
e e

T T T ext
sv d v d d fδπ ε σ δε σ δ σ ε δ

Ω Ω

= ⋅ Ω + ⋅ ∇ − Ω − ⋅ =∫ ∫ && & &  [31] 

where δ  denotes a variation, v  the velocity field, ε&  the assumed strain rate, σ  

the interpolated stress, σ  the stress evaluated by the constitutive law, d&  the nodal 

velocities, extf  the external nodal forces and ( )s v∇  the symmetric part of the 
velocity gradient. The assumed strain formulation used to construct the SHB8PS 
element is a simplified form of the Hu-Washizu variational principle as described by 
(Simo et al., 1986). In this simplified form, the interpolated stress is chosen to be 
orthogonal to the difference between the symmetric part of the velocity gradient and 
the assumed strain rate. Consequently, the second term of Equation [31] vanishes 
and one obtains: 

( , )  0
e

T T extv d d fδπ ε δε σ δ
Ω

= ⋅ Ω − ⋅ =∫ && &  [32] 

In this form, the variational principle is independent of the stress interpolation, 
since the interpolated stress is eliminated and does not need to be defined. The 
discrete equations then only require the interpolation of the velocity and of the 
assumed strain field. The assumed strain rate ε&  is expressed in terms of a B  
matrix, projected starting from the classical discrete gradient B  defined by 
Equations [14] and [15]: 
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( , ) ( ) ( )x t B x d tε = ⋅ &&  [33] 

Once this expression replaced in the variational principle [32], the new 
expressions for the elastic stiffness and internal forces are obtained: 

         ,        ( ) 
e e

T int T
eK B C B d f B dσ ε

Ω Ω

= ⋅ ⋅ Ω = ⋅ Ω∫ ∫ &  [34] 

Before defining the projected B  operator, let us replace in the previous 

equations the Hallquist form of the ib  vectors (Equation [9]) by the mean form îb  
from (Flanagan-Belytschko, 1981): 

,

1ˆ ( , , ) ,     1, 2,3      
ee

T
i ib N d i Mean value formξ η ζ

ΩΩ
= Ω =∫  [35] 

Accordingly, the vectors αγ  are replaced by the vectors α̂γ  defined as: 

3

1

ˆˆ ( )1
8

T
j j

j

h h x bα α αγ
=

= − ⋅
 
 
 

∑  [36] 

Finally, the B  matrix, defined by Equation [15], is replaced by the B̂  operator 
defined by: 

,

,

,
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, ,
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+

+
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=
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 [37] 

The approach developed earlier still applies, as well as the expressions of the 
stabilization stiffness and internal forces, if the same additive decomposition is 
adopted: 

12 34
ˆ ˆ ˆB B B= +  [38] 
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It is noteworthy that in the former version of the SHB8PS element, the Hallquist 

forms ib  have been replaced with the mean expressions îb  of Flanagan-Belytschko 

only in the stabilization terms 
34

B̂  and thus STABK . 

It is also important to note that the two forms ib  and îb  have been tested on a 
large number of test problems and that Flanagan-Belytschko’s mean form performed 
better in all cases. Its better convergence is even more dramatic when a few, highly 
distorted elements are used. Similar results have been found by (Belytschko et al., 
1993) with an assumed strain, eight-node solid element with one-point quadrature. 

At this stage, one can project the B̂  operator from Equation [38] onto a B̂  
operator such as: 

12 34
ˆ ˆ ˆB B B= +  [39] 

It is clear that only the second term 34B̂  from Equation [38] is projected; the first 

term 12B̂  remains unchanged and is given by Equation [18] where the vectors ib  are 

replaced by îb . The operator 34B̂  is projected onto 34B̂  given by: 

4

,3
4

,3

3, 334

4, 4

ˆ 0 0

ˆ0 0
ˆ0 0ˆ

0 0 0
0 0 0

ˆ0 0

T
x

T
y

T
z

T
x

h

h
hB

h

α αα

α αα

γ

γ
γ

γ

=

=

=

 
 
 
 
 
 
 
 
 

∑
∑

 [40] 

The elastic stiffness is then given by Equation [26] as the sum of the following 
two contributions: 

5

12 12 12 12 12
1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) 
e

TT
I I I I

I

K B C B d J B C Bω ζ ζ ζ ζ
=Ω

= ⋅ ⋅ Ω ⋅ ⋅=∑∫  [41] 

12 34 34 12 34 34   ˆ ˆ ˆ ˆ ˆ ˆ
e e e

T T T
STABK B C B d B C B d B C B d

Ω Ω Ω

= ⋅ ⋅ Ω + ⋅ ⋅ Ω + ⋅ ⋅ Ω∫ ∫ ∫  [42] 
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The stabilization stiffness, Equation [42], is calculated in a co-rotational 
coordinate system (Belytschko et al., 1993). This orthogonal co-rotational system 
that is embedded in the element and rotates with the element is chosen to be aligned 
with the referential coordinate system (see Figure 5). This choice is justified here by 
the rotation extracted from the polar decomposition of the transformation gradient 
(Abed-Meraim et al., 2001, 2002). As noticed by (Belytschko et al., 1993), such a 
co-rotational approach has numerous advantages: simplified expressions for the 
above stabilization stiffness matrix, whose first two terms vanish; more effective 
treatment of the shear locking in this frame; the co-rotational system assures a frame-
invariant element. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Schematic representation of the co-rotational coordinate system 

The main equations defining the chosen co-rotational coordinate system are 
given hereafter. First, the components of the column vectors forming the rotation 
matrix are computed: 

1 1 2 2      ,           ,     1, 2,3T T
i i i ia x a x i= Λ ⋅ = Λ ⋅ =  [43] 

with: 

1

2

3

( 1,1,1, 1, 1,1,1, 1)

( 1, 1,1,1, 1, 1,1,1)

( 1, 1, 1, 1,1,1,1,1)

T

T

T

Λ = − − − −

Λ = − − − −

Λ = − − − −







 [44] 
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Then, the correction term ca  is calculated so that the orthogonality relation 

( )1 2 0T
ca a a⋅ + =  is verified: 

1 2
1

1 1

 
T

c T

a a
a a

a a
⋅

= −
⋅

 [45] 

The third base vector 3a  is then obtained by the cross-product: 

( )3 1 2^ ca a a a= +  [46] 

The rotation matrix R  that maps a vector in the global coordinate system to the 
co-rotational system is finally given, after normalization, by: 

1 2 3
1 2 3

1 2 3

   ,      ,      ,   1, 2,3i i ci i
i i i

c

a a a a
R R R i

a a a a
+

= = = =
+

 [47] 

The stabilization terms (stabilization stiffness and internal forces, Equation [42]) 
are computed in this co-rotational coordinate system, where several terms simplify. 
Indeed, in this co-rotational system one obtains: 

( ) ( ) ( ) ( )( )
( )

,

2 2 2

, , 4,

, ,

 

 

1

3
1

3

0

3

e

e e e

e

i j
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j j k k

j i k i i T

i i

T

i j j i k k

ii

ij

h d

x x
h d h d h d

x

h h d x

H

H

Ω

Ω Ω Ω

Ω

Ω =

Λ ⋅ Λ ⋅
= Ω = Ω = Ω =

Λ ⋅

= Ω = Λ ⋅










∫

∫ ∫ ∫

∫

 [48] 

In these last formulas, there is no sum on repeated subscripts. Moreover, 
subscripts ,  i j  and k  in the expressions of iiH  and ijH  are two by two distinct 
and take the values 1, 2 and 3 with all of the possible permutations. Using these 
explicit expressions, the stabilization stiffness given in Equation [42] is obtained 
completely analytically in this co-rotational system as: 

11 12 13

21 22 23

31 32 33

STAB

k k k
K k k k

k k k

 
 =  
  

 [49] 
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where the 8 x 8 matrices ijk  are given by: 

11

22

11

11 3 3 4 4

22 3 3 4 4

33 4 4

1
3
1
3

( 2 )

( 2 )

1
3

0    ,    
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T T

T T

T

ij

k H

k H

k H

k i j

λ µ

λ µ
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γ γ γ γ

γ γ γ γ

γ γ
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= +

=

= ≠

  + 
  +  




 [50] 

Note that an improved, plane-stress type constitutive law is adopted for the 
SHB8PS element. This specific law is given by: 

2

2 0 0 0 0

2 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

       
2(1 ) 1

E
C

E E

λ µ λ

λ λ µ

µ

µ

µ

ν
µ λ

ν ν

+

+

=

= =
+ −

 
 
 
 
 
 
 
 
 

 [51] 

On one hand, the choice of this constitutive matrix avoids locking encountered 
with a full three-dimensional law and, on the other hand, allows the deformation 
energy associated to the strains normal to the mean surface of the element to be 
taken into account. 

For the computation of the internal forces of the element, the same approach is 
adopted (Abed-Meraim et al., 2001, 2002). The additive decomposition [39] and the 
projection [40] allow the calculation of the stabilization forces: 

5

1
12

ˆ( ) ( ) ( ) ( ) STAB
I I I I

I

Tintf J B fω ζ ζ ζ σ ζ
=

= ⋅ +∑  [52] 

where: 
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 [53] 
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and: 

4

3

ˆ     ,      1,2,3STAB
i if Q iα α

α
γ

=
= =∑  [54] 

The iQα , called generalized stresses and entering the expressions of the 

stabilization forces, are related to the so-called generalized strains iq α  by the 
following incremental equations: 
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 [55] 

The generalized strain rates iq α&  are given by: 

=3, 4ˆ     ,    1,2,3   ,    T
i iq d iα α αγ= ⋅ =&&  [56] 

The previous expressions for the stabilization stiffness and forces hold for an 
elastic behavior. In the case of elastic-plastic behavior, the Young’s modulus E  is 
replaced by the mean tangent modulus (i.e. the average of the tangent moduli at the 
five Gauss points across the thickness). This choice avoids the too stiff response 
corresponding to a purely elastic hourglass stabilization. Thus this leads to an 
adaptive element provided with a stabilization that automatically adjusts to the 
physical situation of the element: elastic or elastic-plastic. 

3. Numerical results 

In order to validate the new version of the SHB8PS element, its performances 
have been tested, based on the analysis of a variety of benchmark problems 
frequently used in the literature (namely a large number of numerical tests). For each 
test problem, the results were compared to the reference solutions and, on the other 
hand, to those given by the previous version of the SHB8PS element (Legay et al., 
2003). Note that several projections have been formulated in this study and 
extensively tested over a wide range of benchmark problems. The retained projection 
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that is presented here is the one that showed the best convergence and exhibited no 
transverse shear and membrane locking phenomena. This projection improved the 
former version of the SHB8PS element in all cases and especially in the test of the 
pinched hemispherical shell where the improvement is significant. The results given 
hereafter concern this test case, as well as a set of representative popular benchmark 
problems commonly used to test finite element perfomances. 

3.1. Admissible aspect ratios for the element 

This linear benchmark problem was used to evaluate the aspect ratio limit of the 
previous version of the SHB8PS element (Legay et al., 2003). It is also suitable for 
testing the behavior of the element when non structured, irregular meshes are 
employed as well as for analyzing locking phenomena in the limit of high aspect 
ratios. In Figure 6, the cantilever beam geometry is shown and regular as well as 
irregular mesh data are specified. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Cantilever beam: regular and irregular mesh specification 

The length and the width of the beam are fixed: L=100, l=10; while the thickness 
t is a varying parameter. The elastic properties are E=6.825×107 and ν =0.3. A 
bending load, P=4, is applied at the free end of the beam and the results are 
compared with the analytical solutions given by beam theory. 
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Table 2. Normalized displacements at points A and B for regular mesh 

 Aspect ratio SHB8PS 
previous version 

SHB8PS 
new version 

Point r = l/t Uz/Uref Uz/Uref
0.5 1.016 1.016
1 0.996 0.996

A 100 0.990 0.990
200 0.990 0.990

 400 0.997 0.997 

 0.5 1.016 1.016 

1 0.996 0.996
B 100 0.990 0.990

200 0.991 0.990
400 1.013 0.990

 

Table 3. Normalized displacements at points A and B for irregular mesh 

Aspect ratio SHB8PS 
previous version 

SHB8PS 
new version 

 
 
Point 

 

r = l/t Uz/Uref Uz/Uref 
 0.5 0.984 0.984 
 1 0.965 0.965 

A 100 0.958 0.958 
 200 0.957 0.958 
 400 0.980 0.980 

 0.5 0.973 0.973 
 1 0.953 0.953 

B 100 0.947 0.947 
 200 0.946 0.946 
 400 0.966 0.967 

 

A fixed mesh with 10 elements and a single element through the thickness is used 
in both regular and irregular mesh. For regular mesh, each element is a 
10×10 square: l  is the side of the square and r l t=  is the varying aspect ratio. The 
same aspect ratio definition is adopted for the irregular mesh (see Figure 6). The 
normalized vertical displacements at points A and B for different aspect ratios are 
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reported in Table 2, for regular mesh, and in Table 3 for irregular mesh. In this 
cantilever beam test, we can observe that the quality of the results declines once the 
aspect ratio exceeds 400 for regular mesh as well as for irregular mesh. Moreover, 
the in-plane distortion of the elements does not affect significantly the accuracy of 
the results. However, we can notice that this mesh distortion leads to a slightly stiffer 
stiffness than when regular mesh is used. 

3.2. Pinched hemispherical shell 

This test problem has become very popular and it has been used by many authors 
since (MacNeal et al., 1985). It is very severe since the transverse shear and 
membrane locking phenomena are very important and emphasized by the problem 
geometry (distorted, skewed elements). This problem was studied in detail by 
(Belytschko et al., 1989) who showed that, since all the elements are incurved, the 
intensity of the membrane and shear locking is increased. They also showed that in 
this doubly-curved shell problem the membrane locking is much more severe than 
the shear locking. Figure 7 shows the geometry, loading and boundary conditions for 
this problem. The radius is R=10, the thickness is t=0.04, the Young’s modulus is 
E=6.825×107 and the Poisson’s ratio is ν =0.3. Using the symmetry of the problem 
(i.e. planes (XZ) and (YZ)), only a quarter of the hemisphere is meshed using a single 
element through the thickness and with two unit loads along directions Ox and Oy. 
Except for the symmetry, the boundary conditions are free; nevertheless, the 
displacement of one point in the z-direction is fixed in order to prevent rigid body 
motions. According to the reference solution (MacNeal et al., 1985), the 
displacement of point A along the x-direction equals 0.0924 (see Figure 7). 

 

 

 

 

 

 

 

 

Figure 7. Geometry and loading of the pinched hemispherical shell problem 

The convergence results are reported in Table 4 in terms of the normalized 
displacement at point A in the x-direction. The new version of the SHB8PS element is 
compared to the former one and to the three elements HEX8, HEXDS and H8-ct-cp. 
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The HEX8 element is the standard, eight-node, full integration solid element (eight 
Gauss points). The HEXDS element is an eight-node, four-point quadrature solid 
element (Liu et al., 1998). The H8-ct-cp element is presented in the PhD thesis of 
Lemosse (Lemosse, 2000). Table 4 shows that the new version of the SHB8PS element 
provides an excellent convergence and shows no locking. 

Table 4. Normalized displacement at point A of the pinched hemispherical shell 

SHB8PS 
previous 
version 

HEX8 HEXDS H8-ct-cp SHB8PS 
new version 

 
 

Number of 
elements Ux/Uref Ux/Uref Ux/Uref Ux/Uref Ux/Uref 

12 0.0629 0.0005  0.05 0.8645 

27 0.0474 0.0011   1.0155 

48 0.1660 0.0023 0.408 0.35 1.0098 

75  0.2252 0.0030 0.512 0.58 1.0096 

192  0.6332 0.0076 0.701 0.95 1.0008 

363  0.8592 0.0140 0.800  1.0006 

768 0.9651 0.0287   1.0006 

1462  0.9910 0.0520   1.0009 

3.3. Twisted cantilever beam 

This test has been introduced by (MacNeal et al., 1985) and has been extensively 
used to test the elements performance due to the use of warped configuration. It is 
considered now as a reference shell test (see Batoz et al., 1992). The geometry is 
twisted by an angle of 90° between the two ends of the beam. This distorts the 
elements and thus increases the severity of the test. 

Figure 8 shows the geometry of the twisted beam, the boundary conditions and 
the two types of applied loads. The left-side end of the beam is fixed and a unit shear 
load P=1 is applied at its right-side end. Two load directions are studied: P1 (unit in-
plane load) and P2 (unit out-of-plane load). The geometric and material parameters 
for this problem are listed in Table 5. 
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Figure 8. Geometry and loading cases of the twisted cantilever beam 

Table 5. Geometric and material parameters of the twisted cantilever beam 

Length L 12 

Width l 1.1 

Thickness h 0.32 

Young’s modulus E 29.10 6  
Poisson’s ratio ν  0.22 
Applied load P 1 

3.3.1. In-plane loading (P1) 

In this first case, the unit load is applied in the plane of the beam along the 
vertical z-direction (see Figure 8). The analytical tip displacements in the loading 
directions are given in (MacNeal et al., 1985). For the loading case P1, the 
displacement at point A in the loading direction Oz (see Figure 8) should be equal to 
5.424×10-3. 

Table 6 shows the results for this test in terms of convergence with the refinement 
of the mesh. The normalized displacement at point A in the loading direction Oz is 
reported for three elements, with different mesh densities and only one element through 
the thickness. The new SHB8PS element is compared to its previous version and to the 
HEX8 element. The later represents the standard, eight-node linear solid element with 
full integration (eight Gauss points). Both versions of the SHB8PS element provide 
excellent accuracy and converge very rapidly (four elements are enough), while the 
HEX8 element exhibits numerical locking and thus a much slower convergence. 
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Table 6. Normalized displacement in the z-direction at point A of the twisted 
cantilever beam 

HEX8 
SHB8PS 
previous 
version 

SHB8PS 
new  

version 

 
 

Number of 
elements 

 Uz/Uref Uz/Uref Uz/Uref 
2x1x1=2 0.008 1.035 1.041 
4x1x1=4 0.031 0.995 1.014 

12x2x1=24 0.206 0.997 0.999 
24x4x1=96 0.490 0.998 0.999 

3.3.2. Out-of-plane loading (P2) 

This second, out-of-plane loading case consists of a horizontal unit load P=1 in 
the y-direction (see Figure 8). The reference solution is also given by (MacNeal et 
al., 1985). For this P2 loading, the displacement at point A in the loading direction 
(see Figure 8) should be equal to 1.754×10-3. 

Table 7. Normalized displacement in the y-direction at point A of the twisted beam 

HEX8 
SHB8PS 
previous 
version 

SHB8PS 
new 

version 

 
 

Number of 
elements 

 Uy/Uref Uy/Uref Uy/Uref 
2x1x1=2 0.023 0.705 0.867 
4x1x1=4 0.081 0.906 0.952 

12x2x1=24 0.333 0.986 0.994 
24x4x1=96 0.592 0.996 0.998 

 
Table 7 shows the convergence results for this case in terms of the normalized 

displacement at point A in the loading direction Oy. The same three elements are 
compared. Again, the two versions of the SHB8PS element exhibit a fast 
convergence (starting from about ten elements), while the HEX8 element shows 
locking and slow convergence. Note that the new version of the SHB8PS element 
shows better performance for coarse meshes. For this out-of-plane loading case, the 
coarse meshes involving only two and four elements give less accurate results as 
compared to the previous in-plane loading case (vertical load). This can be 
understood by analyzing the orientation of the Gauss points (Figure 9). Indeed, at the 
fixed end where the maximum bending moment is localized, there is a single Gauss 
point in the load direction P2 while there are five in the direction of load P1. 
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Figure 9. Position of the Gauss points in the mesh of the twisted cantilever beam 

Two other versions of this twisted beam problem can be found in the literature 
(Simo et al., 1989), (Batoz et al., 1992). These versions differ only by their lower 
thickness: 0.05 and 0.0032, which allows us to evaluate the effects of locking 
phenomena in the limit of high aspect ratios. The reference results for different 
thicknesses are summarised in Table 8 below. 

Table 8. Reference solution for the twisted beam test and different thickness values 

Thickness In-plane loading Out-of-plane loading 

h=0.32 5.424×10-3 1.754×10-3 

h=0.05 1.39 0.3431 

h=0.0032 5.316×10+3 1.216×10+3 

 
The normalized displacements for a 24×2×1 mesh in both in-plane and out-of-

plane loading conditions are reported in Table 9 for the three different thicknesses. 
 
 

Table 9. Normalized results for the twisted beam test and different thickness values 
 

Thickness In-plane loading Out-of-plane loading 

h=0.32 0.999 0.998 

h=0.05 0.998 0.995 

h=0.0032 0.982 0.992 
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Similar results as in the first benchmark problem of a cantilever beam with 
extreme aspect ratios are found. Indeed, we can observe that the accuracy of the 
results is not affected by the high aspect ratio. In the case of the lowest thickness 
(h=0.0032) the aspect ratio value is about 150, which confirms the good behavior 
of the SHB8PS element even when very thin shell problems are considered. 

3.4. Pinched cylinder with end diaphragms 

A cylindrical shell loaded by a pair of concentrated vertical forces at its middle 
section is considered here. Both ends of the cylinder are covered with rigid 
diaphragms that allow displacement only in the axial direction (see Figure 10). This 
test has been treated by many authors, among them (Belytschko et al., 1989) and 
(Chen et al., 2004). It is considered as a selective test problem since they have 
shown that shear locking is more severe than membrane locking. The geometric and 
material parameters for this problem are reported in Table 10. 

 
 

 

 

 

 

 

 
Figure 10. Geometry, boundary conditions and loading for the pinched cylinder 

Owing to symmetry, only one eighth of the cylinder is modeled using 2×2, 4×4, 
8×8, 16×16 and 32×32 meshes as illustrated in Figure 10. 

Table 10. Geometric and material parameters of the pinched cylinder problem 

Length L 600 

Radius R 300 

Thickness t 3 

Young’s modulus E 3.10 6  
Poisson’s ratio ν  0.3 
Applied load P 1 
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The displacement at the loaded point in the loading direction is normalized with 
respect to the reference solution of 0.18248×10-4 and reported in Table 11. 

Table 11. Normalized displacements at the loaded point of the pinched cylinder 

SHB8PS 
previous version 

SHB8PS 
new version 

 
 

Mesh layout 
 Uz/Uref Uz/Uref 

2x2 0.043 0.101 
4x4 0.223 0.387 
8x8 0.708 0.754 

16x16 0.937 0.940 
32x32 0.996 0.997 

 
As we can see in Table 11, the new version of the SHB8PS element performs 

better than the former one, especially for coarse meshes. 

3.5. Simply supported circular plate under uniform load 

The aim of this test problem is to investigate the effect of low thickness values 
(i.e. high aspect ratios) on the convergence of the SHB8PS element. This test was 
extensively used in the finite element technology of shell and plate elements, since 
an affected convergence may reveal some locking problems. Four different meshes 
composed of 12, 27, 48 and 75 elements are used as illustrated in Figure 11. 

 

 

Figure 11. Meshes for modeling a quadrant of the simply supported circular plate 
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The coordinates of points O, A, B, C, D, E and F as shown in Figure 11 are given 
in Table 12 below: 

Table 12. Coordinates of points O, A, B, C, D, E and F of the quarter of the plate 

 O A B C D E F 

x 0. 1. 2 2  0. 0.5 0. 0.4 

y 0. 0. 2 2  1. 0. 0.5 0.4 

z 0. 0. 0. 0. 0. 0. 0. 

Table 13. Normalized deflections of the uniformly loaded circular plate 
 

Thickness value 
 

Point 

 
Mesh 

 t=0.1 t=0.01 t=0.001 
 12 0.943 0.944 0.944 

27 0.975 0.976 0.975 
O 

48 0.985 0.986 0.986 
 75 0.990 0.991 0.991 

 12 0.920 0.920 0.920 
27 0.965 0.964 0.964 

D 
48 0.979 0.979 0.979 

 75 0.987 0.987 0.987 

 12 0.920 0.920 0.920 
27 0.965 0.964 0.964 

E 
48 0.979 0.979 0.979 

 75 0.987 0.987 0.987 

 12 0.910 0.910 0.910 
27 0.961 0.960 0.960 

F 
48 0.977 0.977 0.977 

 75 0.985 0.985 0.985 
 
Different radius to thickness ratios have been considered, namely thick plate 

(R/t=10), thin plate (R/t=100) and very thin plate (R/t=1000), respectively. The 
reference solutions are based on classical Kirchhoff theory for thin plates, or 
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Reissner-Mindlin theory for thick plates as quoted in (Timoshenko et al., 1959) and 
(Jirousek et al., 1995). The normalized deflections at points O, D, E and F are 
reported in Table 13 for different meshes and radius to thickness ratios, R/t. 

As we can see in Table 13, the SHB8PS shows good convergence in all cases and 
no shear locking appears for the thinnest plate with R/t=1000. Note that for the 
thinnest plate, the aspect ratio varies from about 250 for the 12-element mesh 
to about 100 for the 75-element mesh. 

3.6. Uniformly loaded square plate with simple support 

Similar convergence studies are carried out on square plates under uniform load. 
The plate is simply supported and owing to symmetry, only one quarter of the plate 
is modeled and divided into a mesh of N×N elements as shown in Figure 12. 
Young’s modulus and Poisson’s ratio are taken equal to 1 and 0.3, respectively. The 
convergence tests for the plate are evaluated using three different L/t ratios of 10, 
100 and 1000 corresponding to thick, thin and very thin plates, respectively. 

The reference solutions for thin plates are based on Kirchhoff theory as quoted in 
(Timoshenko et al., 1959); for thick plates, they are taken from (Jirousek et al., 1995). 
Table 14 summarizes the normalized results for the central deflection with different 
meshes and span to thickness ratios, L/t. Similarly to the preceding test of uniformly 
loaded circular plates, we can observe that the SHB8PS element performs well in this 
test problem and shows quite a good convergence for both thick and thin plate 
situations. Even for a very thin plate, L/t=1000, where the aspect ratio is equal 
to 250 for the mesh with 2×2 elements, the convergence has proven to be insensitive to 
high aspect ratios, which confirms that the element does not suffer from shear locking. 

 
Figure 12. Simply supported uniformly loaded square plate, mesh of N×N elements 
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Table 14. Normalized central deflection of the uniformly loaded square plate 

Span to thickness ratio  
Mesh 

 L/t=10 L/t=100 L/t=1000 
2×2 0.986 1.075 1.073 
4×4 1.000 1.018 1.019 
8×8 1.004 1.008 1.004 

16×16 1.004 1.008 1.002 

4. Discussion and conclusions 

A new formulation of the solid-shell element SHB8PS has been performed and 
implemented into the implicit, nonlinear finite element code Stanlax-INCA. This 
new version has been evaluated, based on a variety of a large number of popular 
benchmark problems frequently used in the literature. Let us recall that this solid-
shell element is based on a purely three-dimensional formulation (eight-node 
hexahedron and only three translational degrees of freedom per node). A reduced 
integration is used to improve the computational efficiency and an effective 
stabilization is built for hourglass mode control. Five integration points are used 
along a particular chosen direction designated as the “thickness”, allowing for 
accurate modeling of bending-dominated structural problems using only a single 
element through the thickness. Moreover, the projection adopted in this new version 
of the element much better eliminates the various numerical locking phenomena. 
Indeed, the excellent efficiency and convergence properties of the element have been 
clearly demonstrated through numerous tests. All these tests show that there is no 
residual locking (membrane, shear). In particular, the improvement is significant in 
the pinched hemispherical shell problem, where the amount of locking observed in 
the former version has been eliminated. The validation of this element through 
nonlinear applications, including elastic-plastic buckling problems and large 
displacement and rotation simulations, is currently performed. Also, a new explicit 
version of this element will be implemented into an explicit dynamic code for impact 
and crash analyses. 
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