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ABSTRACT. The paper deals with error estimates for the unilateral buckling critical load of a 
thin plate in presence of an obstacle. First, using the Kirchhoff-Love’s plate model, an 
abstract error estimate is given up. Its drawback is that it contains a hard term to evaluate. 
Then, by using the Mindlin’s plate model together with a finite elements scheme of degree 
one, an error estimate, depending on the mesh size h, is established. The last part of the 
paper is devoted to some numerical results in order to validate the error estimate formula. 
RÉSUMÉ. On s’intéresse, dans ce papier, à l’estimation de l’erreur pour la charge critique de 
flambement unilatéral d’une plaque mince en présence d’un obstacle. On donne d’abord une 
estimation abstraite avec le modèle de plaque de Kirchhoff-Love faisant intervenir un terme 
difficile à évaluer en fonction de la taille h du maillage. Ensuite, le choix du modèle de 
plaque de Mindlin et l’emploi d’un élément fini de degré un permettent de donner une 
estimation de l’erreur en fonction de h. La fin du papier est consacrée à des résultats 
numériques qui ont permis de valider l’estimation d’erreur obtenue. 
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1. Introduction 

Consider a thin plate of thickness 2 ε occupying a two-dimensional open setω . 

Assume that it is supported on the whole of its edge γ , clamped on a part 0γ  of its 

edge whose Lebesgue measure is not zero, and simply supported on 0γ γ . 

Furthermore, the plate is subjected to a one-parameter plane compressive load 
.gλ on another part 1γ of its edge (see Figure 1). 

 

 

Figure 1. A rectangular plate is in presence of an obstacle 

The plate is in presence of a rigid fixed plane obstacle that lies just above it (see 
Figure 1). The contact between the plate and the obstacle is supposed to be without 
friction. If the obstacle is not initially in contact with the plate, the problem becomes 
classical, in the sense that it has the same solution as the linear one. The unilateral 
buckling and even the unilateral post-buckling of thin plates have been tackled and 
investigated by many authors since the late seventies. Let us cite, in particular, (Do, 
1975, 1976; Riddell, 1977; Cimetière, 1980, 1985; Kucera, 1982; Quittner, 1986; 
Goeleven et al., 1995; Shahwan et al., 1995; Goeleven et al., 1998; Smith et al., 
1999, 2000; Chai, 2002). Recently, a small contribution to unilateral buckling 
problem was brought by Ayadi; he just suggested an algorithm in order to compute 
numerically the critical state of unilateral buckling problem (Ayadi, 2006). 

The paper is organized as follows. The second section is devoted to the 
description of the unilateral buckling model. In the third section, the adequate 
framework so that the critical state of unilateral buckling exists, (see for instance 
(Do, 1975, 1976; Riddell, 1977)), is briefly recalled. In the fourth section, first, 
using the Kirchhoff-Love plate theory, an abstract error estimate is established. Its 
drawback is that it contains a term very hard to evaluate. Second, using the Mindlin 
plate theory together with a finite elements scheme of degree one, another error 
estimate, depending on the mesh size h, is achieved. In order to validate the 
numerical unilateral buckling model suggested: the Mindlin’s plate model together 
with a finite element of degree one, a rectangular plate and a rectangular obstacle are 
considered in the fifth section. In the same figure are plotted three curves. The two 
first curves give the dependence of the buckling critical load, in the presence and in 
the absence of the obstacle respectively, upon the mesh size h. In order to check the 
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error control, the third curve also gives the dependence (which is linear following the 
theoretical error estimate) of the difference of the two buckling critical loads (with 
and without contact) upon the mesh size h. The numerical results obtained are 
conformal with the theoretical ones. 

2. Mathematical modeling of unilateral buckling 

When taking into account the unilateral contact condition and considering a 
nonlinear elastic constitutive law, we obtain a very difficult mathematical problem 
(see (Ciarlet, 1986; Ciarlet et al., 1977; Duvaut et al., 1972). Nevertheless, we know 
a particular solution pu to the latter. It is the linear elasticity solution, obtained with 
linearized strains, for which the vertical displacement is zero (there is not bending) 
and the plane displacements are solution to the following variational equation: 
 

1

2 2

, , , 1 1

pu v
E d v d v V

x x
Gν α

αβνµ α αω γ
α β ν µ αµ β

ω λ γ
= =

∂ ∂
∀ ∈

∂ ∂
=∑ ∑∫ ∫ , [1] 

 
Where Eαβνµ  is the membrane stiffness tensor for the linear elastic constitutive law 
(depending on Young’s modulus and the Poisson’s ratio), 
 

{ }3 , 1, 2G g dx
ε

α αε
α

−
= ∈∫ , 

 
1g and 2g are the components of the plane compressive load g (see Figure 1), and 

 
{ }1 2

0( ) : 0V v H v onω γ= ∈ = . 
 

The following usual assumptions are made. 

(i) The boundary γ  of the bounded open setω is supposed to be smooth enough. 

(ii) ] [( )2
1 2 1, ,g g L γ ε ε∈ × − so that ( ) { }2

1 , 1,2G Lα γ α∈ ∈ , 

(iii) 
( )E Lαβνµ ω∞∈  for all { }4( , , , ) 1,2α β ν µ ∈ , 

(iv) ( )
2 2 2

,2
, , , 1 , 1

0; ,sk E kαβνµ αβ νµ αβ
α β ν µ α β

θ θ θ θ
= =

∃ > ∀ ∈Θ ≥∑ ∑  

 
where ,2sΘ denotes the set of all symmetric tensors of order two: that is the ellipticity 
property. It is shown in (Ciarlet, 1986) and in (Duvaut et al., 1972) that problem [1] 
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admits a unique solution pu V∈ . Moreover, the tensor of membrane efforts is, (see 
for instance (Ayadi et al., 1990; Ayadi, 1993; Ciarlet et al., 1977), expressed by: 

{ }
2

, 1
. , , 1, 2

p
p gu

n E n
x
ν

αβ αβνµ αβ
ν µ µ

λ α β
=

∂
= = ∈

∂∑ . 

 
Looking for a non-trivial solution to the nonlinear problem described above, we 

need the linearizing technique: set pu u w= +  and show that the deflection 3w  of 
the plate is solution to the following inequality: 

 
( ) ( )222 2

3 33 3

, , , 1 , 1

gv w v ww w
D d n d

x x x x x xαβνµ αβω ωα β ν µ α βν µ α β α β

ω λ ω
= =

∂ − ∂ −∂ ∂
≥

∂ ∂ ∂ ∂ ∂ ∂∑ ∑∫ ∫ , [2] 

 
for all admissible deflection v, where Dαβνµ  denotes the bending rigidity tensor of 
the plate. The other components 1w  and 2w , of the displacement w , are related to the 

deflection 3w  by Kirchhoff-Love formulae (see Ciarlet et al., 1977). 

3. Mathematical framework and existence results 

Let us start by defining the adequate framework used in this paper so that the 
problem [2] admits at least one solution. 

 

   
( )1

0H H ω= , 

( )2
0: 0 0vW v H v on and on

n
ω γ γ∂ = ∈ = = ∂ 

, 

                       
{ }: 0 ,cK v W v in ω= ∈ ≤  

 
cω being a subset of ω where the contact between the obstacle and the plate could 

occur, and /v n∂ ∂  is the derivative of the function v with respect to the outward unit 
vector normal n  to the boundary γ ofω . 

The Sobolev spaces H  and W  are respectively equipped with the following 
norms: 

( )
1 1

2 2 22 2

1, 2,
1 2

,uu u u
x

α

ω ωω ωα αα= ≤

    ∂ = = ∂     ∂    
∑ ∑∫ ∫ . 

 
Let :a W W IR× → and :b H H IR× → be the bilinear forms defined by 
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( )
2 22

, , , 1
, u va u v D d

x x x xαβνµωα β ν µ ν µ α β

ω
=

∂ ∂=
∂ ∂ ∂ ∂∑ ∫ , 

( )
2

, 1
, g u vb u v n d

x xαβω
α β α β

ω
=

∂ ∂=
∂ ∂∑ ∫ . 

 
They are obviously continuous in the spaces H  and W respectively. So, there 

exist two positive constants M  and N  such that 
 

( ) 2, 2,
, , , ,a u v M u v u v Wω ω≤ ∀ ∈  

( ) 1, 1,
, , , .b u v N u v u v Hω ω≤ ∀ ∈  

 
Assume now that the bending rigidity tensor Dαβνµ satisfies the ellipticity property 

(iv) so that the bilinear form a is W-elliptic (see (Ciarlet et al., 1977; Destuynder, 
1990; Duvaut et al., 1972). That means there exists a positive constant α  such that 
 

( ) 2

2,
, , .a v v v v Wωα≥ ∀ ∈  

 
Within the framework defined above, problem [2] is mathematically well posed 

as stated by the following theorem 

Theorem 3.1. There exist 1 0λ >  and nonzero vector 3w K∈ such that 

( ) ( )3 3 1 3 3, ,a w v w b w v w v Kλ− ≥ − ∀ ∈ . [3] 
 

Moreover, 1λ  is the minimum of the Rayleigh quotient over the closed convex 

cone K , which is realized on 3w  : 
 

{ }
( )
( ) ( )1 3 30

,
min ,

,v K

a v v
a w w

b v v
λ

∈ −
= = .  [4] 

Proof: See (Riddell, 1977). 

4. Error estimates for the buckling critical load 

4.1. The Kirchhoff-Love theory  

We shall approximate the “nonlinear eigenvalue problem’’ [2] by using a 
conformal finite element method. Let then hW  be a finite-dimensional subspace of 
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the space W  and let hK  be a non empty closed convex subset of hW , which is a 
cone. Observe that, in general, the set hK  is not a subset of K . 

The discrete “nonlinear eigenvalue problem”, supposed to approach the 
continuous one [2], consists in finding pairs ( ) { }( )*

3, 0h h hw IR Kλ +∈ × −  such that 

( ) ( )3 3 3 3, , ,h h h h h h h h ha w v w b w v w v Kλ− ≥ − ∀ ∈  [5] 
 

In fact, we are not interested in all pairs ( ) { }( )*
3, 0h h hw IR Kλ +∈ × −  satisfying 

the variational inequality [5]. We just would like to focus in this paper on the 
smallest approximated buckling load 1hλ and the corresponding buckling mode 3hw . 

Consequently, we handle the minimizing problem: 

{ }
( )
( )1 0

,
min

,h h

h h
h v K h h

a v v
b v v

λ
∈ −

= . [6] 

 
Obviously, the minimizing problem [6] is mathematically well posed. That 

means: there exists a function { }3 0h hw K∈ − , which realizes the minimum of 
problem [6]. 

From now on, we shall choose ( ) ( )3 3 3 3, , 1h hb w w b w w= = , for all 0h > . 

Furthermore, if the tensor of membrane efforts gnαβ verifies the ellipticity property (as 
in our case), there exists a positive constant 0η> such that 
 

2 2
2

, 1 1

gnαβ α β α
α β α

θ θ η θ
= =

≥∑ ∑  

 
for all vector 2IRθ ∈ , then the embedding of the space W  in the space H , supposed 
to be equipped with the norm ( ). : : ,

b b
H IR v v b v v+→ → = , is continuous 

(Raviart et al., 1983). 
 
Lemma 4.1. Let 3hh Ky P w= be the projection, in the sense of the inner product 

defined by the bilinear form ( ).,.a , of the exact buckling mode 3w on the convex 

set hK . And let 3h K hz P w=  be the projection, also in the sense of ( ).,.a , of the 
approximated buckling mode 3hw on the convex set K . Then we have the two 
following inequalities: 
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3 3 3 2,2,
inf

h
h h

K hw K

Mw P w w w ωω α ∈
− ≤ − , [7] 

3 3 32, 2,infh K h hw K

Mw P w w wω ωα ∈
− ≤ − . [8] 

Furthermore, there exists a positive real 0h such that 

3 02,0
3

1lim inf 0 2
h h

h

hh w K
K b

w w h h
P wω→ ∈

 
   − = ⇒ ≤ ⇒ ≤      

 

, [9]  

( )3 02,0 3

1lim inf 0 2hh w K K h b

w w h h
P wω→ ∈

 
 − = ⇒ ≤ ⇒ ≤
 
 

. [10] 

 
Proof: According to the definitions made in the lemma 4.1, we have: 
 

( )3 3 3, 0,
h hK h K h ha w P w w P w w K− − ≤ ∀ ∈ . [11] 

 
Using the W-ellipticity and then the continuity of the bilinear form a (with usual 

constantsα and M), together with [11], we obtain, for all h hw K∈ , 

2
3 3 2,hKw P w

ω
α − ( )3 3 3 3,

h hK Ka w P w w P w≤ − −
 

( ) ( )3 3 3 3 3 3, ,
h h hK h K h Ka w P w w w a w P w w P w= − − + − −  

( )3 3 3,
hK ha w P w w w≤ − −  

3 3 3 2,2,hK hM w P w w w ωω
≤ − − . 

 
Hence the inequality [7] is showed. 

Suppose that 3 2,0
lim inf 0hh w Kh h

w w
ω→ ∈

− = . Then, according to [7], the sequence 

( )3hKP w converges to 3w  in the spaceW . Since the embedding of the space W  in 

the space H is continuous, the sequence ( )3hK b
P w  converges to 3 1bw = . Hence 

the inequality [9] is showed. The results [8] and [10] are exactly showed in the same 
way. 
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Lemma 4.2. Suppose that 
 

3 2,0
lim inf 0

h h
hh w K

w w ω→ ∈
− = . 

 
Then the sequence ( )3 0h hw > is bounded in the norm 2,. ω . 

Proof: Using first the W-ellipticity of a, and then the fact that the projection on a 
convex set is a Lipschitz mapping with unit ratio, we obtain: 
 

( )2
3 3 32, ,h h hw a w wωα ≤  

{ }
( )
( )0

,
inf

,h h

h h

v K h h

a v v
b v v∈ −

=  

( )3 32
3

1 ,
h h

h

K K

K b

a P w P w
P w

≤  

( )3 32
3

1 ,

hK b

a w w
P w

≤ . 

 
Finally, propriety [9] and the continuity of the bilinear form a yield 

 

3 32, 2,2h
Mw wω ωα

≤ . [12]  

 
We are now in a position to prove an abstract error estimate for the unilateral 

buckling critical load of a thin plate, with Kirchhoff-Love theory, in presence of an 
obstacle. 

Theorem 4.3. Suppose that 
 

3 32, 2,0 0
lim inf lim inf 0

h h
h hh w K h w K

w w w wω ω→ ∈ → ∈
− = − = . 

 
Then there exist four positive constants, '

1c , '
2c , 1c and 2c  independent of the 

subspace hW  and of the convex cone hK  such that 
 

2 2' '
1 3 2 3 1 1 1 3 2 32, 2, 2, 2,
inf inf inf + infh h h h hw K w K w K w Kh h h h

c w w c w w c w w c w w
ω ω ω ω

λ λ
∈ ∈ ∈ ∈

− − − − ≤ − ≤ − −  [13] 
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Proof: First, we show the right hand side of the double inequality [13]. 
Let { }0h hv K∈ − , following the expressions [4] of the exact buckling critical load, 
and [6] of the approximated one, we have:  
 

( )
( ) ( )1 1 3 3

,
,

,
h h

h
h h

a v v
a w w

b v v
λ λ− ≤ −  

3 3 3 3, 2 ,h h h

h h hb b b

v v v
a w w a w w

v v v

   
   = − − + −
   
   

 

Hence 

2

1 1 3 3 32,
2, 2,

2h h
h

h hb b

v v
M w M w w

v vω
ω ω

λ λ− ≤ − + − . [14] 

 
But the inequality [14] is in particular hold for 3hh Kv P w= . Then, the continuity 

of the embedding of W  in H  (with constant c) yields: 
 

2

3 3
1 1 3 3 32,

3 3
2, 2,

2h h

h h

K K
h

K Kb b

P w P w
M w M w w

P w P wω

ω ω

λ λ− ≤ − + −  

2

3 3 3 3 3 3 32 2,2, 2,
33

2
h h h h

hh

K K K Kb b
KK bb

M MP w P w w w P w P w w
P wP w

ωω ω
= − + −  

( ) ( ) 2

3 3 3 3 32
2,

3
h h

h

K Kb b
K b

M P w w w P w w
P w ω

= − + − + 

( ) ( )3 3 3 3 3 32, 2,3

2
h h

h

K Kb b
K b

M w P w w w P w w
P w ω ω

− + −  

( )2 2
3 3 32 2, 2,

3

1
h

h

K

K b

M c w P w w
P w

ω ω
≤ + − +  

( )3 3 3 32, 2, 2,
3

2 1
h

h

K
K b

M w c w P w w
P w ω ω ω

+ − . 

 
According to lemma 4.1 or [7] and [9], we obtain the right inequality of [13]: 

for 0hh ≤ , 
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( ) ( )
3 22 2

1 1 3 3 3 3 32 2, 2, 2, 2, 2,

4 41 inf 1 infh h hw K w Kh h h h

M Mc w w w w c w w w
ω ω ω ω ω

λ λ
α α∈ ∈

− ≤ + − + + −
 

 
Second, we show the left hand side of the double inequality [13]. Let { }0v K∈ − , 

following again the expressions [4] of the exact buckling critical load, and [6] of the 
approximated one, we have: 
 

( ) ( )
( )1 1 3 3

,
,

,h h h
a v v

a w w
b v v

λ λ− ≥ −  

3 3 3 3, 2 ,h h h h
b b b

v v va w w a w w
v v v

   
   = − − + −
   
   

. 

Hence 

2

1 1 3 3 32,
2, 2,

2h h h h
b b

v vM w M w w
v vω

ω ω

λ λ− ≥ − − − − . [15] 

The inequality [15] is hold, in particular, for 3K hv P w= . Consequently, we have: 
 

2

1 1 3 3 3 3 3 3 32 2,2, 2,
33

2
h K h K h h h K h K h hb b

K hK h bb

M MP w P w w w P w P w w
P wP w ωω ω

λ λ − −− ≥ − + −  

( ) ( ) 2

3 3 3 3 32 2,
3

K h h h K h hb b
K h b

M P w w w P w w
P w ω

−= − + − +  

 

( ) ( )3 3 3 3 3 32, 2,
3

2
h K h h h K h hb b

K h b

M w P w w w P w w
P w ω ω

− − + −  

( )2 2
3 3 32 2, 2,

3

1 h K h h
K h b

M c w P w w
P w ω ω

−≥ + − +  

 

( )3 3 3 32, 2, 2,
3

2 1h h K h h
K h b

M w c w P w w
P w ω ω ω
− + − . 

 
Hence, following to [8], [10] and [12], we obtain the left inequality of [13]: 

for 0h h≤ , 
 

52
3 22

1 1 3 3 3 3 332 2, 2, 2, 2, 2,
2

4 81 2 inf 1 2 infh h hw K w K

M M M Mc w w w w c w w w
ω ω ω ω ω

λ λ
α α αα

∈ ∈

   −− ≥ + − − + −      
   
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REMARK. — Several comments are in order about this theorem. 

(i) We would like to remind here that, in the linear case K W= (buckling without 
obstacle), the abstract error estimate for the buckling critical load is much more 
simpler as exemplifies its expression (Ciarlet, 1978): 
 

2
1 1 1 3 2,. inf

h h
h hw K

C w w ωλ λ
∈

− ≤ − . 

 
(ii) Observe that the approximation method in the linear case is more accurate 

than that of nonlinear case. 

(iii) If the inclusion hK K⊂  holds, then obviously the term 3 2,inf hw K
w w ω∈

− , 

which is expected to be the hardest to evaluate (Ciarlet, 1978), vanishes in the error 
estimate formula [13], 
 

2
1 1 1 3 2 32, 2,. inf . inf

h h h h
h h hw K w K

C w w C w wω ωλ λ
∈ ∈

− ≤ − + −  [16] 

4.2. The Mindlin theory 

In order to minimize the number of degrees of freedom, the Kirchhoff-Love’s 
plate model is often replaced by the Mindlin’s one. The later satisfies the exact 
three-dimensional boundary conditions, but does not allow representing three-
dimensional singularities. Boundary layer models based on Kirchhoff-Love theory, 
at the opposite, permit to point out the existence of such stress singularities (Davet et 
al., 1985). Fortunately, the two theories are suitable for computing the critical state 
of buckling. The Mindlin’s plate model involves, as unknowns, the deflection 3w and 
the two rotations 1θ and 2θ  of the mid plane of the plate, which are related by the 
formulae (Ciarlet et al., 1977), (Destuynder, 1990): 
 

3 , 1, 2.
w
xα
α

θ α∂
= − =

∂
 [17] 

 
The changing of the plate model obviously involves a changing of the 

framework: 
 

( ) ( ) ( )( ){ }21 2
3 1 2 3 0, , : 0MH v v r r H L v onω ω γ= = ∈ × = , 

( ) ( )( ){ }31
3 1 2 3 1 2 0, , : 0MW v v r r H v r r onω γ= = ∈ = = = , 

{ }3: 0M M cK v W v in ω= ∈ ≤ , 
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cω being the contact region. The sobolev spaces MW  and MH are respectively 
equipped with the following norms: 
 

( ) ( )
1 1

2 22 2 2 22 2
3 1 2 3 1 21, 1, 0, 0,1, 1,, .

M MW Hv v r r v v r rω ω ω ωω ω= + + = + +  

 
Let now Ma  and Mb  be the following bilinear forms defined in the spaces MW  

and MH  respectively by: 
 

( )
2 2

3 3

, , , 1 , 1

, ,M

r w v
a u v D d G r d

x x x x
α ν

αβνµ αβ α βωα β ν µ α β ωβ µ α β

θ ω θ ω
= =

  ∂ ∂ ∂ ∂
= + + +   ∂ ∂ ∂ ∂  
∑ ∑∫ ∫  

( )
2 2

3 3

, 1 , 1

1 1,
2 2

g g

M

w v
b u v n d n r d

x xαβ αβ α βω ωα β α βα β

ω θ ω
= =

∂ ∂
= +

∂ ∂∑ ∑∫ ∫ , 

 
Where Gαβ denotes the transverse shear rigidity tensor, which verify the same 

ellipticity property as the tensor gnαβ . The bilinear forms Ma and Mb are obviously 
continuous in the spaces MW  and MH  respectively. Then, the 

mapping ( ). : : ,
M M

Mb b
H IR v v b v v+→ → =  is a norm equivalent to the 

norm .
MH , and consequently the embedding of the space MW  in the space MH , 

supposed to be equipped with the norm .
Mb

, is continuous. Finally, the bilinear 

form Ma  is MW -elliptic, see (Ciarlet et al., 1977; Destuynder, 1990; Duvaut et al., 
1972). 

Within the framework defined above, the unilateral buckling problem for the 
Mindlin theory, 
 

( ) ( )1, , ,M M M Ma u v u b u v u v Kλ− ≥ − ∀ ∈ , [18] 
 
which is equivalent to the minimizing problem 
 

{ }
( )
( )1 0

,
min

,M

M
M v K M

a v v
b v v

λ
∈ −

= ,  [19] 

 
is, by virtue of theorem 2.1, mathematically well posed. Let ( )3 1 2, ,u w θ θ=  be its 
solution. 

Because the Mindlin’s model only involves first order partial derivatives, a 
continuous finite element is used. This is the triangle with three nodes. Let( )hT  be a 



Error estimates for the buckling load     595 

regular triangulation. Then the space MW and the convex set MK are respectively 
approximated by 
 

( ) ( )( ) [ ] ( ){ }30

3 1 2 3 1 3 1 2 01 2
, , : , , , , 0M h h h h h h h h hT h T h T

W v r r C v r r X Y T and v r r onω γ= ∈ ∈ ∈ = = =P T , 

And by 
 

( ){ }3 1 2 3, , : ( , ) 0, ( , )M h h h h M h h i j i j cK v r r W v x y for all mesh node x y ω= ∈ ≤ ∈ , 

 
where 

 
[ ] { }1 1 00 10 01 00 10 01, : , ,X Y P a a X a Y a a a IR= = + + ∈P  

 
is the space of polynomials of degree less or equal one. 

It is obvious that the approximated unilateral buckling problem, 
 

{ }
( )
( )1 0

,
min

,h M h

M h h
M h v K M h h

a v v
b v v

λ
∈ −

= , 

 
is well posed (the minimum of a continuous cost over a compact set). Let 

( )3 1 2, ,h h h hu w θ θ= be its solution. Moreover, we have the following error estimate. 
 

Corollary 4.4. Suppose that ( ) ( )( )32
3 1 2, ,u w Hθ θ ω= ∈ . Then, there exist two 

positive constants 1c  and 2c  independent of the subspace M hW  and of the convex 

cone M hK  such that 
 

2
1 1 1 2 .M h M c h c hλ λ− ≤ +  [20] 

 
If M h M hK W= , the error control [20] reduces to 

 
2

1 1 2 .M h M c hλ λ− ≤  [21] 
 
Proof: First of all, we have M h MK K⊂ , which involves 1 1 0M h Mλ λ− ≥ . Second, we 
shall choose ( ) ( ), , 1M M h hb u u b u u= = , for all 0h > . Third, we have the same 
conditions as theorem 4.3: the bilinear forms Ma  and Mb  are continuous, the 
bilinear form Ma  is MW -elliptic and the embedding of the space MW  in the 
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space MH , supposed to be equipped with the norm .
Mb

, is continuous. 

Consequently, if 
0

lim inf 0
Mh M h

h Wh v K
u v

→ ∈
− =  then there exist two positive constants '

1c  

and '
2c  independent of the subspace M hW  and of the convex cone M hK  such that 

 
2' '

1 1 1 2. inf . inf
M Mh M h h M h

M h M h hW Wv K v K
c u v c u vλ λ

∈ ∈
− ≤ − + − . 

 
Finally, with a regular triangulation ( )hT  (see for instance (Raviart et al., 1983)), 

there exists a positive constant '
3c  such that 

 
'
3 2,inf

Mh M h
h Wv K

u v c h u ω∈
− ≤ , 

 
which achieves the error estimate [20]. 

If M h M hK W= , for all { }0h M hv K∈ − , we have 
 

( )
( ) ( )1 1

,
0 ,

,
M h h

M h M M
M h h

a v v
a u u

b v v
λ λ≤ − ≤ −

, 2 ,
M M M

h h h
M M

h h hb b b

v v v
a u u a u u

v v v

   
   = − − + −
   
   

. 

 
The error estimate [21] is due to the fact that  

 

, 0
M

h
M

h b

v
a u u

v

 
 − ≤
 
 

. 

5. Numerical results 

In order to validate our numerical unilateral buckling model, the following 
numerical test is handled.  

The plate, occupying the two-dimensional domain ] [ ] [0.1,0.1 0.05,0.05ω = − × − , 

is simply supported on the whole of its edge and compressed on the part 1γ  of its 
edge by a uniform load 2ελ . Furthermore, the plate is supposed to have a 
thickness 2 0.006mε =  and to be made of an elastic, homogenous and isotropic 



Error estimates for the buckling load     597 

material whose mechanical features are: the Young’s modulus E = 1.000e+09Pa, 
and the Poisson’s ratio 0.3ν = (see Figure 2). 

 

 

Figure 2. The rectangular plate is in presence of the obstacle 

 

Figure 3. The buckling mode of the plate in the absence of any obstacle 

Consider now the obstacle occupying the rectangular domain:  
 

[ ] [ ]0.04,0.04 0.02,0.02cω = − × − . 
 



598     Revue européenne de mécanique numérique. Volume 16 – n° 5/2007 

 

Figure 4. The unilateral buckling mode of the plate 

 

Figure 5. The dependence of the critical load upon the mesh size 

The two first curves above give the dependence of the buckling critical load, in 
the presence and in the absence of the obstacle respectively, upon the mesh size. 
Following theoretical error estimate formulas [20] and [21], the difference between 
the two critical loads (with and without contact) must be linear as a function of the 
mesh size. The third curve shows that this linear behavior is numerically confirmed. 
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6. Conclusion and perspectives 

Using the Mindlin plate theory together with a finite element method of very low 
degree (linear local interpolation) is sufficient to approach the unilateral buckling 
critical load of a thin plate in presence of an obstacle, as exemplify both of the 
theoretical error estimate and the obtained numerical results. 

The Kirchhoff-Love plate theory is not only difficult to implement numerically, 
but also leads to the abstract error estimate [13] whose left hand side is very hard to 
evaluate. Using the very interesting result, namely the maximum of two functions 
in ( )1H ω

 
is also in ( )1H ω (Lewy et al., 1969); Ciarlet has succeeded, in the 

equilibrium position of an elastic membrane problem in presence of an obstacle, to 
evaluate the term 1,inf hv K

u v ω∈
− (Ciarlet, 1978). So, if the maximum of two functions 

in ( )2H ω  is also in ( )2H ω (which is not true for instance ifω is an open subset 

of IR ), then there is a hope to evaluate the term 3 2,inf hw K
w w ω∈

− . 

In the future work, we are going to deal with achieving an error estimate for the 
unilateral buckling mode by using the Mindlin plate theory. 

It is a pleasure to thank Professor Hedi BelHadj Salah, from the ‘’Laboratory of 
Mechanical Engineering’’ at National Engineering School of Monastir, for so many 
fruitful discussions and for his precious suggestions. 
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