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ABSTRACT. In this paper we present a strongly-coupled, dynamic, fluid structure interaction 
analysis of the abdominal aorta in the presence of aneurysm, using an explicit finite element 
method. All dominating features of the biological system under study were taken into account, 
including blood dynamics and wall mechanics and the interaction between the two. The 
inclusion of the surrounding organs and structures that are in contact with the infra-renal 
aortic segment added physiological realism to the simulation and proved to be a good 
approach to integrate the interaction of the aorta with its environment. A similar solution 
strategy could be advantageous to the study of other cardiovascular structures that require a 
strong coupling among fluid, solid and surrounding entity behaviors. 

RÉSUMÉ. Cet article présente l’analyse et la simulation numérique de phénomènes 
d'interaction fluide-structure dans un anévrisme de l’aorte abdominale en utilisant une 
résolution directe des équations couplées fluide-structure en régime dynamique. Tous les 
phénomènes plus importants du système biologique ont été considerés, tels que le fluide 
dynamique du sang, le comportement de la structure et l’interaction entre les deux. 
L’inclusion des organes abdominaux et de toutes structures en contact avec l’aorte 
abdominale infrarénale apporte la preuve évidente de l’avantage de l’approche utilisée. Une 
solution similaire pourrait être utilisée en cas d’autres problèmes cardiovasculaires qui 
nécessitent un couplage fort entre le fluide, la structure et le comportement des organes 
alentour. 
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Glossary 

 

F deformation gradient tensor 

I identity matrix 

FFC T=    right Cauchy-Green deformation tensor 
TFFB =    left Cauchy-Green deformation tensor (Finger 

    tensor) 

I1, I2, I3 first and second invariant of the left Cauchy-
Green deformation tensor 

b  reference body force per unit volume 

ρ  mass density 

P First Piola_Kirchhoff stress tensor 

σ   Cauchy stress tensor 

D rate of deformation tensor 

v velocity vector field 

 η  dynamic viscosity coefficient 

λ  bulk viscosity coefficient 

ψ      isothermal strain energy density function 

e    internal energy 

p    pressure field 

E    elastic stiffness 

V    volume 
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1. Introduction 

The mechanical environment of the cardiovascular system has direct 
implications in maintaining a healthy physiologic state and in the development of 
cardiovascular pathologies. In fact, altered stresses and strains affect the delicate 
balance that regulates homeostasis in the cardiovascular organs. As a consequence, 
many studies have focused on elucidating the true stresses acting upon 
cardiovascular structures.  

Finite element analysis (FEA) has previously been demonstrated as a useful 
computational tool to study cardiovascular mechanics (Schmid et al., 1995; Fillinger 
et al., 2002; Steinman et al., 2003). Unlike most man-made mechanical structures, 
living tissues are inherently complex, due to their non linear, time-varying material 
properties and the pulsatile nature of blood flow. Specific engineering tools are 
available to construct virtual geometries of vessel anatomy from the integration of 
in-vivo imaging and reconstruction techniques (Smith et al., 2000; Redaelli et al., 
2002). These realistic geometries together with computational fluid dynamics and 
stress analyses techniques make it possible to evaluate cardiovascular physiology 
and pathology in a virtual space that enables us to increase diagnostic accuracy, and 
explore solutions for improved patient treatment.  

From a broad prospective, stress- and fluid-based FEA methods can be broken 
into three categories, static, transient, and dynamic. Static analyses study the 
relationships between externally-applied loads on a deformable body and the 
resulting forces that are generated within the body. Static analyses embody scenarios 
that do not depend on loading as a function of time. Transient analyses study events 
that are dominated by short time-spans, or impulse loads, such as abrupt impacts or 
explosions. Dynamic analyses also serve the purpose of characterizing deformable 
body response to time-dependent loading, but unlike transient analyses, dynamic 
analyses represent the class of problems that cover longer time scales, such as 
random vibration, natural frequencies, or cyclic events. 

Explicit FEA methods have capabilities in static, transient, and dynamic 
analyses, but they are best suited for short frequency timing events such as complex 
dynamics, wave propagation problems, high-speed impacts, shock and vibration 
problems, and extreme material and geometrically non-linear responses. Premise for 
this work was to explore possible advantages of using explicit, dynamic finite 
element techniques in order to more accurately capture the in-vivo mechanics of 
abdominal aortic aneurysms. 

An abdominal aortic aneurysm (AAA) is defined clinically as a dilatation 
occurring in the aorta below the diaphragm (Figure 1). The etiology of AAA is still 
unclear; however there is evidence that the vessel dilatation is a result of tissue 
weakening stemming from an unbalanced equilibrium between the flow-induced 
mechanical and hemodynamic forces and the tissue biochemical response (Curci et 
al., 1998; Huffman et al., 2000; Ailawadi et al., 2003).  
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While this investigation does not pursue specific biomechanical data pertaining 
to the formation or rupture of AAA, AAA was chosen because geometrically-driven 
flow phenomena dominate the vessel response thus making it a perfect case study 
for developing this methodology. It has been shown that viscous blood flow through 
a healthy descending aorta of relatively constant diameter can be characterized as 
fully-developed, steady flow (Nakamura et al., 2004). However, in the presence of 
AAA, the flow patterns quickly transition from steady to disturbed at the entrance to 
the aneurismal sac due to the dramatic changes in vessel diameter and shape 
(Bluestein et al., 1996; Peattie et al., 2004). As the flowing fluid core passes into the 
dilated aneurysm, there is emergence of complex vortex patterns within the sac, and 
subsequent flow spreading and impingements. Inevitably, such flow patterns have 
profound influence over the stress distributions that generate within the vessel wall. 
Another reason for selecting AAA as the first case study is the hypothesis that 
surrounding entities will radically influence the pulsatile behavior of vessels. 
Clearly, the descending aorta is tightly restrained within the human trunk as a result 
of contact between it, the spinal column, the peritoneum membrane, and surrounding 
abdominal cavity contents making it an ideal application for our purposes.  

 

 

 

 

 
 
 

 

Figure 1. Abdominal aortic aneurysm 

Several computational studies of AAA have been reported in the literature. A few 
published results included the presence of the intraluminal thrombus (ILT), which is 
often present inside the sac (Harter, 1982; Mower et al., 1997; Di Martino et al., 1998; 
Wang et al., 2002). In these studies, the most widely used boundary conditions 
consisted of elimination of rigid body motion by restraining the ends of the artery in all 
degrees of freedom. The applied load most often was a static pressure corresponding 
to the peak-systolic phase. (Mower et al., 1997; Vorp et al., 1998; Raghavan et al., 
2000; Fillinger et al., 2002). However, a static pressure loading does not represent the 
actual in-vivo loading condition. Only in recent times, the integral relationship 
between the blood flow and the arterial wall response was contemplated, coupling 
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together the two domains with their corresponding physics. To the authors’ 
knowledge, there have been only two studies regarding FSI in patient-specific AAA 
(Di Martino et al., 2001; Wolters et al., 2005). Arbitrarian Lagrangian Eulerian 
schemes have been adopted to solve the coupled interaction between blood and the 
arterial wall by (Di Martino et al., 2001) and more recently by (Wolters et al., 2005). 
In both these studies the material properties for the aortic wall were considered linearly 
elastic and the latter does not include the presence of ILT.  

As stated, the first purpose of this study was to capture the all anatomical 
features that influence the dynamic pulsatile behavior of the abdominal aorta in the 
presence of aneurysm. To accomplish this, we treated the interaction between the 
systemic circulation and the vessel that supports the flow as the fundamental forcing 
function that imposes on the deformable wall thus causing time-varying wall 
dynamics. In addition, we set the analysis in the domain of large deformation, 
required by the deformations experienced in vivo by the aorta, and used non linearly 
elastic material models obtained from experimental data. 

2. Methods 

2.1. The computational model 

Figure 2 shows the complete FEA model which includes spinal column, retro 
peritoneum, healthy and aneurysmal aorta segments, ILT, and an abdominal cavity 
component in the form of a wrapped-around layer whose purpose is to provide the 
bearing pressure on the aorta due to the abdominal cavity organs. Within these 
components is the luminal channel, where blood flows. The total length of the aortic 
vessel is 42cm. The geometry and finite element mesh were generated using the 
commercially-available HyperMesh (Altair Engineering, Inc., Troy, MI). The spinal 
column was obtained from a library of STL files of the human anatomy, while the 
remaining components originated in HyperMesh. Generalized hypothetical 
geometries for the aorta and AAA were created with realistic geometrical features, 
such as the center axis curvature for the aorta due to the presence of the spine. The 
diameters proximal and midway down the aneurysm sac are consistent with those of 
a representative AAA, 2cm and 5cm, respectively. Also, an adequate length 
extension was provided at the proximal end of the aorta to allow the emergence of 
fully-developed flow prior to the aneurysm dilation. Figure 2a shows the complete 
geometrical model, while Figure 2b shows the retro peritoneum situated between the 
spinal column and aorta; Figure 2c shows the aorta when the intestinal component is 
removed.  

A description of all components of the computational model is presented in the 
following. 
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2.1.1. The aorta 

Based on previous studies, which successfully characterized the differences in 
mechanical properties between healthy and aneurysmal wall tissue (Vande Geest et 
al., 2005), the aorta was divided in two segments: the healthy segment which 
contains the entire aorta distal to the aneurysm sac, and the diseased segment of the 
aorta. Shell elements were chosen to model the vessel wall, due to the thickness-to-
surface area ratio. To capture an accurate through-thickness stress distribution, five 
integration points through the thickness of the shell elements were defined. The 
undeformed thicknesses for the healthy and aneurismal segments of aorta are 1.5mm 
and 1.9mm, respectively, as obtained from averaged excised tissue measurements 
(Raghavan et al., 2000). 
 

   

a) intestinal component 
(outside light grey 

component) 

b) retro peritoneum 
(dark grey) 

c) abdominal cavity 
component removed, aorta 

shown 
 

Figure 2. The computational model: AAA geometry, proximal extension, spinal 
column, AAA sac, and intestinal component 

2.1.2. The intraluminal thrombus 

A varying thickness inner solid was modeled inside the aneurysmal sac to 
represent the ILT which lines the inside of an abdominal aortic aneurysm in most 
patients. Figure 3 shows a viewing plane taken through the center of the aneurysmal 
sac. The ILT layer has three elements through the thickness in the anterior region 
and one element in the posterior region. This choice balances the need for 
anatomical realism, which calls for an asymmetric ILT shape with varying 
thickness, and the computational time required to run the analysis. At least three 
solid elements through the thickness are normally used to provide sufficient 
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resolution of the through-thickness stress distribution, especially in the presence of 
bending. However, this would cause the smallest element in the model to be 
extremely small, which renders an explicit finite element analysis very time 
consuming. Our choice is justified by observing that the movement of the posterior 
arterial wall is limited by the spinal column.  

 

 

a) viewing plane through 
aneurysm dilatation 

b) mesh detail  

Figure 3. Mesh representation of lumen, thrombus, and retro peritoneum membrane 

2.1.3. The blood 

The fluid domain was modeled using eight-nodes single point integration 
hexahedral elements. The fluid domain consisted of a control volume representing 
the lumen, and ambient elements positioned at the top of the lumen, which are 
capable of supplying fluid through specified velocity or pressure conditions. To 
compensate for only constant state variable capabilities inherent with single point 
integration solids, a fine mesh density was used throughout the fluid zone to capture 
flow field and results variability. 

2.1.4. The abdominal cavity component, the spine and the retroperitoneum 
membrane 

No experimental data exist that documents what the interface forces are between 
the abdominal aorta and the surrounding hard and soft tissue entities. The abdominal 
aorta is enclosed in a cavity covered by an extensive serous membrane, the 
peritoneum. The organs adjacent to the aorta, including the greater part of the 
digestive tube, liver, pancreas, spleen and kidneys, are all contained and bound 
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together by the peritoneum. Also acting on the aorta is a posterior pressure exerted 
from the spinal column. In this tight context, there are clear limits over how much 
dilation of the aorta can occur within each cardiac cycle.  

As a first attempt to capture these anatomical boundary conditions, we modeled 
the tissues surrounding the posterior wall of the aorta as a layer of soft-tissue 
between the aorta and the spinal column. In addition, there is a layer of four-node 
shell elements placed between the soft tissue layer and the spinal column, 
representing the retro peritoneum membrane. 

To geometrically represent the abdominal organs and peritoneum, it is assumed 
that the pulsatile dilation of the aorta is not felt far from the aorta. Moreover, it is 
assumed that the geometric details of the abdominal organs are not essential to 
capture their mechanical influence on the aorta. As a consequence, the abdominal 
cavity component was modeled as a single wrap of material surrounding the aorta 
except for the posterior side next to the spinal column. 

The solid domain includes 97,416 elements, of which 38,070 are hexahedral 
solid elements defining the intestinal component, the ILT, and the retro peritoneum. 
The remaining elements are three- and four-nodes shell elements, used for the 
external surface of the spinal column and for the aortic wall, which follow the 
Belytschko-Tsay formulation. The fluid domain includes 44,280 hexaedral elements 
that occupy the length of the lumen channel. The total count for both structural and 
fluid domains is 141,696 elements. 

2.2. The computational methods 

2.2.1. Fluid structure interaction method 

To model the interaction between the fluid (blood) and the surrounding 
structures, we utilized an Arbitrary-Lagrangian-Eulerian (ALE) mathematical 
description of the field equations in order to have that material domain (Lagrangian) 
and spatial (Eulerian) domain coexist and are treated by a unified set of field 
equations. The ALE solver involves a Lagrangian step, during which the mesh is 
allowed to move and a second step that advects the element state variables back onto 
a reference mesh. Following this scheme, the fluid domain is updated at each time 
step to minimize mesh distortion and an advection step is performed at each time 
step, as described in the following. 

2.2.2. Conservation laws 

Noting that the gravitational forces acting on the system are neglected as well as 
all other forms of energy excluding mechanical energy, and that isothermal 
conditions are assumed, the following local conservation equations in a Lagrangian 
reference are to be solved: 
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Conservation of mass                                     
J

rρρ =   [1] 

 
Conservation of linear momentum        ( ) bP =− Divvrrρ  [2] 

where rρ is the material density in the reference configuration, rv  is the material 
acceleration field, P  is the first Piola-Kirchhoff stress tensor, and b is the reference 
body force per unit reference volume acting on the region Ω . The unknowns 
are ( )t,Xρ , ( )tr ,Xv , where X  spans the body in its reference configuration. 

We then assume that the region Ω consists of two parts, a solid region sΩ and a 

fluid region fΩ . 

In the case of incompressible hyperelastic materials, the Piola Kirchhoff stress 
tensor is defined as: 

( )
F
FFP

∂
∂+−= − ψTp  of equivalently ( )

C
CFFP

∂
∂+−= − ψ2Tp  [3] 

where p is the hydrostatic pressure, and ψ  is the strain energy function, defined as a 
function of F or C. 

The Cauchy stress tensor σ for a Newtonian incompressible fluid can be written as: 

DIσ η2+−= pf , [4] 

where p is the hydrostatic pressure, η  is the dynamic viscosity and D is the rate of 
deformation tensor:  

( )[ ]TvvD ∇+∇= 2
1  or, in index notation 













∂
∂

+
∂
∂=

i

j

j

i
ij x

v
x
vD 2

1  [5] 

where v is the spatial velocity associated with the flow field, related to the material 
velocity rv by: 

( ) ( )xvXvr ,, tt =  [6] 

where the position vector in the current configuration x (spatial coordinates) is 
related to X , the position vector in the reference configuration (material 
coordinates), by ( )Xx ,tχ=  and F  is the deformation gradient: 
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( )
X

X
X
xF

∂
∂=

∂
∂= ,tχ

 or 
α

α X
xF i

i ∂
∂= , [7] 

where the index i describes the spatial coordinates, and α describes the material 
coordinates. 

Using the chain rule of differentiation we can rewrite the spatial velocity 
gradient in terms of the material velocity rv , as follows: 

j

ir

j

i

x
X

X
v

x
v

∂
∂⋅

∂
∂

=
∂
∂ α

α

,  or  ( ) ( ) ( ) jirj αα
1−∇=∇ Fvv . [8] 

The deviatoric portion of the stress field fDσ  is then: 

( )( ) ( )( )T
r

T
r

T
fD vFFvvvσ ∇+∇=∇+∇= −−1ηη . [9] 

Consequently, recalling that the first Piola-Kirchhoff stress tensor P  is related to 
the Cauchy stress tensor by TJ −= σFP , the conservation of linear momentum 
equation reads as follows:    

( )[ ]{ } bFvFFvIFv =∇+∇+−− −−−− TT
r

T
r

T
rr JJpDiv 1ηρ  for the fluid domain fΩ  

 [10] 
( ) b=








∂
∂+−− −

F
FpFDivv T

rr
ψρ                   for the solid domain sΩ . 

In order to solve the equations for the multi-physics model using an explicit 
scheme, it is advantageous to treat the blood as slightly compressible. As a 
consequence, it is necessary to include a bulk viscosity in the definition of the 
Cauchy stress tensor σ for a Newtonian incompressible fluid can be written as: 

( )IvDIσ ⋅∇++−= λη2pf  [11] 

where η  is the dynamic viscosity, λ  is the bulk viscosity coefficient. 

As a result, the conservation of linear momentum [10] must be rewritten 
accordingly, including the divergence of the velocity term. For completeness, we 
note that ( )v⋅∇  is equal to zero in case of incompressible fluid, and that takes us 
back to Equation [3].  
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2.2.3. Equation of state for the fluid 

Treating arterial flow as a relatively low Mach and low pressure phenomenon, 
similar to sloshing in tanks, we employed a commonly used equation of state, which 
establishes a relationship between pressure and internal energy, the Mie-Grüneisen 
equation of state (Hallquist, 1999). The full expression for the Gruneisen equation 
defines a polynomial, known as the Vs-Vp curve and can be written as:  

e
SSS

C
p

r
)(

]
)1(1

)1(1[

]
2

)
2

1(1[
0

2
2

3

3

2

21

202

αµγ

µ
µ

µ
µµ

µαµγµρ
++

+
−

+
−−−

−−+
=   [12] 

where p is the shock wave pressure, e is the internal energy, C is the intercept of the 
Vs-Vp curve, which is the speed of sound for the medium, and S1, S2, and S3 are the 
non-linear slope coefficients for the Vs-Vp curve when extreme shock wave events 
are present, γ0 is the Gruneisen gamma, and α is the first order volume correction to 
γ0. The excess compression is defined by 1−=

rρ
ρµ  where ρ is the current density 

and ρr is the initial density. 

The implementation of the Gruneisen equation-of-state is adapted from 
(Gruneisen, 1926). For our purposes, we used a simplified Gruneisen equation 
because we assume low pressure. For the simplified equation, we only need to 
define C, the speed of sound through blood, which is assumed equivalent to the 
speed of sound through water, i.e. 1480m/s. By using the Gruneisen equation of 
state, wave propagation from secondary dynamic effects is solved as an integral part 
of the solution for dynamic equilibrium in an explicit analysis. 

Due to the isothermal conditions, we can consider the internal energy e of the 
system to remain constant, therefore, the simplified Grunesein equation relates 
pressure to the excess compression by: 

constCp r += µρ 2
 [13] 

In essence this is a linear relationship that relates pressure to the current density 
and can be rewritten as follows: 

CONSTCp += ρ2  [14] 

where CONST is a constant including the value of the reference density rρ . 
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2.2.4. Solution method 

An explicit finite element method was used to solve the dynamic equilibrium 
equations in the system as implemented in LS-DYNA (LSTC, Livermore, CA). The 
explicit method deviates from the implicit method in the details of the equilibrium 
calculations. Using classical Taylor series, a central finite difference method is used 
to advance the position of the mesh in time, using the following equation:  

( ) 2/1
3

2/1,
1

++
+ ∆+∆+= nnt

nn tOttfff  [15] 

In this expression, the neglected terms are proportional to 3t∆  indicating that 
the new mesh displacement is second-order accurate in time.  

Explicit time integration, while considerably more expensive than implicit time 
integration, is particularly suited for complex highly nonlinear systems including 
multiple components that experience contact.  

The stability of the solution, in explicit procedures, is only guaranteed as long as 
the time step size is kept below a critical threshold, commonly known as the Courant 
condition (Woodruff, 1969). For most structural analyses, the Courant time step size 
is calculated by:  

ρ
E
Let 9.0=∆ , [16] 

where Le represents the characteristic element length which is a function of the 
smallest element in the mesh, E defines the elastic stiffness for that material, and 
finally, ρ defines the density of the material for the smallest element. Note that the 
term in the denominator represents the speed of sound through the material. By 
definition, the Courant criterion ensures that the time step size is calculated based 
on the smallest element in the mesh and the density of that element, such that a 
propagating stress wave traveling at the speed of sound through the element is 
captured.  

2.2.5. Advection 

The ALE approach (like the pure Eulerian approach) requires that transport 
between elements, otherwise known as advection, be taken into account. All history 
variables from both the fluid and solid domains are advected; non-history variables 
are recalculated per step. In order to ensure stability of the numerical scheme, a split 
operator technique was used to solve the advection terms (Hallquist, 1999). 

For each history variable S (for both fluid and solid), the advected quantity SeVe 
is computed using the General Advection Rule:  
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j
faces

j
lllee FluxSVSVS ∑+= , [17] 

where Ve is the Eulerian element volume and Vl is the corresponding Lagrangian 
element volume. The simultaneous advection of state variables ensures a strongly-
coupled solution to the problem. 

Stability and accuracy of the advection terms further limit the time step size, in 
addition to the requirement arising from the Courant condition, forcing the material 
flux within one time step to be limited to a quarter of the element size.  

2.2.6. The material models 

Biological soft tissues are primarily composed of water and have negligible 
permeability and compressibility (Chuong and Fung, 1986). Carew also studied the 
incompressibility of the arterial wall and determined that it acts as a nearly 
incompressible material (Carew et al., 1968). It is also known that arteries undergo 
finite deformations under normal physiologic conditions. The aortic wall tissue 
exhibits a slightly anisotropic non-linear elastic behavior. The degree of anisotropy 
becomes even less prominent in the abdominal aorta in the presence of an aneurysm 
exhibits very little anisotropy (Vande Geest et al., 2005). For these reason, we 
modeled the arterial tissue as an incompressible, homogenous, hyperelastic material 
undergoing finite deformations. Also, experimental studies indicate that the density 
of the atrial wall tissue is close to that of blood, therefore, a value of 1.12 g/cm3 was 
used. 

In this framework, we may postulate the constitutive equations for an 
incompressible hyperelastic material through the following strain energy function:  

( ) ( ))1~ −−= JpFψψ  or equivalently ( ) ( ))1ˆ −−= JpCψψ  [18] 

where the strain energy ψ  is defined for 1det == FJ , and the scalar p is the 
hydrostatic pressure. Furthermore, for the case of isotropy, the dependence of ψ  on 
the Cauchy-Green strain tensor C may be expressed by its three invariants I1, I2, I3. 
And since I3 =1, I1 and I2 are the two only independent variables: 

( )21, IIψψ =  [19] 

Based on experimental studies, a polynomial strain energy function was chosen 
for the abdominal aorta, as follows:  

2
1211 )3()3( −+−= IaIaAORTAψ , [20] 

where a1 and a2 are the material parameters. 
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For simplicity we have utilized the same form of the strain energy function for 
the healthy aorta and for the aneurismal aorta. Coefficients for the latter were 
obtained from the study of Raghavan et al., performed on AAA specimen obtained 
during surgery (Raghavan and Vorp, 2000). For healthy tissue, coefficients were 
obtained by regression analysis from experimental data on aortic specimens from 
autopsies for patients aged fifty and over (Vande Geest et al., 2004). The coefficients 
were a1=13.9 N/cm2 and a2=150 N/cm2, and a1=17.4 N/cm2 and a2=188.1 N/cm2, 
respectively, for the healthy aortic wall portion and the aneurysmal wall. 

Treating the thrombus as slightly denser than blood but not as dense as the 
arterial wall, a density of 1.10 g/cm3

 was prescribed. The hyperelastic material 
relationship for the ILT was used as previously published with parameters c1 and c2 
for the strain energy function reported hereafter equaling 2.81N/cm2 and 
2.86 N/cm2, respectively (Wang et al., 2001): 

2
2221 )3()3( −+−= IcIcILTψ , [21] 

where c1 and c2 are the material parameters 

Recently, Brown et al. (2003) experimentally measured the in-vivo mechanical 
behavior of porcine internal organs. From this paper, stress-strain behavior plots for 
the bladder, gallbladder, large intestine, liver, small intestine, spleen, and stomach 
are available. As a first attempt, we averaged the small and large intestine 
characteristics and applied them to the abdominal cavity component in our model. 
Similar properties were assigned to the peritoneum tissue. The constitutive model 
used for the abdominal cavity component is a fully-recoverable low-density foam 
(Hallquist, 1999). This foam model is mainly used for modeling highly compressible 
low density foams, and is well suited for applications that require that the foam 
returns to its original shape once the load is removed. No hysteretic unloading per 
cardiac cycle was assumed. As a first approximation, the density of the foam is 
defined as 1.15 g/cm3 assuming the intestinal content is slightly denser than the 
aorta.  

The blood is defined as a Newtonian fluid with a density of 1.06 g/ cm3, and a 
viscosity of 0.00319 Pa-s (Fung, 1993). Blood is essentially a suspension of 
erythrocytes in plasma and shows anomalous viscous properties at low velocities 
and small diameters. However, the Newtonian assumption has been considered 
acceptable since minor differences in the basic flow characteristics are introduced 
through the non-Newtonian hypothesis for large arteries. Moreover, especially when 
the velocities are low, the wall shear stresses are several orders of magnitude lower 
than the stress due to the pressure acting on the wall; consequently, the overall wall 
stress is minimally influenced by the non-Newtonian behavior. 

Since the spinal column is assumed orders of magnitude stiffer than any other 
component in the model, and its sole purpose is to provide realistic support through 
contact to the aorta, a rigid material is used. Even though rigid, realistic material 
properties were used as they play a significant role in calculating penalty stiffness 
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forces in the contact definition, namely, an elastic modulus of 18 GPa and a density 
of 2.20 g/cm3 (Reilly et al., 1975). 

2.2.7. Boundary and loading conditions 

The appropriate boundary and loading conditions were defined on all considered 
domains, namely, from the outside to the inside (see Figure 2): 

– abdominal cavity component (solid); 
– spine (solid – rigid); 
– retroperitoneum membrane (solid – shell); 
– soft tissue (solid); 
– wall (solid – shell); 
– thrombus (solid); 
– lumen (fluid). 

as well as on all boundaries: 

– outer surface of the spine column (rigid); 
– upper boundary surface of the aorta, thrombus and fluid; 
– lower boundary surface of the aorta, thrombus and fluid; 
– outer surface of the abdominal intestinal component; 
– surface interface between spine column and retroperitoneum membrane 
(bilateral contact); 
– surface interface between retroperitoneum membrane and soft tissue (tied 
contact); 
– interface between soft tissue and outer surface of the aorta (bilateral contact); 
– interface between the inner surface of the aorta and the thrombus outer surface 
(tied contact); 
– interface between the inner surface of the thrombus component and the fluid 
(ALE – the fluid mesh is remeshed at each step in order to follow the 
deformation of the solid mesh). 

For completeness, it is worth recalling that the reference used for the 
computational simulation is Lagrangian, therefore, if we consider an oriented 
infinitesimal surface Σdn  represented in the Eulerian coordinate system, the 
corresponding quantity for a Lagrangian observer is: 

Σ=Σ − dJd r
1Fnn , [22] 

where n is the normal to the surface in the current configuration and nr is the normal 
to the surface in the reference configuration. 

The boundary and loading conditions are summarized in the following. 
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The spinal column is constrained in all translational and rotational degrees of 
freedom. The presence of the spine as a geometric entity aids in the anatomical 
understanding of the model and, moreover, provides realistic contact conditions to 
the expanding aorta that would not have been achieved by simply constraining all 
degrees of freedom in the posterior surface of the aortic wall. The bottom of the 
aorta is constrained in the vertical direction, to mimic tethering, but is free to 
develop radial dilation with the passing of each pulse. The upper boundary of the 
aorta segment is constrained in all translational degrees of freedom. Lastly, the 
anterior face of the intestinal component, furthest away from the vessel, is also 
constrained in all translational and rotational degrees of freedom. 

At the inflow boundary, a parabolic velocity field is prescribed in normal 
direction through an ambient reservoir (Figure 4). The ambient reservoir is assumed 
to have an infinite supply of fluid. The velocity boundary conditions imposed are 
based on flow rate signals in the descending aorta as reported by Mills (Mills et al., 
1970), scaled to obtain a time period of 1 sec and a realistic average peak-systolic 
Reynolds number (of approximately 1 000). At the outflow the fluid is considered 
stress-free and at the inner thrombus-fluid interface there is a no slip condition. A 
time-dependent isobaric pressure is imposed at the outlet. At the beginning of the 
simulation the fluid is quiescent and twelve cardiac cycles have been simulated to 
achieve a solution independent from the initial conditions. 

 

 
 
Figure 4. Velocity and pressure loading conditions 

The restraint from the spinal column to the soft tissue covering the aorta is 
defined through an automatic-surface-to-surface contact algorithm which transmits 
bilateral, nonlinear contact forces at the interface. This contact definition serves two 
purposes: first, it provides the necessary link between the aorta and spinal column 
where interface pressures are naturally generated thus pressing the aorta between the 
spine and abdominal cavity contents, and secondly, it tracks these contact forces on 
the retro peritoneum making it possible to quantify and document interaction forces 
and stresses. 
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3. Results 

The analysis was executed on a Hewlett-Packard C8000 UNIX workstation with 
four processors and two gigabyte of s-RAM each. The computational time required 
to complete twelve cardiac cycles was approximately forty-eight hours. Due to the 
vast amount of spatial and temporal results data made available by an explicit 
dynamic analysis, we arbitrarily begin by examining the results from the inside of 
the model and then work our way towards the outer components. The first set of 
results examined will be the fluid behavior within the lumen channel since the fluid 
flow is the driving force for the analysis, to ensure dynamic steady state has been 
reached. Then we will focus our attention on the ILT response to the flow, followed 
by the vessel response to fluid and ILT, and finally the abdominal cavity component. 

3.1. Qualitative results 

Figure 5a shows a viewing plane midway down the healthy aorta segment. 
Within this plane, the diameter change as a function of time was plotted, shown in 
Figure 5b. The FEA results show a stabilization of pulsatile diameter increase in the 
vicinity of 13%, which is compatible with the percentage increase per cardiac cycle 
that we measured by means of dynamic MRI on healthy volunteers (approximately 
10 to 14% over the native diameter). 

 

 
 a) b) 

Figure 5. Percentage excursion aortic diameter over time 

Figure 6 shows the fringe plots of velocity magnitude along the entire length of 
the vessel, plotted every four seconds. An arbitrary fringe scale of zero to 10cm/s 
was assigned to the fluid domain to assist in the visualization of the fluid motion; 
blue denoting zero or slow velocity, and red denoting velocities equal to or greater 
than 10cm/s. At twelve seconds, all of the blood contained inside the healthy aorta 
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and aneurysmal sac is in motion, driven by the reservoir at the top of the lumen 
channel and its own momentum.  

 
Figure 6. Velocity magnitude along the length of the vessel (cm/sec.) 

One advantage of simulating a tight coupling between the solid and fluid 
domains is that the Windkessel Effect can be captured. The Windkessel effect states 
that part of the elastic energy stored in the aortic wall at each cardiac cycle is 
returned as kinetic energy to the blood during each diastolic phase, allowing the 
aorta to act as an auxiliary pump. Figure 7 shows a visualization of the Windkessel 
effect: the wall elastic energy peaks (light grey curve) are followed by the blood’s 
kinetic energy (dark grey curve) peaks for the time interval between 0 and 11 
seconds of simulation. Beyond 11 seconds of simulation there is the appearance of 
flow disturbance in the sac, as will be discussed in the next paragraph. 

 
Figure 7. Visualization of the Windkessel Effect over the length of the simulation 

0 cm/sec 

10 cm/sec 
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Figure 8a shows a viewing plane positioned mid-way through the sac where 
cross-sectional deformations are shown; Figure 8b shows the deformed 
configuration at time zero, 11.0 and 11.4 seconds of simulation. Larger 
displacements occur towards the right posterior quadrant, as is to be expected due to 
the asymmetry of the model. 

 
 

 

 

 
 
 
 
 
 
 
 
Figure 8. Cross-sectional deformation at the level of maximum dilatation in the 
AAA 
 
 

To evaluate the evolved flow patterns within the aneurysmal sac after the eleventh 
cardiac cycle, plots of instantaneous flow trajectories were collected, as shown in 
Figure 9. Within the 11th cycle, results indicate lowest pressure inside the aneurysmal 
sac at 11.0 seconds, and highest pressure within the sac at 11.4 seconds. Accordingly, 
subsequent results will be collected at those times. Figure 9a shows the sagittal plane 
velocity trajectories at 11.0 seconds, while Figure 9b shows the equivalent plot at 11.4 
seconds. For this figure, an arbitrary range for velocity was set from zero to 12 cm/s 
which maximizes the visual differences between the two time states. 

 

 
 a          b 

Figure 9. Fluid velocity trajectories in the aneurismal sac (cm/sec.); a) 11.0 sec.,  
b) 11.4 sec. of simulation 
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3.2. Quantitative results 

We will now turn the attention to quantitative measures of aortic mechanics 
behavior. Figures 10a and b show the maximum principal stress distribution within 
the body of the ILT at times 11.0 and 11.4 seconds, respectively. An arbitrary fringe 
scale of 0 to 2 N/cm2 is assigned to aid in clear visualization of the stress 
distribution. The peak thrombus stress within the AAA sac is approximately 
2.45 N/cm2 which occurs at 11.4 seconds, and is in good agreement with published 
data (Wang et al., 2002; Di Martino et al., 2003). 

 

 
 

Figure 10. Maximum principal stresses (N/cm2) in a longitudinal section of the 
intraluminal thrombus; a) 11.0 sec., b) 11.4 sec. of simulation 

Figure 11 shows the maximum principal stress distributions in both the healthy 
and aneurismal aorta. To aid in visualization, an arbitrary stress range of 10 N/cm2 
to 35 N/cm2 was assigned. The maximum stress in the aortic segment at 
11.0 seconds is 44.7 N/cm2, and is located along the length of the healthy segment in 
the posterior region. The location of the maximum stress is influenced by the flow 
impingements along the posterior vessel surface caused by the vessel curvature 
along with restraint from the spinal column. At the same time instant the stress in the 
anterior region of the healthy aortic segment is approximately 15 N/cm2, which is 
consistent to published value for the normal aortic tract when the curvature of the 
vessel is not included in the model (Raghavan et al., 2000). Referring to Figure 11b, 
the peak wall stress for the aneurismal segment is located posterior next to the spinal 
column. The peak wall stress at 11.4 seconds is 36.6 N/cm2, which is within the 
range of published peak stress values (Raghavan et al., 2000; Wang et al., 2002). 

Figure 12 illustrates information about the vessel wall that has not been 
previously documented, the vessel thinning as a function of time. The percentage of 
thinning between 11 and 12 seconds of simulation is shown for four different 
locations on the aortic wall, shown in the left panel of the figure. 

b) a)  



In-vivo mechanics of abdominal aortic aneurysm     357 

 

Figure 11. Maximum principal stresses on the aortic wall at two instants in the 
cardiac cycle (N/cm2); a) 11.0 sec., b) 11.4 sec. of simulation 

 

 
 
 

Figure 12. Vessel wall thinning versus time at 4 different locations on the model 
(shown on the left) 

 
Lastly, Figure 13 shows the compressive stress distribution through the thickness 

of the intestinal component. Following De St. Venant’s principle, the thickness has 
to be deep enough so that the translational and rotational constraints prescribed on 
the anterior face of the foam, furthest away from the vessel, do not influence the 
vessel behavior. The compressive stress distribution shown in Figure 13 indicates a 
sufficient thickness as elevated stresses do not reach the outer surface. 

b) a)  
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Figure 13. Compressive stress profile through the thickness of the abdominal cavity 
component (dark grey indicates zero compressive stress) 

4. Discussion 

The current study presents a strongly-coupled, dynamic, fluid structure 
interaction simulation of a long segment of aorta including aneurysm. All major 
features of the biological system of AAA were represented, including nonlinear 
elastic, non-homogeneous constitutive material properties, pulsatile loading due to 
the blood flow, and anatomically correct boundary conditions along the length of the 
aorta, exemplified by the spinal column and abdominal cavity contents.  

We treated the interaction between the systemic circulation and the vessel that 
supports the flow as the fundamental forcing function acting on the deformable wall 
and causing time-varying wall dynamics. Our method underscores the fact that the 
stresses that develop in-vivo within the artery wall are strongly dependent on the 
timing (phase) during the flow cycle. 

The results demonstrate a percentage excursion of the aortic diameter during 
each pulsatile dilatation that stabilizes in the vicinity of physiological values 
(thirteen %) (Figure 5). This result corroborates the assumptions made regarding the 
abdominal cavity component, which plays an important role in achieving a correct 
dilation of the aorta. 

The Windkessel effect, which states that the ventricular ejection is 
complemented by the effect of the elastic arteries (the aorta) that provide an 
auxiliary pumping effect by storing elastic energy during systole and then 
transferring it to the blood in the form of kinetic energy during the cardiac diastolic 
phase, is clearly documented in our results. As the vessel wall stores energy, the 
wall elastic energy peaks (light grey curve in Figure 7), and then releases the stored 
energy causing a drop in the energy curve in the diagram. An increase in the blood’s 
kinetic energy follows, indicating that the vessel wall is aiding the blood flow 
downstream. This trend is visible from 6 to 11 seconds where fluid momentum is 
accumulating and then stabilizing around 11 seconds. Worth noting, there is a 

zero compressive 
stress 
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sudden decline in the kinetic energy curve after 11 seconds. This observance can be 
explained by monitoring the complex flow patterns that emerge within the 
aneurysmal sac creating a retrograde flow back into the healthy, proximal extension 
as shown in the right hand view of Figure 9. This cyclic backflow has the effect of 
congesting flow and reducing the average fluid velocity at the entrance of the sac, 
which causes a decrease in kinetic energy. 

Turning the attention to quantifiable localized results, we compared our results 
with data reported by Wang et al., and to our previous results. Both models included 
the presence of the ILT and were solved applying a static pressure load to the inner 
surface of the vessel corresponding to an average systolic peak pressure (Wang et al., 
2002; Di Martino and Vorp, 2003). The maximum principal stresses distribution and 
values within the body of the ILT obtained in the current analysis were compatible 
with those previously reported; maximum principal stress were 2.45 N/cm2, 6 N/cm2, 
and 2.5 N/cm2 on average, respectively, in the current study, in Wang’s study and in 
our previous static study performed on hypothetical aneurysm geometries (Wang et 
al., 2002; Di Martino and Vorp 2003). These values are well within the margins of 
ultimate strength for ILT, which is approximately 30 N/cm2 (Wang et al., 2001).  

The stress results obtained for the aortic wall in the area of the aneurysm 
dilatation are also in accord with published data; maximum principal wall stress for 
our study was 36.6 N/cm2 and 30 N/cm2 on average in the study by Wang et 
al.,(Wang et al., 2002). It is interesting to note that in the area of the healthy 
descending aorta, we found maximum principal stress values higher than those in 
the aneurysm area; Figure 12a shows a maximum principal stress value of 
44.7 N/cm2 acting along the posterior wall the vessel. This result deserves a careful 
examination. The presented study provides the first computational results obtained 
from a strongly-coupled fluid structure interaction analysis including most of the 
descending aorta. We included the effect of curvature of the spine and we made 
assumptions on the thickness of the vessel wall, based on previously reported 
experimental data. The higher stress value for the healthier portion of the aorta is a 
result of the flow impingements on the curved aortic wall, due to the spinal 
curvature. The aneurysmal portion of the aorta, on the other hand, includes no 
calcifications or local thinning of the wall, which could definitely lead to higher 
local stress values. Nevertheless, it is worth noting that the reported strength of the 
healthy aortic specimen is approximately twofold, on average, of that of aneurysm 
specimens (Vorp et al., 1996). As a consequence, the aneurysmal aorta, despite the 
lower absolute stress, falls within a narrower margin of reserve strength than the 
healthy aortic region. Our results may also indicate that tortuosity in the aneurysmal 
aorta may impact not only flow conditions but also the vessel wall stress levels, 
indicating a higher risk of rupture for tortuous aneurysms. When the thrust of the 
flow activity is in the aneurismal sac, at 11.4 seconds, the wall stress at the same 
location in the healthy aorta is 15 N/cm2, which correlates with previously reported 
results in a straight aortic model (Vorp et al., 1998). 



360     REMN – 16/2007. Fluid structure interaction 

The simulation provided accurate time-varying wall thinning measurements 
throughout the cardiac cycle (Figure 13). This piece of information may be very 
useful to assist in the design and evaluation of attachment site mechanisms for 
endovascular prosthesis. Endovascular devices in fact often rely on hooks 
penetrating the aortic wall to fix the prosthesis in place and may experience 
detachments due to unexpected thinning and improper design. 

There are several limitations to this FEA model. No branches from the main 
artery have been considered, including the renal arteries. We postulated that since 
the descending aorta contains the largest volume of fully-developed flow, 
deceleration at the renal bifurcation prior to the AAA sac can be neglected. Also, the 
geometric model does not include the iliac bifurcation distal to the sac. The material 
model for the aneurysmal and healthy aortic regions has been assumed to be non 
linearly elastic and isotropic neglecting anisotropy and viscoelastic properties of the 
wall tissue. The material properties for the abdominal cavity component have been 
obtained from porcine tests as the corresponding material properties for humans 
have not been documented. The retro peritoneous membrane has been assumed to 
have the same characteristics as the abdominal cavity component.  

Although the mesh size and element types were chosen on the basis of previous 
successful mesh independency analysis (Di Martino et al., 2003) a thorough mesh 
sensitivity analysis on this computational model is necessary to determine whether 
or not the chosen element size, distribution, and mathematical formulations are 
optimal for this application. Another limitation of the analysis is represented by the 
absence of an appropriate after-load at the outflow. Inherent in the complexity of 
simulating the in-vivo flow conditions of a closed system using an open system 
model are challenges with boundary assumptions. As such, boundary condition 
details at the bottom of the vessel are on on-going area of exploration in order to 
stabilize and maintain the fluid kinetic energy indefinitely. 

As this explicit methodology evolves, each of these concerns will be addressed 
fully. 

5. Conclusion 

To date, there appear to be no published analyses of a strongly-coupled fluid 
structure interaction analysis on a full-length descending aorta and surrounding 
anatomical components, solved using explicit finite element methods. We have 
shown that, using an explicit solution scheme, all principal features of the AAA 
system were captured, including fluid structure interaction between fluid and solid 
domain, contact with the spine and the retroperitoneum membrane and the effects of 
the abdominal organs.  

Extreme AAA tortuosity, realistic iliac bifurcations, and cardiac applications 
including ventricles and atria, are all examples of potential applications where a 
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strongly-coupled fluid structure interaction solution methodology may prove 
essential to depict the actual in-vivo mechanics.  

In conclusion, we believe that the methodology presented provides the 
foundation for exploring computational cardiovascular dynamic simulations within 
the explicit regime. Further developments will address the limitations identified and 
extend our range of applications to other cardiovascular areas. 
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