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ABSTRACT. The flow motion of solid particle suspensions is a fundamental issue in many problems
of practical interest. The velocity field of a such system is computed by a finite element method
with a multi-domain approach of two phases (namely a viscous fluid and rigid bodies), whereas
the particle displacement is made by a particulate method. We focus our paper on a simple
shear flow of Newtonian fluid.

RÉSUMÉ. Les écoulements de fluides chargés de particules interviennent dans de nombreux pro-
cédés industriels. Le champ de vitesse dans un tel système est donné par une méthode éléments
finis associée à une formulation multidomaine (le fluide visqueux et les particules solides). Puis
le déplacement des particules est effectué par une méthode particulaire. Cette approche est ici
testée sur un écoulement de cisaillement simple.

KEYWORDS: particle suspensions, particulate flows, finite element method, direct numerical sim-
ulations.

MOTS-CLÉS : suspension, écoulements particulaires, méthode éléments finis, simulations numé-
riques directes.

DOI:10.3166/REMN.16.365-383 c© 2007 Lavoisier, Paris. Tous droits réservés

REMN – 16/2007. Fluid structure interaction, pages 365 to 383



366 REMN – 16/2007. Fluid structure interaction

1. Introduction

We present a new finite element method for the simulation of particulate Stokes
flows. This formulation is based on the fictitious domain method (Glowinski et
al., 1998; Singh et al., 2000), which consists in treating the entire fluid-particle domain
as a fluid. The fluid in the particle domain is ensured to move accurately by adding
the rigidity constraint in the weak formulation with a distributed Lagrange multiplier.
The fluid flow problem is then formulated on a larger domain (the "fictitious domain")
which is simpler and allows us to use a fixed regular mesh. In return, we have to
project the particle domain in the fictitious one. The originality of our approach is
the use of a characteristic function to describe the particle domain. We present two
methods (Volume of Fluid and Level Set methods) to compute this function, and two
approaches to move the domain (i.e. to update the characteristic function for parti-
cle domain at each time steps): the solution of advection equations and Lagrangian
methods.

Most of these results are issued from (Megally, 2005), (Gruau, 2004) and
(Bigot, 2001) PHDs. We use this method to simulate a complex fluid flow (New-
tonian fluid matrix, charged with both elongated ant spherical particles, at high solid
concentration), supposed to described industrial process of Bulk Molding Compounds
(BMC) injection. In comparison with lubrication theory (Fan et al., 1998) or slender
body theory (Yamane et al., 1994), the fictitious domain method is especially inter-
esting for injection of fiber-reinforced composite, because we do not need the explicit
form of drag forces or hydrodynamic interactions between particles, as forces on the
particles boundary do not appear in the weak formulation.

In this framework, the numerical procedure is characterized by the way each of
the following problems is solved: characterization of the solid part; computation of
velocity field; particle displacement.

Let us introduce few notations which will be used in the sequel: the velocity field
will be defined in the usual Sobolev spaceH1(Ω), the pressure inL2(Ω), the Lebesgue
space of square-integrable measurable functions on Ω. The inner product on L2(Ω) is
defined by

(f1, f2) =
∫

Ω

f1 f2 dΩ [1]

Finally, the symbol h is used to express the variables on discrete space Ωh built as the
union of all simplexes (or elements) K that form the domain mesh.

2. Characterization of solid and fluid domains

The whole domain Ω is split into two sub-domains Ωf and Ωs which are associated
respectively to fluid and solid areas (the subscripts f , s mean fluid and solid respec-
tively). In fact, the solid domain Ωs consists of several particles (namely Ωs =

⋃n
i Ωsi

for n particles).
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The weak formulation is written on the whole domain. In order to take into account
each domain, the corresponding characteristic functions Ij , j ∈ {f, s} are introduced:

Ij(x, t) = 1 if x ∈ Ωj and 0 if x /∈ Ωj [2]

In the sequel, one only deals with the characteristic function of solid domain Is
for legibility reasons. According to chosen approximations (P0 or P1), there are two
different approaches: "Volume of Fluid" or "Level Set" methods.

2.1. Volume of fluid method

The characteristic function is approximated by a constant value on each element
K, Ihs . This P0 approximation is simply the volume fraction occupied by the solid
domain Ωs on each element:

Ihs |K = Ie =
|K| ∩ |Ωs|

|K| . [3]

The computation of characteristic function for a simple geometrical form, can be
performed using a voxelization algorithm which is described in Figure 1. The main
steps of this procedure are the following:

– an array of voxels (or pixel in 2D) is associated to the whole domain mesh (Fig-
ure 1a). The size of this array can be changed accordingly to the mesh refinement in
order to get a correct description of the interface,

– the voxels or pixels that belong to solid domain are marked (Figure 1b). The
solid domain can be defined by a mesh or an analytical formula. This step is made by
checking each node of regular mesh contained into the simplex K. This mesh has the
same refinement as the array of pixels,

– finally the characteristic function in each element K is simply the ratio between
number of voxels which belong to both solid domain and simplex K and the number
of voxels which are in K (Figure 1c).

The exact interpolation error is

||Ihs − Is|| =
∑

K

((1− Ie)Ie|K|)1/2 [4]

Consequently, this errors can be decreased by reducing the volume of elements which
are crossed by the interface. This may be done by a r-adaptation procedure (Bigot,
2001; Baines, 1998). In this way, a new mesh is obtained by local node movements,
the topology of mesh remaining fixed.
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a) b)

c)

Figure 1. Voxelization algorithm and computation of P0 approximation of character-
istic function: (a) voxelization of computational domain; (b) computation of voxels
which belong to solid domain; (c) computation of characteristic function (ratio be-
tween black pixels over all pixels in each simplex K)

2.2. The "level set" method

The principle of the level set technique (Osher et al., 1988) is to define an interface
function in the computational domain from which the level zero trace is the interface
that we wish to describe. This function is positive inside one sub-domain and negative
elsewhere. Moreover, this function is continuous and more regular than the charac-
teristic function defined in relation [2]. Therefore, a P1 interpolation of this function
gives an accurate description of the interface. If the interface of solid domain is de-
fined by a curve Γs, the level set function can be defined from a signed distance as:

{
α(x) = ||x− Γs|| in Ωs

α(x) = −||x− Γs|| in Ωf
[5]

where ‖ ‖ is the Euclidian norm in Rd. Figure 2a shows the isovalues of such func-
tion for Γs that has a shape of a disk with radius 0.25 and center (1.0, 0.5). As a
consequence

α = ±
√
|(0.25)2 − (x− 1.0)2 − (y − 0.5)2|.
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A P1 approximation of a characteristic function Is is easily obtained by looking
at the sign of αh(xi) at the mesh nodes xi:

Ihs (xi) =
{

= 1 s α(xi) > 0
= 0 if α(xi) < 0 [6]

Furthermore, a more regular transition is obtained by taking the following function

Is =
1

1 + e−β α
, β > 0 [7]

where the transition area will depend on the value of β.

Finally a P0 approximation of Is can also be computed from the distance function
α as follows:

Ihs |K =
α+

K

|α|K [8]

where α+
K is the sum of all positive α determined at nodes of element K, whereas

|α|K is the sum of absolute values of α. Thus, Ih|K equals 1 or 0 if all the nodal
values of α in the element K are positive or negative, whereas the element crossed by
the interface have a characteristic function lying between 1 and 0 (see Figure 2b).

a) b)

Figure 2. Level set function for a disc of radius 0.25: (a) isovalues of distance func-
tion (in white isoline α = 0) ; (b) the various characteristic functions deduced from
function α: P0 interpolation thanks to relation [8], isolines 1/2 of the characteristic
functions given by relation [6] in black and the relation [7] with β = 100 in gray

In conclusion, one gets a "fuzzy" interface between solid and fluid domains. Even
with a coarse mesh, the zero level gives a rather accurate description of interface.
However, the method used to get the characteristic function from the level set function
has an influence on the size of the transition zone between the two phases (see Figure
2). For example, according to the choice of relations [6] or [8], one has to refine more
or less the area around the solid domain. This characteristic function is important as it
intervenes in the mixing relations (see next Section ) which give the values of viscosity
and density on the whole domain.
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3. Computation of the velocity field

The governing equations for Newtonian fluid motion are given by:




ρf

[
∂~u

∂t
+ ~u . ∇~u

]
= ρf ~g +∇ . σ

∇ . ~u = 0

σ = −pI + 2ηf ε̇(~u)

[[~u]]Γs
= 0

[[σ.~n]]Γs
= 0

~u = ~uΓ on the external boundary Γ

[9]

where ~u is the fluid velocity, p the pressure, ηf the fluid viscosity, ρf its density.

Patankar et al. (Patankar et al., 2000) have proposed to extend the above Navier-
Stokes equation to the solid domain thanks to a Lagrange multiplier by using the
rigidity condition ε̇(~v) = 0 on Ωs. In this way, the motion in solid domain Ωs

corresponds to a fluid motion with an additional stress field. That means





ρs

[
∂~u

∂t
+ ~u . ∇~u

]
= ρs ~g +∇ . σ

∇ . ~u = 0

ε̇(~u) = 0

[[~u]]Γs
= 0

[[σ.~n]]Γs
= 0

[10]

ρs being the density of solid particles.

This is equivalent to take the stress tensor σ inside the solid domain of the form

σ = 2ηs ε̇(~u)− pI + ε̇(~λ) [11]

Due to the rigid motion constraint the two first terms are zero; ηs can play the role
of a penalization factor of the constraint ε̇(u) = 0, and the symmetrical tensor ε̇(~λ) is
the Lagrange multiplier associated to this constraint.
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3.1. Weak formulation of fluid solid system

With Diriclet boundary conditions on external walls, the weak formulation for the
whole domain Ω becomes:

find
(
~u, p, ~λ

)
such that ∀ (

~v, q, ~µ
) ∈ H1(Ω)× L2

0(Ω)×H1(Ωs(t)):





0 = 2η

∫

Ω

ε̇(~u) : ε̇(~v)dΩ −
∫

Ω

p∇.~vdΩ

+
∫

Ω

ρ
(D~u

Dt
− ~g

)
.~vdΩ +

∫

Ωs

ε̇(~λ) : ε̇(~v)dΩ

0 =
∫

Ω

q∇.~udΩ

0 =
∫

Ωs

ε̇(~µ) : ε̇(~v)dΩ

[12]

where ρ et η are defined on Ωs thanks to mixing relations,

ρ = Isρs + (I− Is) ρf ; η = Isηs + (I− Is) ηf [13]

3.2. Discrete formulation and Uzawa algorithm

We deal with a non linear problem, time integration and computation of Lagrange
multiplier. An implicit time scheme is used and an iterative loop allows us to solve
both nonlinearity and rigidity constraint.

At each time step tn the procedure is the following:

1. initialization with values obtained at the previous time step:

~u0
h = ~uh(tn−1), p0

h = ph(tn−1), ~λ0
h = 0, ~u∗h = ~uh(tn−1)

2. at step k find ~uk
h et pk

h with system




(
ρ

~uk
h

∆t
, ~vh

)
+

(
ρ ∇~uk

h . ~uk−1
h , ~vh

)
+ 2

(
η ε̇(~uh) : ε̇(~vh)

)

− (
pk

h, ∇.~vh

)
= (ρ ~g,~vh) +

(
ρ

~u∗h
∆t

, ~vh

)

+
(
ρ ∇~uk−1

h . ~uk−1
h , ~vh

) −
(
Is ε̇(~λk−1

h ) : ε̇(~vh)
)

(∇.~uk
h, qh

)
= 0

[14]
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3. update ~λ:

~λk
h = ~λk−1

h + ηs~u
k
h

4. check ||~uk−1
h − ~uk

h|| < ε1 and ||Is ε̇(~uk
h)|| < ε2 to stop the loop on k.

One can remark that in system [12] the field ~λ is only defined on the solid domain
Ωs. For practical reasons this field is extended to the whole domain Ω because only
the part inside Ωs is took into account thanks to characteristic function.

The Navier-Stokes problem is solved using mixed finite element method. This
method enters in the family of mini-element first introduced in (Arnold et al., 1984).
It is a tetrahedral first-order element with a linear continuous interpolation of both
pressure and velocity and a bubble enrichment for the velocity. The bubble function
ensuring the stability condition (Pichelin et al., 1998), is built by four piecewise linear
functions (Fortin et al., 1991) called also pyramidal shape function. This particular
choice enables to preserve the exact integration property of this element. Once the
bubble term is condensed, it looks like a simple optimally stabilized equal order ve-
locity and pressure interpolation P1 + /P1 (Franca et al., 1992; Pierre, 1995).

If we choose a piecewise constant interpolation (P0 element) for the characteristic
function, there is no loose of accuracy in the integration of term η as it is a factor of
a term which constant by element. However as remarked in the previous Section, the
method used to get this interpolation can modify the value of η in the transition area.
The order of interpolation is more important for the density as the number of Gauss
integration coordinates has to be increased for a P1 interpolation.

4. Particle displacements

The different approaches of the fictitious domain technique allow us to determine
the velocity field in each point of the computational domain. However, each subdo-
main will evolve in time: for example, particles’ displacement must be computed.
In fact, once the whole problem has been discretized both in time and in space, two
steps are performed at each time step: firstly, the velocity distribution is determined;
then, particle position is updated. The displacement of the particles has been per-
formed using two different techniques: through the solution of the advection equation
on the distance function (Equation [16]) associated to particles, or by performing a
Lagrangian displacement of the last ones.

4.1. Displacement of level set function (SUPG method)

In Section 2.2, the level set function has been defined from zero level of the signed
distance function. The distance function can be used to give an initial value of the
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level set function. In order to describe its evolution in time, one can define it in an
alternative way:

{ ‖ ∇α ‖= 1 in Ω

α = 0 on Γ
[15]

This stationary problem used to determine the distance function is generally con-
verted into a non-stationary one, for which α is the stationary solution. The following
relationship is considered in the whole computational domain:

∂α

∂t
+ ~u · ∇α = 0 [16]

with the initial condition α(x, 0) = α0 and α(x, t) = g in Γ−, where

Γ− = {x ∈ ∂Ω, ~u · ~n < 0}
represents the inlet boundary. Therefore we transport all the level sets, even if we
loose the regularity of the initial distance function. The interface is always represented
implicitly by its zero isovalue.

The weak formulation of this problem is:

find α ∈ H1(Ω) such that ∀φ ∈ H1
0(Ω) = {φ ∈ H1(Ω), φ = 0 on Γ−}

(∂tα, φ) + (~u.∇α, φ) = 0 [17]

The temporal discretization of this equation is written

(
αh

∆t
, φh) + θ(∇αh . ~u, φh) = (

α−h
∆t

, φh) + (1− θ)(∇α−h . ~u, φh) [18]

where α−h is the value of the distance function at the previous time step. In the
case where θ = 1, we have an Euler implicit scheme; if 0 < θ < 1, the scheme is
semi-implicit; when θ = 0, it is explicit. In the examples shown, we have considered
θ = 0.5.

In what concerns spatial discretization, classical finite element methods are not
very adequate to the resolution of pure convection problems. Centered differences
give erroneous oscillations when the problem is of the hyperbolic type, and stabiliza-
tion techniques are, for example, the Streamline Upwind Petrov Galerkin (SUPG) or
Residual-Free Bubbles (RFB), built by adding an additional diffusion term in the flow
direction. If we consider the SUPG method, the final variational formulation can be
written by supposing that the test functions φh are built in another discretization space
(Brooks et al., 1982), to obtain φ̃h:

φ̃h = φh + τK~u.∇φh [19]
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where the stabilisation parameter τK (constant per element) depends on the local dis-
cretization, represented by the mesh size hK . We may define

τK =
hK

2 | uK | [20]

This method will perform well in the advection of scalar fields that do not present
high gradients (|∇α| ∼ 1). Nevertheless, and as it has already been mentioned, the
transport of the distance function does not guarantee that the gradient of α rests weak.
If |∇α| becomes very important, we must replace α by another function, more regular,
that has the same isovalue zero. This can be accomplished by solving an Hamilton-
Jacobi equation:

At each time step
φ(x, 0) = α(x, t)
For τ = 0 to ε, solve

∂φ

∂τ
= S(φ)(1− |∇φ|)

α(x, t) = φ(x, ε)

[21]

In this Hamilton-Jacobi equation, τ is a fictitious time, and S is a signed function,
defined as:

S(φ) =




−1 if φ < 0
0 if φ = 0
1 if φ > 0

[22]

This function is not differentiable when φ = 0, so other approximations may be pre-
ferred, for example (Peng et al., 1999)

S(φ) =
φ√

φ2 + |φ|2h2
K

[23]

4.2. Lagrangian particle displacement

This approach has been used in Megally’s thesis (Megally, 2005; Megally et al.,
2004) in order to move particles. As the particle has a solid motion, it is sufficient
to move few points to get the new positions: one point for a sphere, two points for
an axisymmetric solid and three points for an undefined solid. The new position of a
point belonging to the solid is given by the relation

~X(t + ∆t) = ~X(t) + ∆t ~u( ~X) [24]

However, one need an efficient algorithm to interpolate the velocity at chosen
points (that means in our case "find in which element belongs the center of sphere")
because an important computational time is necessary for large meshes.
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With this kind of approach, it is necessary to update the characteristic functions for
the new positions of particles before computing again the velocity field. To do that,
one can use one of methods presented in Section 3. In this way, there is no deformation
and no loss of mass for the solid domain. This explicit time integration scheme can
be improved by taking into account the velocity at previous time steps. For example,
a second order Adams- Bashfort scheme (Hwang et al., 2004) can be chosen.

5. Numerical results

Here, we want to discuss the performance of techniques presented in the previous
Sections. A simple case of two spheres in a 2D shear rate flow is considered. Moreover
inertial effect and gravity are neglected. This configuration has been already studied
by (Hwang et al., 2004) with other boundary conditions. A rectangular geometry of
height 1 ( y coordinate) and length 2 (x coordinate) is chosen. The shear rate flow is
imposed by fixing the velocity on the upper and lower boundaries:

ux(x, 1) = .5 ; ux(x, 0) = −.5 and uy(x, 0) = uy(x, 1) = 0 [25]

Moreover the following conditions are added on the vertical walls

uy(0, y) = uy(2, y) = 0 and ∂xux(0, y) = ∂xux(2, y) = 0 [26]

in order to have a Couette flow.

Figure 3. Computational geometry: (a) two particles in a shear flow; (b) the
boundary-fitted mesh Mh

The two particles with the same radius (see Figure 3 ) are placed in the superior
and inferior mid-plane and move toward the right and the left respectively. As they
become closer, the hydrodynamic interactions between the two particles will prevent
the collision.
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5.1. Computation of rigidity constraint

First, a configuration with two symmetrically located particles is selected as a test
problem. The two particles are close enough to check our ability to compute accu-
rately hydrodynamic interaction and the influence of mesh and penalization factor on
Uzawa algorithm. We consider a constant viscosity on each element, and therefore
the mixing relation deals with a P0 interpolation for the characteristic function. This
characteristic function can be obtained by voxelization procedure or a distance func-
tion (see Section 2).

Table 1. Mesh descriptions
Mesh element number node number mean size
M1 12 161 6 218 0.02
M2 50 506 25 543 0.01
M3 201 922 101 097 0.005
Mh 14 116 7 196

The centers of two particles with the same radius 0.15 are located at point (0.873,
0.627) and (1.127, 0.373). First, the velocity is computed for mesh M2 (see Table 1),
ηf = 1 and various penalization factors ηs. The evolution of the rigidity contraint
described by ||Is ε̇(~uk

h)|| is plotted in Figure 4 for ηs = 10, 102, 103, 104 and up to
50 Uzawa iterations. It is found that:

– for each penalization factor, the norm of rigidity constraint decreases quickly
until k = 10, then the reduction is slower. In fact, for k ∼ 10 the norm of rigidity
contraint is uniformly small inside the solid domain (Is = 1) whereas it remains more
important in the transition area (0 < Is < 1). The next Uzawa iterations only decrease
the norm inside this transition area,

– the rigidity constraint is more accurate as the penalization factor is bigger.

Finally, the velocity field is computed for all meshes described in Table 1. The
three first meshes have a regular mesh size whereas the last one Mh is built from M1

by increasing the number of elements between the two spheres (see Figure 3b). The
method allowing to get this mesh is described in (Gruau et al., 2005).

In Figures 5 and 6, we present comparison results for the velocity, the pressure
and the normalized shear stress (||ε̇(~uk

h)||), respectively along two diagonals: the di-
agonal (/) without crossing particles (continuous phase) and diagonal (\) crossing the
particles (discontinuous phase). The computations are made for a penalization factor
ηs = 1000ηf and 6 Uzawa iterations. The computations show uniform convergence
with mesh refinement and the three meshes M2, M3 and Mh gives rather comparable
results. More precisely, the Figures 5 point out:

– the rigidity condition is well satisfied inside the particles as ||ε̇(~u)|| < 10−4,
– the pressure computation is less accurate between the two particles,
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Figure 4. Influence of penalization factor ηs and number k of Uzawa loop on the
rigidity condition ||Is ε̇(~uk

h)||

– the computed velocity is less dependent on mesh size around particle center than
near its boundaries,

– the size of the transition area between rigid and solid domains depends on the
size of elements belonging to the fuzzy boundary.

Along the diagonal without crossing particles, one can see in Figures 6:

– the shear rate is more important in the area between the two particles,
– the vertical component of the velocity uy depends on the mesh refinement.

5.2. Comparison of particle displacements

In this Section, we want to compare the Lagrangian displacement with the method
using an advection equation. The first numerical procedure (which is similar to
Particle-In-Cell method) is:

1. initialization t = 0: computation of the characteristic function Is with a vox-
elization method,

2. velocity solver: the velocity is computed (as detailed in Section 4),
3. explicit update of particle positions thanks to relation [24],
4. computation of new characteristic function Is by voxelization; return to step 2.
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diagonal crossing the particles: influence of mesh refinement. The vertical line give
the boundary of particles
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Figure 6. Comparison of the velocity, the pressure and total shear rate along the
diagonal without crossing the particles: influence of mesh refinement
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The second numerical procedure which uses only a finite element approach, reads:

1. initialization t = 0:
computation of the level set function from the distance function,
computation of P0 interpolation of Is from the level set function,
2. velocity solver: the velocity is computed as explained in Section 4,
3. displacement of the level set function with an advection equation: computation

of P0 interpolation of Is from level set function; return to step 2.

The two particles with radius r = 0.12 are initially placed at points (0.5, 0.6) and
(1.5, 0.4). The two particles move one towards the other, then they are pushed back to
avoid a collision because of hydrodynamic repelling forces. Finally they come back to
their initial vertical location. Orbits of the particles centers are plotted in Figure 7. An
isolated sphere in a shear flow creates a small vortex because it turns on it (see Figure
8). However if they are close together, they move in a large movement of rotation to
prevent a collision (see Figure 8).
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Figure 7. Orbits of particle centers: the particles are initially in (.5,.6) and (1.5, .4)

Figure 8. Focus on velocity field: t = 2.5 ; t = 6.5
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One can compare the sphere displacements for the two methods by plotting the
isovalues of level set function and characteristic function at various times. The time
step used for both methods is ∆t = 0.05. From Figures 9, one can see that:

– without interaction between particles, there is no difference between the two
methods (t = 2.5),

– as the two particles become closer, the two methods do not coincide. In fact,
the SUPG method needs an accurate computation of the velocity near the particle
boundaries whereas with the Lagrangian method it is sufficient to compute accurately
the velocity at particle center. Therefore without a better description of interface, the
second method gives better results.

Figure 9. In gray zero isovalue of level set function moves with an SUPG method and
in black .5 isovalue of characteristic function computed after an Lagrangian update
of particle center: t = 2.5; t = 5.; t = 10; t = 15

6. Conclusion

We have proposed a strategy to simulate the motion of particles in a semi-dilute
or concentrated suspension. The solid domain can be described by a characteristic
function and the weak formulation uses Lagrangian multipliers to require a vanishing
deformation rate inside particles. The Lagrangian multiplier is computed with an
Uzawa algorithm and it is shown that this method gives rather good results.

Moreover, two ways for moving particles are compared. It is shown that the most
efficient method consists to couple finite element computation of velocity to a La-
grangian method for particle displacement. This method is particularly well adapted
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to compute the motion of several particles in lubrification regime of suspension flow
(see Figure 10).

The possible improvements of this methodology could be:

– take a better integration scheme for Lagrangian update,
– use a P1 interpolation of characteristic function in the fluid motion solver. That

can be do by updating the particle position with a distance function,
– propose a strategy to handle cases in which particles touch. A collision strategy

is a method for preventing near collisions by defining a security zone around a particle.
Instead of decreasing time step or refining mesh in the gap between particles, one
can introduce an repelling force in the weak formulation or in the particulate method
(Laure et al., 2005).

Figure 10. The velocity for particles in a shear flow with horizontal boundary condi-
tions
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