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ABSTRACTT his paper describes Reduced Order Modeling (ROM) in Fltidc®ure Interaction
(FSI) and discusses Proper Orthogonal Decomposition (PQfidigation. The ROM method
was selected because its performance in fluid mechanicsprifi@pal problems of its applica-
tion in FSI are due the space character of the modes resuiitorg the POD whereas domains
are mobile. To use POD in moving domain, a charateristic fiamcof fluid is introduced in
order to work on a fixed rigid domain, and the global velocityifl and structure) is studied.
The POD modes efficiency is tested to reconstruct velocltyifieone and two-dimensional
FSI case. Then reducing dynamic system using POD is intestiicmoving boundaries prob-
lem. In addition, the one dimensional case of Burgers equatoupled with spring equation is
tested.

RESUME.Dans cet article nous nous intéressons a la réduction de haa@interaction fluide
structure (IFS) et plus particulierement a I'applicatioe th méthode de décomposition ortho-
gonale aux valeurs propres (POD). Le choix de cette méthaidesdite aux performances de
son application dans le domaine de la mécanique des fluidgeprdblématique principale de
son application en IFS est due au caractére spatial des misdas de la POD alors que les do-
maines sont mobiles. Afin d’y rémédier, une fonction caretigue propre au domaine fluide,
permettant ainsi de traiter globalement le probleme sur omdine fixe a été introduite. Les
performances de la POD via cette méthode ont été testéesistasumonodimensionnel et un
cas bidimensionnel. La méthode de réduction du systemanigua est ensuite appliquée au
cas monodimensionnel d’un fluide dans un piston.
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1. Introduction

Although numerical tools are more and more performant tredtes a good simu-
lations possible for fluid structure interaction, dataagerand computational time are
still the two major limiting factors.

Constructing a Reduced-Order Model (ROM), in order to redine size of the
model and the computational cost and also obtaining goodlatian, is essential in
this domain. Different methodologies had been proposes nbst significant are
refered by (Dowelkt al,, 2001).

There are two possible ways to construct ROM. The most farapasises the no-
tion of eigenmodes. This approach characterizes a fieldmnstef a relatively small
number of global modes. By modes we mean a distribution oélkbes that charac-
terizes a gross motion of the physical system studied. Taereeveral techniques
to find these modes. One of the technique concentrates oacetitre eigenmodes
from the model used (Romanowsi al, 1996; Mahajaret al,, 1994). However, in
case of very high-dimensional system, extracting eigerea@an be very computa-
tionally expensive. Thus, we use another methodology l&arced modes (Baket
al., 1996; Ruleet al., 2000) or Proper Orthogonal Decomposition (POD) which will
be explained in details in Section 2. The second techniquetermine ROM is the
input/output model. This methodology use a transfer fumgtthat typically receive
input in structure modes and give output as generalizeé$foneighted by structural
modes (Karpel, 1982).

We chose to study POD capacities in fluid structure intesactin fact, this method
was introduced in 1967 (Lumley, 1967) in fluid mechanic inesrtb extract coherent
structures in a turbulent fluid flow. It has been intensivedgdi since 90's in many
application such as flows in a driven cavity (Cazengeal., 1998) or in boundary
layer (Sirovichet al,, 1990).

In structure mechanics, POD is a recent investigation doranilar to modal
analysis (Trindadet al,, 2005; Sarkaet al., 2004; Sarkaet al, 2003; Epureanet
al., 2004). There are few works in fluid structure interactiomtHis paper the POD
capacities are investigated in a two dimensional fluid stmgcinteraction problem.
Then the Burgers equation with moving boundaries is reducextder to test the
POD method on a simple case.

2. The proper orthogonal decomposition (POD)
2.1. POD formulation

In this section, the POD method is briefly introduced. A dethmethodology is
already stipulated in literature (Lumley, 1967; Sirovitd®87; Aubryet al, 1988).
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The POD consists in finding a determinist functi@rin a Hilbert spacéd, which
gives the optimum representation of a random fie{d, t) € €2, Q C R", by solving
the following maximization problem:

(o)) (@) a

max =
oeH (¢, ) (@, )
where (o) denotes a statistic average operaters),, denotes the inner product of

H and||o|\12H the associated norm. In the caseftf= L? (Q) , the maximization of
problem [1] leads to the solving the following eigenvaluelgem:

/ R (x,2") ® (2) dx’ = \® () [2]
Q
whereR is the symetric spatial correlation tensor, defined noratieg).

R(z,2') = (u(e,2) @ u(e,a’)). (3]

Moreover, if R is continuous, this operator
O / R (x,2") ® (a) da’ [4]
Q

is compact. Then Hilbert-Schmidt theory assures that thgigts a set of positive
eigenvalueg); )., which decrease to
AM>A>-> N> and A\ — 0

And a set of eigenmod€®;),.., which is a Hilbertien basis fof{. Thusu can be
decomposed according the eigenmodes as:

u(z,t) = i a; (t) ®; (x) in L?(Q) sense [5]

wherea; are the temporal coefficients.

(®;),~, are named modes. When the decomposition described by Boyatiis
introduced in the complete system with modes, a reduced system is obtained and
the computational time is very small compared to the coregstem.

2.2. POD modes properties

The spatial modeg®;) are orthogonals which can be normalised. So:
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and they respect boundaries conditions. In case of veldlcity of incompressible
flow, the POD modes respect diy= 0

The temporal coefficients; (¢) result from the projection of in (®;) basis:

a; (t) = (u(x,t), ®; (x)) [7]

Moreover, they are uncorellated and the eigenvalues atenmgoral average:
(a; (t)a; (1)) = diz\i 8]

The eigenvalue; is the energy captured by the mo@le For a givenV, the POD
decomposition is the best energy decomposition which carbtened.

2.3. The snapshot POD

Solving Equation [2] can be computationally intensive igher dimensional
problem. In order to minimize the computational times, $mdpmethod is used
(Sirovitch, 1987).

Let N,, be the node numben,., the component number adda mode POD. If
sampling of M realisationsM << N,,n. of the flow is sufficient to describe the
problem, then we search the temporal coefficientsuch as:

M
®(z) = Z aru (z,ty) [9]
k=1

With ergodicity hypothesis, the temporal averdgkis a statistical one, and using
the inner product of.? (2), we have to solve the following eigenvalue problem:

SO (), ute)) ax = Aa; pouri=1...M [10]

Hence the temporal coefficienig are obtained by solving Equation [10] and the
spatial modes by the Equation [9].

Using the classic or snapshot method depends on the data lyghe case of
experimental data, the classic method is used. On the o#ime}, Iin the case of com-
putational simulation with a significant grid and time liatibn, the snapshot method
is preferred. Note that the ergodicity hypothesis is ddilataecause a non-stationary
problem is considered. Another solution would be the bitegbnal decomposition
(Hemonet al,, 2003), which does not need this hypothesis.
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Figure 1. Schematic description of problem domain

3. Fluid structure interaction application
3.1. ALE description of the Navier-Stokes equations

POD was studied for a one and two dimensional case. We teduaing method
only on the one dimensional case, that is the reason that Fi2i2ecy is viewed in
Section 4 in association with reduced system study. In #dsien, global formula-
tion is expressed for a two dimensional case. Consider alimensional rigid body
immersed in an incompressible fluid. Figure 1 shows a schiemascription of the
problem domain of interest, whefgs (¢) is the domain occupied by the moving rigid
body, of which the center of gravity is denoted 6y Q(t) is the moving spatial
domain upon which the fluid motion is described; dhdt) is the interface between
Qs(t) andQp(t). As the rigid bodyQs(t) changes the position, the interfale(t)
moves accordingly.

The motion of the fluid is governed by the incompressible Ba@tokes equations
which are given as follows in thé L E description (Donea, 2004; Nomuggal., 1992;
Sarrateet al,, 2001):

{p— + plu—w)Vu = —Vp + plu [11]

V-u = 0 in QF(t)

whereu is the fluid velocityw the fluid mesh velocityy is the fluid pressurey is the
dynamic viscosity.
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The boundarydQr(t) \ T';(t), is divided into two parts on which the following
boundary conditions are specified:

u = Uy on I [12]

oc-n.=0 on T, [13]

wheren,. is the unit outward normal vector 10. and
oc=—-pl+pu (Vu +t Vu)

is the Cauchy stress tensor.

In this studyl’; andI',. are assumed to be fixed in space. This assumption leads to

w=20 on I',UTY [14]

Let the velocity on the moving interfad& (¢) be denoted by.’. This velocity is
unknown, but

ul =w on T'y(t) [15]

because of the non-slip condition &n(¢). In other words, we have the Lagrangian
description o’ (t).

3.2. Rigid body motion equation

Let V' be the momentum field (similar to torsor) to represent theais} field
for the rigid body. Lets consider the Lie group and algebranfdism applied to the
mechanics of body systems (Chevalier, 1994; Chevalied 198mdounkt al., 1998).
In this Lie algebra, lets denofe, ], the Lie bracket ande, ), the non-degenerated,
symmetric, bi-linear form which is the co-momentum.

Consider the generalized inertia operatafgf(¢), H, which contains all informa-
tion about the body inertia (center of inertia, mass, imaratrix) explained in detail
in (Chevalier, 1984). In this formalism, we express thedigblid equation with the
following expression:

dv
Her + [V HV] = Fot Fr

In our application, we consider a planar motion of a systerrigifl bodies,i.e.
rigid disc of massM and radius-, linked by rigid bar of massn and lengthi to
the lower boundary. In this two-dimensional case, the nmotibthis system has two
degrees of freedom ; the two rotational displaceméraiisd, defined at the point®
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and A respectively as shown in Figure 1. In this case, the equationotion of the
system is written as

M(0,0)¥ + C(0,0,0,9)¥ = A(6,9)F + b(6, ) [16]
with appropriate initial conditions.Wher® = (0, »)! andF = (F,, F,, Ms)!. M
andC are the mass and the damping matrices respectiFeyndb contain the fluid

force and the momentum resultants and gravity force resdctThe fluid force and
the momentum resultants are given by the following equation

—
Ff:/ o-ngdy and Mg = GM x o -ngdy [17]
F[ I—‘I

wheren, is the unit outward normal vector o;

3.3. Rigid body displacement

Assume thatattime=t,, 8(t) = 6,, andy(t) = ¢,. Inthis case, the coordinates
of the pointsA,, = A(t,) andG,, = G(t,,) are written respectively as,

zaA(ty) = xgl) = lcosf, 18
_ [18]
yaltn) = yu = lIsinb,
and
za(tn) = xgl) = rcosy, -+ xgl) [19]
ya(tn) = ygL) = rsing, -+ yi{”

. e a——
For any pointM,, = M(t,) = (xn,yn) OnT';(t,), the vectord,, M, can be
written as,

— _
AnMn = T(tn) + R(tna Pn — gn) ' Anfanfl [20]

where the translation displaceméiit,,) of the rigid body is given by,

() _(n-1)
—_— X — T
T(tn) = Ap1 4y = ( S0 _ ) ) [21]
A T JA

and the rotation displacemeRi(t,,) around the point,, is given by,

_ _ [ cos(en —n-1) —sin(pn —pn_1)
R(tn; ®n @n—l) - ( Sin(gpn _ @nfl) COS(QDn _ Qﬂnfl) [22]
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Then, the coordinates a@ff,, are given by,

Ty = JUZL) + (Tn—1 — kal)) cos(¢n — Prn-1)

_(yn—l - y,(qnil)) Sin(@n - ‘Pn—l)
(n) (n—1) [23]
Yn = Yn 4 (@n—1 —xy " )sin(on — ©n-1)

+(yn71 - yf:l_l)) COS(QPn - Spnfl)

3.4. Mesh motion description

The mesh velocity vectar may be arbitrarily specified though it has to satisfy the
following conditions on boundaries,

{w = g on (1) [24]

w = 0 on  OQp)\Tr(t)
wherevg is the velocity vector of the rigid body nodes on the inteefac

In this study, the mesh velocity in the fluid domain is deterad by solving the
following equation

{ V-AMz)yw) = 0 on Qr(t)
w = g on (1) [25]
w = 0 on  0Q)\Tr(t)

where\(z) is judiciously chosen to control the mesh deformation. Is dase\(z)
is taken equal ta for all x € Qp(¢).
3.5. Fluid-rigid body interaction algorithm

The solid Equation [16] is solved by coupling the finite difece and Gauss-
Seildel iterative methods. It firstly transformed to thddwaling system of equations.

{ Y = AF + b+(dﬂ—0)¢f [26]

. dt
My = Y

Then, from initial conditions o and ¥, the solution is obtained through itera-
tions until a fixed error of accuracy is reached.

Implicit Euler method is used to a time discretization ofdlquations [11] and
finite element method to a spatial discretization.
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To solve the coupling equations, following explicit scheismvased (Abouret al,,
2004).

Suppose that time= t,,, the fluid velocity and pressure fields, the rigid body dis-
placement and position are known. The time st&p)(of the Navier-Stokes equations
solver is same the rigid body equation.

1. The body Equations [26] are solved in order to compute igf@atement veloc-
ity vg at timet,,+1. Then, the position of ; (¢,,+1) can be determined by solving the
Equation [23] for all the nodes dry (¢,,).

2. The mesh velocity Equation [25] is solved and the velogity™") of the fluid
nodes displacement at timg, ; is determined.

3. The rigid body and the fluid nodes are moved at the predpdsiiion by solving
the equation:™ ™) = w(™ Y A¢ + 2™ for all the mesh nodes. Then the fluid domain
Q(tn41) is defined.

4. The fluid Equations [11] are solved in the dom&in(t,,+1).

5. The fluid forces acting on the rigid body are computed uBiggations [17].

This explicit algorithm is easy to implement, but it is onfyooder one and requires
a small time step to its stability. An implicit scheme carodie used.

3.6. Numerical application

To illustrate this algorithm for fluid-rigid body interaoti, the fluid domain size is
taken equalt@l x 12m,r = 0.5m,l =5.5m, M = 50kg,m = 1 kg, Uy = 1 m/s,
Oy = ©wo = 90° andAt = 1072 s.

Two kinds of finite elements are used in spatial discretiratif the fluid domain.
Around the rigid body, the mixed Crouzeix-Raviart elememnd an the rest of the
domain the&). / P, —discontinuous element are used. The mesh contdi?® nodes
and1036 elements as shown in Figure 2. The computations are achisiegl Castem
code (CEA, 2005) during.55s.

Figure 2. Fluid mesh
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3.7. POD application

The computational result of Equation [11] define the velp€igld on the time-
variant grid. In search of spatial POD modes on this field, waldt not determine
domain where they would be defined. Thus we could not definalarsgroduct. We
do not search POD modes for only the velocity fluid flow but fibttee velocity field
in the 2 domain(2 = Qp (t) U Qg (t)).The solution at each time step is interpolated
from the time-variant grid to a fixed uniform grid by an invedistance interpolation
method (Zhanget al,, 2003). To obtain fluid and structure domain, a characterist
functionXq,,j € {F, S} of each domaing);, j = F, S, is used:

Xo, @0 ={ 0 i ¢ o () 27
Yu € Q / Vu.Xq, = ulp, [28]
Q

Thus we define a velocity field on {2:

[ v )ifz e Qp (1)
v(z,t)—{ v:(x,t)iferg(t) [29]

Or
v (z,t) = vy (2,t) Xop (2,1) + (1 = Xap (2,1)) vs (2,1) (30]
We usev; (z,t) on arigid grid, thus we use Eulerian formulation for the flindveak
formulation.
3.8. POD efficiency in fluid structure interaction
In this section the POD efficiency is tested to reconstruetiaaity field in a fluid-
structure interaction problem. An interpolation of thewn to a rigid grid (cf. Sec-

tion 3.7) is done and snapshot POD on this new velocity fieldsexd. Table 1 shows
the kinetic energy contribution of each POD mode containeédth eigenvalue:

7 N
DN/ [31]
k=1

k=1
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Table 1. Kinetic energy contribution for the five first modes

mode;i | eigenvalue\; | % energy
1 254 99.837
2 0.343 99.9722
3 5.553e — 2 99.994
4 1.100e — 2 99.998
5 2.674e — 3 99.999

To find POD modes by snapshot method, we have temporal ceetfficand POD
modes. We can evaluate the truncated velocity field by usiagrtincated POD basis
functions like in Equation [5]:

where

U 3
U:{v } and@n_{q)g}

To evaluate the computational efficiency of the solutioraot#td by the POD method,
the following L? error norm function is defined:

U—Un|Le0.1:
Res (N) = | |U”N|L (0,T5L2(R)) [32]
Lo<(0,T5L2(2)

Figure 3 shows that with four POD modes the error is less tfarfor the recon-
structed solution. This first analysis on a two dimensioaakogives good result.

0.06

0.05

0.04

0.03

ErrorL2

0.02

0.01

Used POD modes

Figure 3. Error nom of velocity versus number of POD modes
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We can hope reducing the dynamical system, in the same tafripterval,with
less than ten modes whereas the original solution was autaiith 8140 degrees of
freedom model. The eigenmodes of the velocity field aretiidied of Figure 4 and
Figure 5.

05
05

15

5 o 5 10 15

@, (x.7)

Figure 4. First component of POD basis functiohsind2

DEnEn oEaDD

@ (x, )

Figure 5. Second component of POD basis functibrasd 2

We can see in this figures that POD modes swirls where thelyagig move during
simulation.

4. Reduction Application of Burgers equation coupled with iessort Equation

In this section, we will introduce a methodology to reducaatyical system in
fluid structure interaction and test them on the case of Bargguation in a moving
boundaries. We calllg (¢) the fluid domain at time, Q25 (¢) the solid domainy a
fluid velocity field,w the fluid grid velocity and: a coordinates if).
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Figure 6. Shematic of the fluid and structure domain

The Burgers equation in ALE formulation is solved( (¢) on set time interval
[0, T7:

ou ou 0%u

ao t( —0 )% VaxQ 0 OnQF(t)

U(: ) = o [33]
u(2,0) = ug (x) onQp (0)

z is the interface coordinates,which is solved by the eqnaifdhe spring mass sys-
tem:

mZ + K (z — xo) + bz = Fp [34]

wherez is the "at rest" length of spring,the damping constank the spring stiff-
ness,m the mass of the block an# the fluid force. We choose, = 0.95m,b =
0.10N.s.m~ !, K = 39.5 N.m~',m = 0.5kg. This system is solved by Newton-
Raphson algorithm and in next section the solution is coegarith them obtained
from reduced system.

Using an inverse distance interpolation method, a veld@ty v on a fixed uni-
form grid is obtained like defined in Section 3.7. Thus Ewaeriormulation for the
fluid with v f is used for obtain reduced system.

4.1. Weak formulation
The weak formulation is expressed for a three dimensiorsa o&fluid-rigid body
interaction.

Letv* a virtual velocity field of fluid such as div = 0 andV* a virtual moment
field for structure.
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We choose*andV* consistently, acceptable in kinematic sense, and we assume
that there is no slip at fluid-solid interface and actionetian principle

(Fr, V™) +/1“ (—=pI + 7 (vyf)) .nv*dy=0 [35]

wherel is identity amtrix,r the viscous stress tensofvy) = 2uD (vy) and
1
D (vy) = 3 (va + tVUf)

The weak formulation can be written:

vy 3 N av .
(pﬁ + pvy.Vog,v ) — (plvg,v*) + <HE’V >

H(VIRV], V) = (F, V) (36]

4.2. Dynamic system reduction

A set of theN first POD modeq(®;),_, 5} are used such as

N 00
D> /D> Ak >99.99%
k=1

k=1

The fieldv is searched on its truncated formulation:
N
oy (2,8) =Y an (t) Oy ()
n=1

Only the fluid dynamical system is reduced because in cadgidfbyody the dy-
namical system is not expensive to compute. Letuafse- X, ®,, and using POD
modes that are orthonormal ii? (2) sense, the weak formulation becomes:

Forn =1..N:

da NN N ov
= 4 Brmpmap + Ay @, = 5. ®,,dx
dt Z Z P P mzz:l q Ot [37]

dV .
HE +[V,HV] =Fs+ Fr in Qs (t)

m=1p=1

where

Apm = M/ VO, .V, Xopdr + 21 (V8.0
@ [38]
Brmp = / 3,,.V®,.d,Xq,dx
Q
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4.3. Energy contribution of POD modes
We apply POD method defined in Section 2.3. The first six PODeabdve more

than99.99% of the kinetic energydf. Table 2). Next, the reduced system [37] is
solved withN = 6.

Table 2. Kinetic energy contribution for the five first modes

modei | eigenvalue\; | % energy
18.255 91.648
1.515 99.256
8.393¢ — 2 99.677
6.079¢ — 2 99.982
2.347e — 3 99.994
7.804e — 4 99.999

U WN P

The low-order truncation of the POD basis inhibits gengrall the transfers be-
tween the large and the small (unresolved) scales of theffuid Consequently, to
recover the effects of the truncated modes, that is gegeshthe small scales, we
use a "eddy viscosity" (Aubrgt al., 1988; Podvin, 2001). In fact the viscosity for the
modei is multiplied by(1 + ¢ x 0.001).

Reducing the system with only six modes, give a good restift an error lesg %,
illustrated in Figure 7. Figure 8 shows that the error istieddy not very significant.

reduced system computational solution
POD — v(xt) reduced solution with 6 modes -+

ErmorL2

1 2 3 4 5 6
Used POD modes

Figure 7. L2 Error norm of velocity versuBigure 8. Solution of the reduced system
number of POD modes

The reconstructed temporal modes resulting from reducsttisyand those are
resulting from snapshot method are compared in Figure 9diffezence is very small
between them. The difference comes from computationabeqpation of modes and
derivatives at interface. Indeed, the interface positdretween nodes and we need to
know for exampleb; (z) by interpolating on the two first nodes whose are the nearest.
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POD —— POD ——
Reduced system -+ 5o Reduced system  +
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6
5
54 q
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0
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Reduced system  +
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()

08 12

t(s) t(s)

Figure 9. Temporal coefficients; ,az,a3,a4
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Figure 10. 4 first POD basis functions
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The first mode which is consistent with the mean velocitiepprties, capture at
least99% of the kinetic energy in all case which have tested. The st@@similar
to the interface moving. The another modes are used to kdepityevaritions in the
fluid. We can see that where domain is always structured tH2mQdes are constant.
In fact we supposed that the body is a rigid structure.

5. Conclusion

We have presented POD methodology and its application id-8tructure inter-
action (FSI). The principal difficulties to apply it was theagial properties of POD
modes and the fact that in FSI the fluid domain moves in timeisTive chose to study
global velocity field on a referential domain. To apply POD dtobal velocity field,
the characteristic function of fluid is introduced. Test$@ID efficiency on one and
two dimensional cases for global velocity field yield gooduiés. Then a method to
reduce dynamical system in rigid body fluid interaction igsaleped and tested on the
one dimensional case of Burgers equation in moving domainf@&@mation between
computational results from Newton-Raphson and thus obddiy reduced system are
found.
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