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ABSTRACT. In the present work, the transient response of a mechanical system is computed 
first by using an explicit finite element method. By applying the FFT, it’s transformed into 
frequency response which allows to use BEM for computing the noise radiated at any point 
into space. BEM is checked first for an acoustic problem before using it for a vibroacoustic 
application. The numerical examples show the efficiency of the present method.  
RÉSUMÉ. Dans ce travail, la réponse temporelle d’un système mécanique est calculée en 
utilisant la méthode des éléments finis explicite. En appliquant la FFT, cette réponse est 
transformée dans le domaine fréquentiel permettant ainsi le recours à la méthode des 
éléments finis de surface (BEM) pour le calcul du champ de pression rayonnée dans l’espace. 
La BEM est validée, dans un premier temps, pour un problème acoustique avant d’être 
utilisée pour une application en vibroacoustique.  
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1. Introduction 

Fluid structure modelling can be done using either coupled or uncoupled 
approach. In the fully coupled systems, structure and fluid need to be modelled 
simultaneously. The most popular methods are those involving Finite Element (FE) 
formulations for both fluid and structure (Ohayon et al., 1998). However, direct 
resolution of the coupled system is time consuming. To overcome this problem, 
modal analysis constitutes an interesting alternative. In fact, only some structural 
modes in vacuum and some rigid cavity modes are involved into analysis which 
reduce significantly the discretized problem size. But, unfortunately, this leads to a 
non symmetric eigen-value problem. For this, Sandberg (1995) used some 
transformations allowing to put the eigen-value problem into a symmetric form. 
However, this method can lead to significant errors if the truncation of structural and 
acoustic modes is not convenient. Tournour et al., (2000), on his turn, derived a 
pseudo static correction in order to improve the convergence by taking into account 
the dropped modes without increasing the dimensions of the governing system of 
equations. 

For many problems, it is not necessary to consider full fluid structure interaction. 
For instance, in the vehicle box case, many authors have reported fully coupling 
modelling by assuming uncoupled interaction. In this formulation, the structural 
response in vacuum is computed first. The obtained results are taken as boundary 
conditions for the acoustic part of the problem. Hence, the structural vibrations 
excite the fluid whereas the structure is never influenced by the acoustic waves 
propagating through the fluid. It’s obviously that the uncoupled approach is more 
simple to be implemented than the coupled one, since two smaller models are to be 
computed one after the other (Marburg, 2002). However, it is limited for only heavy 
structures and light fluid (air acoustics). For example, in underwater acoustics, the 
vibration behaviour of the submerged structures is influenced by the surrounded 
water because of the important value of its normal acoustic impedance (Estorff, 
2000). In this case, strong coupling must be taken into account. 

In this paper, both Finite and Boundary Element Methods are employed to 
simulate, in low frequency range, noise radiated in acoustic and vibroacoustic 
problems. The transient response of mechanical system is computed first by using an 
explicit finite element scheme. The FFT allows its transformation into the frequency 
domain. In the other hand, a variational BE code based on the velocity information 
issue from the FFT results is used to compute the acoustic pressure at any point in 
space. This weak structural acoustic coupling is presented by assuming that the 
acoustic pressure does not affect the structural vibration (Marburg, 2002). 
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2. Structural analysis  

2.1. Governing equations 

Let Ωs the bounded domain occupied by the structure and n the external normal 
to the boundary Ss∪Ss0 of Ωs (Figure 1). In the case of elastic, linear and isotropic 
structure without any initial stress or strain in absence of body forces, the 
displacement u satisfies the following elasto-dynamic equation:  
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uu Ωρσ =

∂
∂−  [1] 

where ui is the displacement in the ith direction, ρ is the material density. In what 
follows, σij(u) will represent the stress which depends upon the displacement. For a 
given displacement on Ss0, we have the following boundary condition: 

0ss Sonuu =  [2] 

For a prescribed surface force ƒ on Ss, we can write the corresponding boundary 
condition as follows: 
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Finally, initial conditions can be written as: 
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Figure 1. Structural domain and its boundaries 

In the most applications, FE models were mainly investigated for simulation of 
structures. The detailed description of the used FE algorithm is not the goal of this 
paper. Generally, two methods can be used for analysing structural dynamics 
problems. The first one involves an implicit time integration scheme. In this method, 
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the discretisation of the variational form involving any mechanical system response 
using the FEM reduces into the following linear system of equations: 

[ ] [ ] { }F
dt

udMuK 2

2

=+  [5] 

where t designs the time, [M] and [K] represent, respectively, the mass and the 
stiffness matrices of the structure and {F} is the mechanical load vector. To calculate 
the nodal displacement vector of the vibrating structure we need to solve a linear 
system. Note in this case, the scheme is unconditionally stable. The second method is 
based on an explicit scheme given by the following equation: 

int
n

ext
nn FFuM −=  [6] 

Contrary to the implicit method, in the explicit one the CFL criterion limits the 
time step size to smaller value compared to that used by implicit scheme. In addition, 
this later, does not lead to linear system of equations. Since M is lumped mass 
matrix, we use in this paper an explicit scheme to solve the structural part of the 
vibroacoustic problem. 

Time derivation of the displacement vector leads to the velocity vector: 
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t
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∂
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The normal component of the nodal velocity vector is extracted for all nodes 
located at the interface fluid structure as following: 

( ) ( ) ( ) n.
t
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[8] 

2.2. Velocity in frequency domain 

The nodal velocities issues from the structural analysis are calculated in temporal 
domain. However, in order to use them as boundary conditions for the BEM, we 
need to transform them into frequency domain by using Fourier Transform: 

( ) ( ) dtet,xvf,xV tfi2∫
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= π  [9] 

However, v (x, t) is a finite and sampled function with non uniform time 
sampling. In what follows, we need that this sampling rate be uniform. For this, we 
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proceed by interpolation of v (x, t) at a uniform t∆ . Hence, we can approximate the 
integral in Equation [9] by a Discrete Fourier Transform (DFT): 
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where N is the number of input values. 

On the other hand, inverse Fourier transform is given by: 
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The total power in a function is the conserved whether we calculate it in 

frequency or time domain. This is known as Parseval’s theorem: 
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The FFT is an algorithm allowing to reduce the number of operations for 
computing the DFT. The most known one required 2n input values. In this paper, we 
use this simple algorithm to compute the FFT. So, the velocity interpolation is done 
for 2n uniform samples. 

In many cases, it is difficult to obtain exactly a velocity signal formed by an 
integer number of cycles. The use of rectangular window can lead to important 
discontinuities since the generating data doesn’t begin and end at the same level (non 
periodic signal). In this case, the FFT or DFT produces a spectrum with leakage 
(with parasite components in the spectrum). Windowing can force the data to begin 
and end at the same or nearly the same value. This can be accomplished by 
multiplying the sampled wave form data set by an appropriate windowing function. 
This prevents discontinuity at the window edge and consequently, helps to reduce 
leakage. 

However when a window is used, it leads not only in a reducing of the leakage 
but also in a decreasing in the energetic content of the signal. It is possible to correct 
the DFT or FFT in order to compensate this energetic loss. This correction can be 
achieved by using Parseval’s theorem (Equation [12]) which allows to evaluate a 
correction ratio due to the windowing. 

3. Acoustic analysis 

The BEM is used to evaluate the pressure response in the acoustic domain from 
the structure velocity results deduced from Equation [8]. Consider a boundary 
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surface “S” enclosing a volume “Ωf” filled and surrounded by an ideal and 
homogeneous fluid medium (Figure 2). 

3.1. Governing equations 

For an harmonic disturbance of frequency “f” without any source or loss 
mechanisms, the integral form of the Helmholtz equation: 

0pkp 2 =+∆  [13] 

can be easily deduced using Green’s theorem. It allows the calculation of sound 
pressure at any point of the acoustic domain. It’s given by this equation (Wu, 2000): 
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where 
c

k ω=  denotes the wave number, c is the sound velocity, f2πω =  is the 

pulsation, p(r) is the pressure at any field point “r”, ( )
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function, “ry” is the position vector of a source point located at acoustic domain 
boundary and C(r) is the jump term resulting from the treatment of the singular 
integral involving Green’s function. 

Equation [14] represents the integral equation of the Direct Boundary Element 
Method (DBEM) in which the primary variables are the acoustic pressure and the 
normal velocity. It can solve either interior or exterior acoustic problems (Figure 2). 
The Indirect Boundary Element Method (IBEM) defines the primary variables as the 
difference in the pressure (µ) and the difference in the normal gradient of the 
pressure (σ) between the two sides of the boundary element model.  
 

 

Figure 2. Acoustic domain and its boundary (left: DBEM, right: IBEM) 
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For Neumann problem, in which only velocity is prescribed on the acoustic 
boundary, the following integral equation is obtained: 
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On the surface of the acoustic boundary, the pressure is related to the structural 
velocity by: 

vip ωρ−=∇  [16] 

Hence, Equation [15] can be written as following: 
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3.2. Variational Indirect BEM (VIBEM) 

By using the variational method, the last equation can be rewritten as: 
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where µ(rx) represents the test function of the variational method. The solution of the 
problem can be obtained by minimising the following functional F of the Variational 
Indirect Boundary Element Method (VIBEM): 
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The solution of Equation [17] can be obtained by dividing the surface into 
quadrilateral and/or triangular boundary elements. Hence, the discretized form of the 
functional F (see Equation [19]) noted Fh may then be written as: 

∑∑ ∑−=
i j i

iijiji
h ,bµ2µaµF  [20] 

or in matrix form: 

Bµ2AµµF TTh −=   [21] 
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Fh is a bilinear function of the unknown nodal potentials. Imposing stationary 
condition on Fh with respect to unknown primary variables µ, leads to the following 
system of equations: 

BAµ0
µ

F h

=⇒=
∂
∂

 [22] 

where the global matrix A is resulting from assembling the elementary matrices aij 
and B results from assembling the elementary vectors bi. 

3.3. Linear system solver 

The VIBEM gives rise to a linear system of equation in which the matrix A 
(N×N) is complex, fully populated and symmetric. It can be solved directly or 
iteratively. Direct solvers are in common use but they become inefficient when 
applied to large problems. In last years, iterative solvers for BEM have been 
investigated by many researchers (Marburg et al., 2003). These solvers refer to a 
wide range of techniques that use successive approximations to obtain more accurate 
solutions to a linear system at each step. They are based on the idea of sequences of 
orthogonal vectors. 

The Generalised Minimal Residual method (GMRES) is known as a very robust 
iterative method to solve non symmetric systems. To solve a linear problem bAx = , 
this method begins with an initial 0x  and at the kth step, determines an iterate 
numerical results kx  through a correction. A strong attraction of this method is that 
implementations only require matrix-vector products. In GMRES, each iterate kx is 
chosen to minimise the residual norm 

2kAxb − over all corrections.  
The major drawback of GMRES is that the amount of work and storage required 

per iteration rises linearly with the iteration count. It convergence is no more than n 
steps which is of no practical value when n is large. The usual way to overcome this 
storage limitation is by restarting the iterations. After a chosen number m of 
iterations, the accumulated data are cleared and the intermediate results are used as 
initial data for the next m iterations (Barrett, 1994). However, reduction of storage 
requirements (too small m) will considerably slow convergence of the solver. Hence, 
a trade-off must be taken into account in order to achieve best convergence with the 
available storage (Marburg et al., 2003). 
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4. Numerical results 

4.1. Application to automotive industry 

The geometry of real vibrating systems are often very complex. One efficient 
way to save time and memory is to approximate them by simpler geometry without 
loss of the most essential features of the vibratory and the acoustic problems. 
Figure 3 shows a simplified model of a vehicle compartment of (1.4×0.5×0.6)m3 
filled by air ( 3m/Kg23.1=ρ , s/m340c = ). It is assumed that only the bottom of 
the car was vibrating as a rigid piston with an harmonic amplitude z-velocity 
of 0.007 m/s whereas all other walls are rigid with zero particle velocity. We are 
interesting by computing the pressure at a point (see Figure 3) located at (482.923, 
300., 312.5)mm inside the car by using FE and BE methods. The BE model is 
constituted by 1 264 boundary elements and the FE one contains 2 688 finite 
elements. 
 

 
Figure 3. FE, BE models of the compartment 

Simulations have been done for 10-500 Hz frequency range with a step of 1 Hz. 
The pressure magnitude (in dB) versus frequency (Hz) is represented in Figure 4. It 
can be seen that the car presents a resonant behaviour at the compartment resonance 
which are calculated using FEM and are listed in Table 1. Figure 4 shows good 
agreement between FEM and BEM especially in low frequency range. In fact, for 
high frequencies, we have to use fine mesh to keep a certain accuracy.  

For this problem, the FEM which is characteristically sparse, takes only 9 mn to 
run on 2 GHz CPU machine. However, the BEM takes 7h 21mn 20s on the same 
machine when direct solver is applied by using 4 Gauss integration points. This CPU 
time is reduced to 3 h 30mn 31s when GMRES is applied with a tolerance of 10-5 
and maximum number of iterations m=100. Note that the use of 16 Gauss integration 
points doesn’t lead to extra difference in the results but it increases dramatically the 
CPU time (about 58h when direct solver is used). From Figure 5, we can deduce that 
good results can be curried out by using GMRES solver and considering 4 Gauss 
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points. In what follows, we use GMRES solver to solve the linear system of 
equations. The BEM integrals are evaluated for 4 gauss integration points. 

Table 1. Car resonance modes calculated by FEM 

Mode # Frequency (Hz) 

1 162.21 

2 284.14 

3 286.72 

4 327.18 

5 379.21 

6 401.56 

7 403.66 

8 473.85 

9 491.92 

10 506.77 

  

Figure 4. Variation of the acoustic pressure versus frequency 
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Figure 5. Acoustic pressure using BEM: comparison between direct and GMRES 
solver for 4 and 16 gauss integration points 

4.2. Elastic plate radiation 

In this second application, we are interesting by the calculation of the acoustic 
radiation of an elastic plate (0.6×0.9×0.001) m3 with the following mechanical 
properties: Young modulus E=210 GPa, ρs =7800 kg/m3 and Poisson ratio ν=0.3. 
It’s excited by a punctual unit Dirac force at a point located at (0.33,0.45,0.)m. This 
plate is surrounded by air ( 3m/Kg21.1=ρ , s/m340c = ) and the acoustic pressure 
is to be calculated at a point located at 1m from the plate (see Figure 6). The plate 
model is constituted from 600 boundary elements. 

The mechanical velocity response of the excited structure is calculated for a 
duration of 1.023s with a time step of 0.001s. Hence, the number of FFT input is 
equal to 1 024. In order to minimise the leackage we have used the window shown in 
Figure 7. Parseval’s theorem is applied to correct the windowing effect.  

In Figure 8, we have represented the acoustic response at the field point 
represented in Figure 6. In pure external radiation problems, the acoustic response is 
smooth and regular. However, when the acoustic problem involves elastic surfaces, 
strong peaks appear in the acoustic response due to the structure modes. In fact, 
pressure presents many peaks corresponding to the resonance frequencies of the 
elastic plate. 
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Figure 6. BE plate model 

 
 

 
Figure 7. Window for FFT 

 
 
The BEM results as presented in this paper, are compared in this case to 

Rayleigh method. This method is based on the hypothesis that each element of the 
vibrating surface is mounted on an infinite rigid baffle and vibrates independently 
from the other elements constituting the vibrating surface (Herrin et al., 2003). 
Consequently, the total pressure field is obtained by summing the pressure 
generating by each element. Compared to BEM, this one is very fast since it does not 
need to construct and to solve a linear system. In fact, for this problem, BEM takes 
30mn to construct and to solve the linear system whereas Rayleigh method gives 
final result in few seconds. Figure 8 show that this method gives a good 
approximation of the BEM solution. It leads to good results when applied to a 
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vibrating flat surface. However, using Rayleigh method for more complex problems 
can lead to some wrong conclusions and decisions because one can never be sure in 
which case this method yields to accurate results.  

 

 
Figure 8. Pressure at the field point: comparison between BEM and Rayleigh 
method 

5. Conclusion 

In this paper, the acoustic pressure has been calculated by using the structure 
velocity, obtained from a finite element code, as boundary condition for BEM. The 
FFT allows to transform these temporal velocities into frequency domain. In order to 
preserve the periodicity of the velocity signals, a window is employed instead of the 
rectangular one. The BE code has been checked for an acoustic problem. In addition, 
the presented structure-acoustic interaction simulation has been applied to a 
vibroacoustic problem and compared to Rayleigh method results. 

The method as presented in this paper is not applicable to the strong coupling 
problems. It still limited only for air acoustic problems. 
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