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ABSTRACT. The fluid structure interaction due to the pitching motion of a NACA0012 aerofoil 
has been studied numerically at moderate and high Reynolds numbers. The dynamic mesh 
method has been employed in the code ICARE/IMFT solving the Navier-Stokes equations in 
compressible flows. At high Reynolds number, the phase-averaged Navier-Stokes equations 
have been solved, coupled with advanced URANS modelling in the NSMB code. The vortex 
dynamics and especially the stall are physically captured by the dynamic mesh method and by 
the URANS/Organised Eddy Simulation approach. 
RÉSUMÉ. L’interaction fluide structure due au mouvement de tangage d’un profil d’aile 
NACA0012 a été étudiée à des nombres de Reynolds modérés et élevés. La méthode des 
maillages dynamiques a été employée au sein du code ICARE/IMFT pour la résolution des 
équations de Navier-Stokes de fluide compressible à nombre de Reynolds modéré. Les 
équations de Navier-Stokes en moyenne de phase fermées par des schémas URANS avancés 
pour la modélisation de la turbulence ont été résolues au sein du code NSMB pour des 
nombres de Reynolds élevés. La dynamique tourbillonnaire, et plus spécialement la 
dynamique du décrochage, a été bien captée par la méthode des maillages dynamiques et par 
l’approche de macrosimulation URANS/Organised Eddy Simulation. 
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1. Introduction

This work presents a numerical study and physical analysis of the flow around
a NACA0012 pitching airfoil at moderate and high Reynolds numbers. The airfoil
movement is an analytical rotation around the pitching axis. This kind of flow sim-
ulations allow studying the fluid structure interaction in case of rigid lifting-bodies
motion and to analyse physically different kinds of complexphenomena arising from
the interaction, such as the buffeting (flapping shock waves) and the dynamic stall
(sudden lift loss). Dramatic changes in the aerodynamic performance induced by this
phenomenon are of significant interest for rotorcraft or highly maneuverable aircraft,
for example. During the motion of the lifting structure, theflow detaches and reat-
taches over large parts of the body surface. In the pitching case motion of high angle
of attack, a highly energetic vortex structure is formed near the leading edge during
the increasing angle phase. This structure is convected downstream, along the lifting
surface and grows due to the adverse pressure gradient mechanism. During the as-
cending angle phase, the lift coefficient increases. The vortex structure is convected
downstream in the wake, followed by the dynamic stall duringthe descending angle
phase. These steps are characterised by a drastic decrease of lift and of the moment
coefficients. A comprehensive review can by found in (McCroskey, 1982). Further
experimental studies can be found in (Ahmedet al.,1994, McAlisteret al.,1978, Mc-
Croskeyet al.,1976, Carret al.,1977, Chandrasekharaet al.,1990, Guoet al.,1994).
Numerical simulation of the dynamic stall can be found in (Metha, 1977, Choudhuriet
al., 1996, Guoet al.,1994, Barakoset al.,1999) at moderate Reynolds number range.
Concerning the high Reynolds number range, the fully developed turbulent flow inter-
acts non-linearly with the coherent vortex structures and yield a very complex dynamic
physical process. The outcomes of the european research program UNSI, (Unsteady
viscous methods in the context of fluid structure interaction, 1998-2000) where the
majority of the european aeronautical industries participated, addressed a comprehen-
sive review of the URANS approaches to simulate the dynamic stall (Haaseet al.,
2002). The major outcome was that the URANS approaches involving first-order tur-
bulence modelling, including also non-linear behaviour laws, are not yet sufficient to
accurately predict the dynamic stall phenomenon. The majority of these approaches
used the Arbitrary Lagrangian Eulerian (ALE) approach to take into account the mesh
movement.

In the present study an alternative is employed to take into account the domain and
grid movement, the dynamic mesh approach, considered as more robust for capturing
fast and drastic mesh deformation. This approach was studied by (Batina, 1990). In
the present study, an analogy with a spring mesh canvas is used to update the grid,
according to (Batina, 1990, Farhatet al.,1998). In this paper, the governing equations
of the flow are presented, as well as the methods of mesh motion. The performances
of the dynamic mesh will be studied for a moderate-Reynolds number pitching mo-
tion (Barakoset al.,1999). Concerning the high-Reynolds number dynamic stall,an
advanced URANS approach is employed, able to generate and tocapture the stong
vortex structures formation and detachment in non-linear interaction with the ran-



Flow prediction around pitching airfoil 453

dom turbulence background, the Organised Eddy Simulation,OES approach (Braza,
2002, Brazaet al., 2006). The performances will be shown comparing to standard
URANS concerning the pitching flow around a NACA0012 airfoilat high Reynolds
number. The work carried out in the present paper consists ofa first step towards the
fluid structure interaction (rigid motion). In our studies in progress, the deformation
of the structure in the interaction will be taken into account.

2. Numerical method

2.1. Navier-Stokes equations discretisation scheme and numerical configuration

The complete time-dependent Navier-Stokes equations havebeen solved in three
dimensions under a conservative form, in a general non-orthogonal curvilinear coor-
dinates system. The Roe upwind scheme (Roe, 1981) has been used to discretise the
convection and pressure terms because of their hyperbolic character. The MUSCL
approach by (van Leer, 1979) has been employed in order to increase the spatial accu-
racy from the first to second order. This scheme provide good accuracy and stability
as studied in detail by (Bouhadjiet al.,2003a). This scheme has been used without
limiter. A careful grid refinement has been performed to avoid any spurious wiggle
oscillation. However, in the higher Reynolds number ranges, the use of limiters is rec-
ommendable to ensure monotonicity with the use of reasonable grid sizes. Diffusion
terms have been discretised by central differences and the temporal terms using an
explicit, third order of precision in time, three-stage Runge-Kutta TVD scheme (Shu
et al.,1988).

The computational domain is a C-Type grid, many grid size hadbeen used,201×
59, 369 × 89 and501 × 101 nodes in order to provide grid-independent solutions. A
distance of ten chord-lengths separates the leading edge from the outflow boundary
and there are seven chordlengths between the airfoil and theouter boundary. The
governing equations and the numerical implementation are described in the Annex,
Section 8.

Free-stream conditions have been imposed at the outer boundaries, except for the
downstream one, where a first order extrapolation has been used. On the airfoil surface
Neumann conditions are used for the temperature (adiabaticwall), density and energy.
Pressure has been computed from the momentum equation whichwas solved numer-
ically with adherent condition for the velocities. Along the wake line, the boundary
values of the velocity, pressure and density have been computed by averaging the men-
tioned variables from adjacent lines above and below the wake line. Detailed numeri-
cal tests have been carried out (Bouhadji, 1998) to ensure that the boundary conditions
and the computational domain size do not produce any spurious effect. The numerical
characteristics of the present solverICARE for compressible flows and its behaviour
in respect of the boundary conditions have been reported in detail by (Bouhadjiet
al., 2003b, Bouhadjiet al.,2003a, Bouhadjiet al.,1997, Bouhadjiet al.,1998). We
have ensured that the outer boundary was positioned far enough from the airfoil to
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match with simulations that used non-reflecting boundary conditions (Blaschaket al.,
1988, Jinet al.,1993).

2.2. Moving domain equations

The grid is moving to follow the pitching motion of the solid walls. It is therefore
necessary to take into account the velocities of the grid nodes. This is the princi-
ple of the dynamic mesh adaptation, achieved by taking into account in the Navier-
Stokes equations two referential systems, the Eulerian andmixte coordinates (Bour-
det, 2005, Lefrançois, 1998). Convective fluxes are writtenin relative velocities taking
into account the nodes motion. The first step is to solve the new system of equations.
The second step is the updating of the ensemble of metric parameters induced by the
grid. To achieve this, it is necessary to update the grid along each new aerofoil posi-
tion. This is performed by employing a spring mesh canvas analogy: the springs of
tension-compression (Batina, 1990) as well as the torsion springs, (Farhatet al.,1998)
(Figure 1).

ji

kij

a Tension-compression springs

j

k

i

C ijk
i

θi

b Torsion springs

Figure 1. Springs analogy for grid updating

The tension-compression springs are fictitious springs that are attached in each
segment that links two adjacent grid nodes, (Figure 1a). Thespring stiffness,kij , is
chosen inversely proportional to the distance between the nodes,lij of the considered
segment:

kij =
1

lij
where lij = φ[(xi − xj)

2 + (yi − yj)
2]α,

whereφ andα are adaptative parameters, calibrated numerically to preserve the mesh
quality near the wall. Concerning torsion springs, the principle is equivalent: in each
edge,i, j et k of a triedron formed by three adjacent grid nodes a torsion spring is
associated to a stiffness defined by angular considerations.
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For a nodei, we defineθi as the angle between the two segmentsij andik (Fig-
ure 1b). On each grid point, a torsion spring is attached for each triangle connected to
this point. The torsion spring stiffness isC ijk

i , defined by:

C ijk
i =

1

sin2 θi

.

The first spring type allows avoiding the coincidence between two grid points,
because the stiffness increases as the points are approaching each other. The second
spring type allows avoiding the passage of grid lines in between the segment.

After each new aerofoil position, the new position of the grid points is defined by
solving iteratively the static equilibrium equation of thespring grid canvas. Therefore,
the displacement and the velocity of the nodes are determined, as well as the updating
of the metrics needed for the Navier-Stokes system solution.

The grid motion can produce in some cases mass sources or sinks. This may
contribute to appearance of numerical oscillations. To avoid this, an additional con-
servation equation has to be solved, thegeometrical conservation law(Thomaset al.,
1979, Bourdet, 2005). This law is derived from the fact that the temporal variation of
a volume of fluid, whose velocity surface field isWs, has to be equal to the volumes
sweeped by the domain oriented surfaces. This law can be written in an analogy to the
mass conservation law, as follows:

d

dt

∫

V

dV =

∫

S

Ws.dS ,

whereV is the volume of the domain considered andS its surface. This equation
has been implemented in the whole numerical codeICARE of our team (Bouhadji,
1998). Detailed tests have been carried out to ensure that the results are not affected
by numerical perturbations due to the grid movement (Bourdet, 2005).

3. Flow configuration

The flow configuration to be examined is the pitching NACA0012airfoil at
Re∞ = 5000, Mach numberM∞ = 0.4. The pitching motion is imposed around
an axis at 0.25 chord length from the leading edge, (Figure 2), according to the oscil-
lation law:

α(t) = α0 + ∆α sin(ωt)

whereα0 = 10◦ is the mean angle of attack,∆α = 10◦ is the oscillation amplitude
beyond the mean andω the pulsation. The reduced frequencyk = ωc/2U∞ of the
aerofoil’s motion isk = 0.25. The above test case had been studied numerically by
(Barakoset al.,1999), using ALE.
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Figure 2. Schematic representation of the pitching airfoil oscillations

Results

In Figure 3, a comparison of the results by the present study and by the previous
one (Barakoset al., 1999), is shown, concerning the lift and moment coefficients.
The amplitudes of the lift and moment coefficients simulatedby the present study are
qualitatively coherent with the results by (Barakoset al.,1999). However, there are
significant differences concerning the dynamic stall vortices.

a Results of (Barakoset al.,1999)
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Figure 3. Evolution of the lift and moment coefficients,Re∞ = 5000, M∞ = 0.4,
k = 0.25
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The first difference indicates a drastically different behavior on the kind of dy-
namic stall. Both studies show a strong hysteresis character during the oscillation cy-
cle, (Figure 3a). The stall occurs at the maximum incidence in the study by (Barakoset
al., 1999), whereas it appears at about19.3◦ in the present study, before the maximum
angle is reached. The second difference is the formation of anumber of secondary
peaks in the present study along the suction side, concerning the lift and drag coeffi-
cients, (Figure 3b). These peaks correspond to the passage of smaller scale organised
eddies along the suction side. Indeed, the vortex dynamics quantified by the present
study are more complex than the previous study, where only one vortex structure is
convected and creates the dynamic stall.
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Figure 4. Vorticity iso-contours - descendant phase of the pitching motion,Re∞ =
5000, M∞ = 0.4, k = 0.25, in white the positive vorticity, in black the negative
vorticity

In Figure 4, the vorticity iso-contours are presented at four instantaneous snap-
shots, allowing tracking of the vortex structures during the flow motion. These struc-
tures are not organised along a von-Kármán vortex street, but according to a jet like
structure, forming the well known mushroom patterns that characterise the pitching
motions (Chandrasekharaet al., 1990), (Choudhuriet al., 1996). The existence of
a multitude of vortices beyond the von-Kármán ones in moderate Reynolds number
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range (Re > 2000) is also a fact reported by incompressible flow studies around the
NACA0012 wing, (Hoarauet al.,2003).

4. High-Reynolds number pitching motion of the NACA0012 airfoil

In this section, the high-Reynolds number flow around a NACA0012 airfoil is
investigated by using appropriate URANS modelling. This isachieved by means of
the Organised Eddy Simulation, OES approach.

The Organised Eddy Simulation approach

In the context of the URANS/OES macrosimulation (OrganisedEddy Simulation
(Dervieuxet al., 1998, Brazaet al., 2006)), the turbulent spectrum is decomposed
in a first part regrouping all the coherent processes (resolved part)and in a second
part regrouping all the chaotic processesindependently on their size (spectrum to be
modelled), as presented schematically in Figure 5 and experimentallyin Figure 6.

Figure 5. Schematic representation of the energy spectrum in the URANS/Organised
Eddy Simulation approach: the distinction between the structures to be resolved and
those to be modelled is based upon their organised or random character. Part (2) of
the non-equilibrium energy spectrum modelled by reconsidered,advanced statistical
turbulence modelling, due to the inertial-range spectrum modulation, schematically
shown on the right
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a LDV (Djeridi et al.,2003) and PIV turbu-
lence spectra

b Time-resolved PIV spectrum

Figure 6. Turbulence spectra in the detached flow past a cylinder atRe = 140000,
(x/D = 1, y/D = 0.375), (Brazaet al.,2006), showing the slope modification in the
inertial range due to interaction between the coherent structures and random turbu-
lence

It is recalled that in LES the distinction is done according to the structures size
and this limitates this approach to moderate Re-numbers concerning wall-turbulence
around bodies. The fact that the spectrum part to be modelledin OES is extended from
the low to the high frequencies allows the use of statisticalturbulence modelling, that
is very efficient in high Reynolds number modelling of wall flows. In the time-domain,
the equations are the phase-averaged Navier-Stokes equations, where the turbulent
stresses have to be modelled by reconsidered statistical turbulence modelling closures.
We had conjectured (Braza, 2002) that due to the non-linear interaction between the
coherent part and the incoherent one,there must exist a shape and slope modification
of the inertial part in the spectrum, in the vicinity of the peak. This has been now
quantified, either by means of the LDV data or by the present study (time-dependent
PIV data), (Brazaet al.,2006).

The modification of the energy spectrum in the inertial rangeleads to modified
turbulence scales in the context of the statistical two-equation modelling, as achieved
in a previous work of us (Jinet al.,1994, Hoarauet al.,2002, Bouhadjiet al.,2002), by
means of the second-order moment closures. This yields a reconsideration of the eddy-
diffusion coefficient for the class of two-equation modelling, as well as an improved
damping function to attenuate turbulence towards the wall (Jinet al.,1994).

5. The turbulence modelling

The Reynolds stress transport model (RSTM) has been used in the phase-averaged
Navier-Stokes system, to derive the modification of the turbulence scales involved in
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the evaluation of the eddy-diffusion coefficientCµ to be used in the OES two-equation
modelling. In this study, the computation up to the real wallhas been achieved by us-
ing the RSTM model (Launderet al.,1975), and (Shima, 1988)’s turbulence damping
towards the solid wall. This is an original element of this study in the state of the art,
where the RSTM model is difficult to use towards the solid walls because of stability
problems, whenever the computational grid is not adequate.Often, zonal approaches
are used combining the RSTM in an outer region and a lower-order class of modelling
near the wall. However, by using zonal approaches, the ability of the RSTM model
of capturing the normal stress anisotropy is lost in the near-region. In the present
study, this benefit has been preserved by achieving computation with the RSTM up
to the real wall. The second-order turbulence modelling does not use a behavior law
for modelling the turbulent stresses. It uses full transport equations for the Reynolds
stress tensor, where third-order correlations have to be modelled:

Duiuj

Dt
= Dt

ij + Dν
ij + Pij + Πij − εij

where the turbulent diffusion is the one proposed by (Dalyet al.,1970):

Dt
ij =

∂

∂xk

(
Cs

k

ε
ukul

∂uiuj

∂xl

)

The viscous diffusion and the production are exact terms:

Dν
ij =

∂

∂xk

(
ν

∂uiuj

∂xk

)
Pij = −

(
uiuk

∂Uj

∂xk
+ ujuk

∂Ui

∂xk

)

The redistribution term is split into the slow part, the rapid part and the wall reflection
part as suggested by (Shima, 1988):

Πij = Φ1
ij + Φ2

ij + Φw
ij

Φ1
ij = −γ

(
Pij −

2

3
P̃ δij

)
Φ2

ij = −C2
ε

k

(
uiuj −

2

3
kδij

)

Φw
ij = fw

[
0.45(Pij −

2

3
δijP̃ ) − 0.03(Dij −

2

3
δijP̃ ) + 0.08kSij

]

fw = exp
[
−(0.015k1/2y/ν)4

]

Finally we have:

P̃ =
1

2
(Pii) εij =

2

3
δijε

Dij = −

(
uiuk

∂Uk

∂xj
+ ujuk

∂Uk

∂xi

)
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We solve the modified dissipatioñε = ε − D as proposed by (Chien, 1982):

∂ε̃

∂t
+ Uj

∂ε̃

∂xj
= Cε

∂

∂xi

[
k

ε
(uiuj)

∂ε̃

∂xj

]
+ν

∂2ε̃

∂x2
j

+ P̃ Cε1 f1
ε̃

k
− Cε2 f2

ε̃2

k
+ D

with:

D = 2ν
k

y2

The constant used are the classical ones:

Cs = 0.22 Cε = 0.18 C2 = 1.8 γ = 0.6 Cε1 = 1.44 Cε2 = 1.9

A better universality of the employed constants is achievedby the RSTM than
with first-order closures. Furthermore, the turbulence production term is provided as a
function of the resolved turbulent stresses and therefore it is not submitted to the lim-
itations of the Boussinesq law. A better description of the leading edge region is then
achieved, especially with respect to the passage from the laminar to the transitional
and afterwards to the turbulent near-wall regions.

The numerical behavior of the RSTM up to the wall in unsteady flow prediction has
been carefully studied in the present work. The convergenceof the transport equations
is achieved using a higher order of iterations within the time step, comparing with
the two-equation models. Indeed that the RSTM modelling shows a more unstable
character because it is eddy-viscosity free and for this reason it needs numerically a
higher number of iterations within a time-step to reach convergence.

Figure 7. Comparison of the prediction of the leading edge region between two differ-
ent order closures showing the formation of a laminar steadybubble. Left: Reynolds
stress transport model (RSTM) up to the wall (Shima’s near-wall version); right: OES
modifiedk − ε low Reynolds number model of Chien

The flow around a NACA0012 airfoil atα = 20◦ and a Reynolds number of105

is computed with the Reynolds Stress model described in the the previous section. A
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very good representation of the physics for the separation bubble (Figure 7) and for
the vortex shedding is obtained (Figures 8 and 9).

a Instantaneous streamlines att∗ = 3 b Mean velocity profile in the recircu-
lation region

Figure 8. Computation of the flow around a NACA0012 atRe = 105 andα = 20◦

with the RSTM of (Launderet al.,1975)
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Figure 9. RSTM results for the flow around a NACA0012 airfoil, Re=105, α=20◦ at
the sectionx/c = 1.226 and y/c = 0.272, capturing the inherent unsteadiness and
vortex shedding;< V > velocity component

5.1. The eddy-diffusion coefficient

In the context of two-equation modelling, the unsteady operator of the phase-
averaged Navier-Stokes equations does not suffice for a complete improvement of the
prediction of unsteady separated flows if the modelling assumptions are kept the same
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as in fully developed turbulent steady-state flows (in statistical equilibrium). Certainly,
the OES approach captures the unsteady organised modes thatare expected to develop
during the time evolution of the convection term. However, the energy of these modes
in the spectrum is broadened (lowered) and in some cases fully damped if the clo-
sure hypotheses for the continuous part of the spectrum are not physically adapted.
A global effect of this default is seen in the prediction of the mean value and of the
amplitude of the fluctuating drag coefficient, both under predicted. This weakness of
the two-equation models is strengthened in the case of leading-edge accelerated flows,
as those around bodies.

It is well known that these models provide an excessive levelof turbulence pro-
duction (Jinet al.,1994). The excessive rate of kinetic energy in the upstream region
of the flow (around the leading edge) comes from the adoption of the Boussinesq ap-
proximation: the turbulence stresses are modelled as a linear function of the strain
rate by means of the eddy viscosity concept. This modelling comes from a simple
analogy and from an extension of the (exact) Boussinesq law that stands for the rela-
tion between the molecular stresses and the strain rate under the continuum hypothe-
sis for a Newtonian fluid and therefore derive the well known Navier-Stokes system.
The adoption of Boussinesq approximation has given satisfactory results in equilib-
rium turbulent flows under the (steady) Reynolds-averaged operator. The Boussinesq
approximation is therefore satisfactory in the case of a fully accomplished energy
cascade from the big to small eddies, where the strain rate and the physical turbu-
lence diffusion are in balance, (e.g. far-field wakes, similarity region of jets, steady-
state boundary layers). In the case of leading-edge dominated accelerated flows of
the present interest, it is known that the strain-rate is predominant in the vicinity
of the leading edge region, where the turbulence diffusion is physically very low.
Obviously, the modelling through the Boussinesq law provides a turbulence produc-
tion, Pij = ∂(< uiuj >< Ui >)/∂xj, that is excessively high. This yields an ex-
cessively high level of the turbulent kinetic energy, through the modelling relation:
νt = Cµ k2/ε whereCµ = 0.09 after numerical optimisations based on turbulent
flows in statistical equilibrium, according to the standardversion of thek − ε model,
Figure 10.

The implementation of the RSTM model has offered the possibility to assess an
equivalent eddy-diffusivity coefficient to be employed in two-equation models in OES.
The cross-term of the turbulence anisotropy tensor has beenevaluated by means of the
RSTM results (Figure 11). A non-constant behavior of the term − < uv > / < k >
is found in the near-wall region. It will be remembered that this quantity is almost
constant in equilibrium boundary layers (Bradshawet al.,1967) and it has the value of
0.3. Under the equilibrium hypothesis of "Production=Dissipation", the well known
Cµ value of 0.09 can be deduced. In the present case of non-equilibrium flow, the
variation of− < uv > / < k > forms a "plateau" at the value of 0.2 (Figure 11).
This indicates that the eddy-diffusion coefficient,Cµ should have a lower value than
the one of equilibrium boundary layers.
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a Streamlines at dimensionless timet∗ =

18

b Streaklines

Figure 10. Computation of the flow around a NACA0012 atRe = 105 andα = 20◦

with the original version of thek − ε Chien’s model (URANS computation)

Figure 11. Longitudinal evolution of− < uv > / < k > in the recirculation area an
in the wake (see sketch)

In the present study, the evaluation of theCµ coefficient has been possible through
an a posterioriquantification of the turbulent kinetic energy and theε fields calcu-
lated by the RSTM. An equivalent eddy viscosityνt has been deduced by adopting
a posteriorithe Boussinesq law. The optimum value forCµ has been determined by
the relationνt = Cµ k2/ε. Table 1 shows the order of magnitude of theCµ values
in the near region.The order of magnitude ofCµ recommendable for massively sepa-
rated unsteady flows is found 0.02. Experimental results by (Aubrun, 1998) have also
indicated this order of magnitude for turbulent flows with coherent structures.
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This value ofCµ as well as the aforementioned modified damping function are
used in a modified version of thek − ε model. Therefore, the model referred as the
OES model is the (Chien, 1982)k − ε model with the two modifications:Cµ = 0.02
and fµ = 1 − exp(−0.0002y+ − 0.000065y+2). The behaviour of the modified
OES−k − ǫ model has been tested firstly for a fixed NACA0012 wing at twenty de-
grees of incidence, developing a massive unsteady separation and vortex shedding,
according to the experimental results of (Favieret al.,1998).

Table 1. Evaluation of an equivalentCµ coefficient by means of the RSTM

x/c y/c equivalentCµ

3.6 10−2 3.2 10−2 0.0158
0.45 5.7 10−2 0.01859

0.9064 0.15 0.01938
1.41 -0.678 0.0178
1.23 0.11 0.0172
0.73 0.19 0.024

It is shown that the OES approach is able to predict the separation and detachment,
in agreement with the experiment, as well as the frequency ofthe inherent unsteadiness
(experimental Strouhal number 0.51), Figure 9. The mean drag and lift coefficients
are shown in Table 2. A good agreement is obtained. Furthermore there is no tendency
of over-predicting the drag coefficient, as often occurs with the standard two-equation
modelling.

Table 2. Prediction of the aerodynamic coefficients compared to experiments for the
flow around a NACA0012 atRe = 105 andα = 20◦

Drag Lift
Experience 0.32006 0.75381
OESk − ε 0.29355 0.86575

Originalk − ε 0.34248 1.04824

Concerning the coherence of this model in respect of the flowsin equilibrium, it
is worthwhile to notice that the equilibrium behaviour is inherently restituted in the
regions where the flow physics reach this state: the flow evolution under the modified
modelling is unsteady. The part of the resolved turbulence plus the part of modelled
turbulence yield the sum obeying to the equilibrium assumption with an equivalent
value of theCµ coefficient 0.09. Therefore, the velocity profiles and turbulent stresses
calculated after post-treatment of the time-dependent evolution are in accordance with
the equilibrium stage in the respective flow regions.
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5.2. Results

Computations are performed with the NSMB code (Navier-Stokes multiblock) for
the pitching airfoil test-case of (Carret al.,1977, McCroskeyet al.,1976) and (McAl-
isteret al.,1978) at Reynolds number of order one million. The physical parameters
of the simulation are given in Table 3. An O-type mesh has beenused. The modified
OESk − ǫ, and OES−k − ω turbulence models (Hoarauet al.,2002) are compared
with the behaviour of thek−ω/SST model (Menter, 1994). The computational grid is
500× 226. The unsteady global parameters versus time are shown in Figure 12 and in
Figure 13. A good comparison with the experimental data by McCroskey and Mc Al-
istair is achieved. Table 4 shows the maxima and minima of theaveraged aerodynamic
coefficients in comparison with the experiment. The iso-vorticity contours are shown
in Figures 14 and Figure 15 according to the OES−k− ǫ andk −ω/SST respectively.
The OES−k − ǫ allows a more rich creation of organised vortices that are inhibited
by thek −ω/SST, especially in the descending phase of the motion. The OES−k−ω
provides practically comparable results with the OES−k − ǫ model in respect of the
iso-vorticity contour dynamics and for the sake of saving space, these results are not
presented. The overall comparison between the OES approachand previous URANS
one (the SST in this case) indicates the improvements achieved by OES using the same
grid size.

Table 3. Physical flow parameters

Reynolds number 0.98 × 106

Mean incidence 15˚
Oscillation amplitude (∆α) 10˚
Pitch axis location 1/4 of chord length
Oscillation frequency (ω) 0.0170383 rad/sec
Reduced drequency 0.1
Mach number 0.072

Table 4. Averaged maximum values of the aerodynamic coefficients

Experiment OESk − ω OESk − ε SSTk − ω
CD (max) 0.92 0.9 0.9 0.9
CL (max) 2.2 2.1 2.1 2.0
Cm (max) -0.4 -0.36 -0.36 -0.3
pulsation (ω) 0.0170383 rad/sec

The fluid structure interaction according to the present study captured by the OES
approach yields the formation of a series of smaller scale organised vortices down-
stream of the leading edge during the ascending phases of themotion, (angles14.1◦

and17.2◦, Figure 14). These vortices considerably grow and detach practically from
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the leading edge during the descending phase of the motion. The convected vortex
downstream of the trailing edge forms a mushroom like structure, (angle24.2◦).
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Figure 12. Time-dependent aerodynamic coefficients (drag, lift),k − ǫ−OES
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Figure 13. Time-dependent aerodynamic coefficients (drag, lift),k − ω−SST



468 REMN – 16/2007. Fluid structure interaction

a 6.14◦ b 8.43◦

c 14.43◦ d 17.27◦

e 22.57◦ f 24.23◦

g 24.72◦ pitch down h 23.52◦ pitch down

Figure 14. Iso-vorticity contours at different phase angles,k − ǫ−OES
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a 10.8◦ b 13.8◦

c 19.9◦ d 22.3◦

e 24.9◦ f 24.8◦ pitch down

g 21.7◦ pitch down h 19.1◦ pitch down

Figure 15. Iso-vorticity contours at different phase angles,k − ω−SST
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6. Conclusion

The dynamic mesh adaptation method indicates a robust behavior and provides
results that capture the fluid structure interaction dynamics in the case of pitching
airfoils motion, providing rich vortex dynamics in accordance with experimental vi-
sualisations. The numerical approach by this method indicates achievement of more
accurate dynamic stall phenomenon in respect to the physics. The OES macrosimula-
tion approach provides a good representation of the vortex dynamics concerning the
interaction at high Reynolds number turbulent pitching flow around the NACA0012
airfoil, with extrema aerodynamic parameters close to the experiment. This approach
provides a more rich coherent structures dynamics in the formation and the stall phases
than previous URANS approaches.
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8. Annex: governing equations and numerical implementation

8.1. Governing equations

In two dimensions, the Navier-Stokes equations for an unsteady compressible
flow can be written under conservative and non-dimensional form, in a general, non-
orthogonal, curvilinear coordinate system:

∂q̂

∂t
+

∂Ê

∂ξ
+

∂F̂

∂η
=

1

Re

(
∂Ĝ

∂ξ
+

∂R̂

∂η

)

q̂ = J





ρ
ρu
ρv
e



 Ê = J





ρU
ρuU + ξxp
ρvU + ξyp
(e + p)U



 F̂ = J





ρV
ρuV + ηxp
ρvV + ηyp
(e + p)V





Ĝ = J





0
ξxτxx + ξyτxy

ξxτyx + ξyτyy

ξxβx + ξyβy



 R̂ = J





0
ηxτxx + ηyτxy

ηxτyx + ηyτyy

ηxβx + ηyβy





whereq̂ is the unknown vector,̂E, F̂ andĜ, R̂ are the inviscid and the viscous fluxes,
respectively.u,v are the cartesian velocity components in x and y direction,ρ the
density,p the pressure ande the total energy per unit volume, defined as:

e = ρei + ρ
u2 + v2

2

whereei is the specific internal energy.

U andV are the so-called contravariant velocities alongξ andη:

U = ξxu + ξyv V = ηxu + ηyv

The stresses terms are given as:

τxx =
µ

3
(4ux − 2vy) τyy =

µ

3
(4vy − 2ux)

τxy = τyx = µ (uy + vx)
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where:

ux = uξξx + uηηx uy = uξξy + uηηy

we defineβx andβy as:

βx =
γµ

Pr
eix

+ uτxx + vτxy βy =
γµ

Pr
eiy

+ uτyx + vτyy

Re, Pr, γ andµ are respectively, the Reynolds number, the Prandtl number,the
ratio of specific heat, and the dynamic viscosity. We can define the dimensionless
laminar viscosity by the Sutherland law as:

µ =
110.4

T0

+ 1
110.4

T0

+ T
T

3

2

WhereT0 is a reference temperature.

The metric terms are :

ξx =
yη

J
ηx = −

yξ

J
ξy = −

xη

J
ηy =

xξ

J

whereJ = xξyη − xηyξ is the jacobian of the transformation. Finally, the pressurep
is related toei andρ by the perfect gas equation of state:

p = (γ − 1) ρei

The dimensionless variables are specified through the chordlength, the uniform
stream velocity, and density.

8.2. Numerical method

8.2.1. The spatial scheme

The convection-pressure terms, because of their hyperbolic character, are respon-
sible of weak solutions; their discretisation should be sufficiently stable to capture
flow discontinuities (shock waves) without diminishing theaccuracy of the scheme.
The Roe’s upwind scheme (Roe, 1981) among other, is appropriately adapted to the
capture of shock waves and has moreover good properties of stability.
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The discretisation of theξ-directional inviscid termÊ gives:

(
∂Ê

∂ξ

)

ij

=
Ê∗

i+ 1

2
j
− Ê∗

i− 1

2
j

∆ξ

whereÊ∗ is the numerical flux, and it is expressed as:

Ê∗

i+ 1

2
j =

1

2

[
Êr

i+ 1

2
j + Êl

i+ 1

2
j −Di+ 1

2
j

]

The damping functionD has the following form:

Di+ 1

2
j = |Ā|i+ 1

2
j

[
q̂r
i+ 1

2
j − q̂l

i+ 1

2
j

]

whereĀ is the Roe’s matrix.

Following theMUSCL1 approach (van Leer, 1979), one can obtain a spatially higher-
order differencing by takingql andqr as follow:

ql
i+ 1

2
j = qij +

1

2

[
(1 − β) ∆qi+ 1

2
j + β∆qi− 1

2
j

]

qr
i+ 1

2
j = qi+1j −

1

2

[
(1 − β) ∆qi+ 1

2
j + β∆qi+ 3

2
j

]

where∆qi+ 1

2
j = qi+1j − qij , q = J−1q̂, andβ ∈ [0, 1].

By takingβ = 1
2 , a second-order accurate half-upwind scheme or the so called Fromm

scheme is adopted in this study (see (Yee, 1987)).

8.2.2. The temporal scheme

The explicit third-stage third-order Runge-Kutta scheme (Shuet al.,1988) is used.
Re-writting th Navier-Stokes equations as:

∂q̂

∂t
= L(q̂)

1. Monotonic Upstream Schemes for Conservation Laws.
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this scheme reads:

q̂
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ij = q̂

(n)
ij
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The advantage of Runge-Kutta scheme lies in the fact that thespatial discretisation
is totally cut out of the temporal one; this ensure us an appreciable and non-negligible
freedom in the choice of the numerical spatial scheme.


