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ABSTRACT. The fluid structure interaction due to the pitching motion of a NACA0012 aerofoil
has been studied numerically at moderate and high Reynolds numbers. The dynamic mesh
method has been employed in the code ICARE/IMFT solving the Navier-Stokes equations in
compressible flows. At high Reynolds number, the phase-averaged Navier-Stokes equations
have been solved, coupled with advanced URANS modelling in the NSMB code. The vortex
dynamics and especially the stall are physically captured by the dynamic mesh method and by
the URANS/Organised Eddy Simulation approach.

RESUME. L’interaction fluide structure due au mouvement de tangage d’un profil d’aile
NACA0012 a été étudiée a des nombres de Reynolds modeérés et élevés. La méthode des
maillages dynamiques a été employée au sein du code ICARE/IMFT pour la résolution des
équations de Navier-Stokes de fluide compressible a nombre de Reynolds modéré. Les
équations de Navier-Stokes en moyenne de phase fermées par des schémas URANS avancés
pour la modélisation de la turbulence ont été résolues au sein du code NSMB pour des
nombres de Reynolds élevés. La dynamique tourbillonnaire, et plus spécialement la
dynamique du décrochage, a été bien captée par la méthode des maillages dynamiques et par
I’approche de macrosimulation URANS/Organised Eddy Simulation.
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1. Introduction

This work presents a numerical study and physical analysikeoflow around
a NACAO0012 pitching airfoil at moderate and high Reynoldsnivers. The airfoil
movement is an analytical rotation around the pitching.aXisis kind of flow sim-
ulations allow studying the fluid structure interaction imse of rigid lifting-bodies
motion and to analyse physically different kinds of compdenomena arising from
the interaction, such as the buffeting (flapping shock wgaeesl the dynamic stall
(sudden lift loss). Dramatic changes in the aerodynamifop®ance induced by this
phenomenon are of significant interest for rotorcraft ohhignaneuverable aircraft,
for example. During the motion of the lifting structure, thew detaches and reat-
taches over large parts of the body surface. In the pitchéisg enotion of high angle
of attack, a highly energetic vortex structure is formedrriba leading edge during
the increasing angle phase. This structure is convectedstosam, along the lifting
surface and grows due to the adverse pressure gradient migwhaDuring the as-
cending angle phase, the lift coefficient increases. Theexamtructure is convected
downstream in the wake, followed by the dynamic stall dutmgdescending angle
phase. These steps are characterised by a drastic decféifisenal of the moment
coefficients. A comprehensive review can by found in (Mc®eys 1982). Further
experimental studies can be found in (Ahnatal.,1994, McAlisteret al.,1978, Mc-
Croskeyet al.,1976, Carret al.,1977, Chandrasekhagtal., 1990, Gucet al.,1994).
Numerical simulation of the dynamic stall can be found in (Mg 1977, Choudhueit
al., 1996, Gucet al.,1994, Barakost al.,1999) at moderate Reynolds number range.
Concerning the high Reynolds number range, the fully dgeddurbulent flow inter-
acts non-linearly with the coherent vortex structures aaldiya very complex dynamic
physical process. The outcomes of the european researgrapr@aJNSI, (Unsteady
viscous methods in the context of fluid structure interaGtitd98-2000) where the
majority of the european aeronautical industries parigid, addressed a comprehen-
sive review of the URANS approaches to simulate the dynaait @Haaseet al.,
2002). The major outcome was that the URANS approachesvimgpfirst-order tur-
bulence modelling, including also non-linear behaviowdaare not yet sufficient to
accurately predict the dynamic stall phenomenon. The ntajof these approaches
used the Arbitrary Lagrangian Eulerian (ALE) approach ket@to account the mesh
movement.

In the present study an alternative is employed to take ie¢oant the domain and
grid movement, the dynamic mesh approach, considered asnoloust for capturing
fast and drastic mesh deformation. This approach was stiyi€¢Batina, 1990). In
the present study, an analogy with a spring mesh canvas dstasgpdate the grid,
according to (Batina, 1990, Farhettal.,1998). In this paper, the governing equations
of the flow are presented, as well as the methods of mesh mdthm performances
of the dynamic mesh will be studied for a moderate-Reynoldsalver pitching mo-
tion (Barakoset al.,1999). Concerning the high-Reynolds number dynamic stall,
advanced URANS approach is employed, able to generate araptare the stong
vortex structures formation and detachment in non-linateraction with the ran-
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dom turbulence background, the Organised Eddy Simula@&t approach (Braza,
2002, Brazeet al., 2006). The performances will be shown comparing to standard
URANS concerning the pitching flow around a NACA0012 airfailhigh Reynolds
number. The work carried out in the present paper consisadioft step towards the
fluid structure interaction (rigid motion). In our studigsprogress, the deformation
of the structure in the interaction will be taken into accoun

2. Numerical method
2.1. Navier-Stokes equations discretisation scheme and nuredrconfiguration

The complete time-dependent Navier-Stokes equationsiiese solved in three
dimensions under a conservative form, in a general noregahal curvilinear coor-
dinates system. The Roe upwind scheme (Roe, 1981) has begnoudiscretise the
convection and pressure terms because of their hypertudiacter. The MUSCL
approach by (van Leer, 1979) has been employed in ordertedre the spatial accu-
racy from the first to second order. This scheme provide gaadracy and stability
as studied in detail by (Bouhadit al.,2003a). This scheme has been used without
limiter. A careful grid refinement has been performed to dwmy spurious wiggle
oscillation. However, in the higher Reynolds number rantfesuse of limiters is rec-
ommendable to ensure monotonicity with the use of reasergrii sizes. Diffusion
terms have been discretised by central differences ancethpdral terms using an
explicit, third order of precision in time, three-stage BarKutta TVD scheme (Shu
et al.,1988).

The computational domain is a C-Type grid, many grid sizeliegh used®201 x
59, 369 x 89 and501 x 101 nodes in order to provide grid-independent solutions. A
distance of ten chord-lengths separates the leading edgetfre outflow boundary
and there are seven chordlengths between the airfoil anduter boundary. The
governing equations and the numerical implementation aseribed in the Annex,
Section 8.

Free-stream conditions have been imposed at the outer bdasgexcept for the
downstream one, where a first order extrapolation has beeh @ the airfoil surface
Neumann conditions are used for the temperature (adiabalil; density and energy.
Pressure has been computed from the momentum equation waghkolved numer-
ically with adherent condition for the velocities. Alongetlvake line, the boundary
values of the velocity, pressure and density have been ctadpy averaging the men-
tioned variables from adjacent lines above and below theewiak. Detailed numeri-
cal tests have been carried out (Bouhadiji, 1998) to ensatéttb boundary conditions
and the computational domain size do not produce any smuefiect. The numerical
characteristics of the present solVér AR E for compressible flows and its behaviour
in respect of the boundary conditions have been reportectaildoy (Bouhadjiet
al., 2003b, Bouhadijet al.,2003a, Bouhadjet al., 1997, Bouhadjet al.,1998). We
have ensured that the outer boundary was positioned fargénoom the airfoil to
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match with simulations that used non-reflecting boundand@@mns (Blaschalet al.,
1988, Jiret al.,1993).

2.2. Moving domain equations

The grid is moving to follow the pitching motion of the solidalls. It is therefore
necessary to take into account the velocities of the gridesodrhis is the princi-
ple of the dynamic mesh adaptation, achieved by taking iotmant in the Navier-
Stokes equations two referential systems, the Euleriamaxt coordinates (Bour-
det, 2005, Lefrancois, 1998). Convective fluxes are writterlative velocities taking
into account the nodes motion. The first step is to solve thegystem of equations.
The second step is the updating of the ensemble of metrienedess induced by the
grid. To achieve this, it is necessary to update the gridgaach new aerofoil posi-
tion. This is performed by employing a spring mesh canvasogya the springs of
tension-compression (Batina, 1990) as well as the torgidngs, (Farhaét al.,1998)
(Figure 1).

a Tension-compression springs b Torsion springs

Figure 1. Springs analogy for grid updating

The tension-compression springs are fictitious springsdha attached in each
segment that links two adjacent grid nodes, (Figure 1a). spiiag stiffnessk;;, is
chosen inversely proportional to the distance betweenadhdesy;; of the considered
segment:

1 «@

hij = 7~ where L = ol(wi — ;)" + (i = y))’]",
iJ

where¢ anda are adaptative parameters, calibrated numerically teepreghe mesh

quality near the wall. Concerning torsion springs, the gigle is equivalent: in each

edge,i, j etk of a triedron formed by three adjacent grid nodes a torsioimgps

associated to a stiffness defined by angular considerations
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For a node, we defined; as the angle between the two segméntandik (Fig-
ure 1b). On each grid point, a torsion spring is attacheddoheriangle connected to
this point. The torsion spring stiffness@”k, defined by:

1

C ijk _
sin? 6;

K2

The first spring type allows avoiding the coincidence betwteo grid points,
because the stiffness increases as the points are apprgaath other. The second
spring type allows avoiding the passage of grid lines in leetnwthe segment.

After each new aerofoil position, the new position of thedgroints is defined by
solving iteratively the static equilibrium equation of tring grid canvas. Therefore,
the displacement and the velocity of the nodes are detednasewell as the updating
of the metrics needed for the Navier-Stokes system solution

The grid motion can produce in some cases mass sources @ siftkis may
contribute to appearance of numerical oscillations. Tadatlus, an additional con-
servation equation has to be solved, fs@metrical conservation la@rhomaset al.,
1979, Bourdet, 2005). This law is derived from the fact thattemporal variation of
a volume of fluid, whose velocity surface fieldW¥,, has to be equal to the volumes
sweeped by the domain oriented surfaces. This law can bewiit an analogy to the
mass conservation law, as follows:

i/dvz/ws.ds,

whereV is the volume of the domain considered asidts surface. This equation
has been implemented in the whole numerical cbdel RE of our team (Bouhadji,
1998). Detailed tests have been carried out to ensure thaiesults are not affected
by numerical perturbations due to the grid movement (Ba,2G05).

3. Flow configuration

The flow configuration to be examined is the pitching NACAOGi#oil at
Reo = 5000, Mach numberM, = 0.4. The pitching motion is imposed around
an axis at 0.25 chord length from the leading edge, (Figura@pording to the oscil-
lation law:

at) = ap + Aa sin(wt)

whereay = 10° is the mean angle of attacka = 10° is the oscillation amplitude
beyond the mean and the pulsation. The reduced frequency= «</2v.. of the
aerofoil’s motion isk = 0.25. The above test case had been studied numerically by
(Barakoset al.,1999), using ALE.



456 REMN — 16/2007. Fluid structure interaction

A

X

o .
Aozf")\ \\\\\\
Use — a(t)” )

Figure 2. Schematic representation of the pitching airfoil oscibiats

Results

In Figure 3, a comparison of the results by the present stadyba the previous
one (Barakost al., 1999), is shown, concerning the lift and moment coefficients
The amplitudes of the lift and moment coefficients simuldigdhe present study are
qualitatively coherent with the results by (Baralaisal., 1999). However, there are
significant differences concerning the dynamic stall wexdi

NACA 0012, & = 10° + 10%in{0.25¢), M = 04, He =5 % 107 NACA 0012, 0 = 10° 4 10%in{0.25¢), M = 0.4, He =5 107
s 1.1 r

B
)
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a Results of (Barakost al.,1999)

0 5 10 15 20 0 5 10 15 20
a o

b Results of the present study

Figure 3. Evolution of the lift and moment coefficienf¥., = 5000, M., = 0.4,
k=0.25
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The first difference indicates a drastically different babaon the kind of dy-
namic stall. Both studies show a strong hysteresis chardateng the oscillation cy-
cle, (Figure 3a). The stall occurs at the maximum incidenciee study by (Barakoest
al., 1999), whereas it appears at abb@3° in the present study, before the maximum
angle is reached. The second difference is the formationrafraber of secondary
peaks in the present study along the suction side, conagtiménlift and drag coeffi-
cients, (Figure 3b). These peaks correspond to the paséagebier scale organised
eddies along the suction side. Indeed, the vortex dynamiastified by the present
study are more complex than the previous study, where ordyvontex structure is
convected and creates the dynamic stall.

Yic

XIC

ate =5.12,a = 15.5°

Yic

Ctoo =6.6,a = 8.5° dte =730 =5

Figure 4. Vorticity iso-contours - descendant phase of the pitchimdion, Re,, =
5000, M, = 0.4, k = 0.25, in white the positive vorticity, in black the negative
vorticity

In Figure 4, the vorticity iso-contours are presented at fostantaneous snap-
shots, allowing tracking of the vortex structures during tlow motion. These struc-
tures are not organised along a von-Karman vortex streegdmording to a jet like
structure, forming the well known mushroom patterns tharabterise the pitching
motions (Chandrasekhaet al., 1990), (Choudhuret al., 1996). The existence of
a multitude of vortices beyond the von-Karméan ones in mdeeReynolds number
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range Re > 2000) is also a fact reported by incompressible flow studies attdha
NACA0012 wing, (Hoarawt al.,2003).

4. High-Reynolds number pitching motion of the NACA0012 aifoil

In this section, the high-Reynolds number flow around a NAGKED airfoil is
investigated by using appropriate URANS modelling. Thiadkieved by means of
the Organised Eddy Simulation, OES approach.

The Organised Eddy Simulation approach

In the context of the URANS/OES macrosimulation (Organigddy Simulation
(Dervieuxet al., 1998, Brazeet al., 2006)), the turbulent spectrum is decomposed
in a first part regrouping all the coherent processesaolved partyand in a second
part regrouping all the chaotic processsdependently on their size (spectrum to be
modelled) as presented schematically in Figure 5 and experimeritafigure 6.

/';7 LES: (1) - Predictable {inhesently 30)
(3 : Modeled

\jk / LES: the distinction of resolved
1
1

and modelled structures 1s based
~ on their size

Energy spectrum, Turbulent Unsteady Eix)
Flows with coberent structures )
Flows in non-equiibram \ ()

) ;

; Y
n: wulti- (or single)
component spectium
splitting

! OES = (1) + ()

n

Figure 5. Schematic representation of the energy spectrum in the [ BR®@iganised
Eddy Simulation approach: the distinction between thecétnes to be resolved and
those to be modelled is based upon their organised or randwaracter. Part (2) of
the non-equilibrium energy spectrum modelled by recoms@iadvanced statistical
turbulence modelling, due to the inertial-range spectruasdaiation, schematically
shown on the right
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Figure 6. Turbulence spectra in the detached flow past a cylindeRat= 140000,
(*/p = 1, ¥/p = 0.375), (Brazaet al.,2006), showing the slope modification in the
inertial range due to interaction between the coherentattites and random turbu-
lence

It is recalled that in LES the distinction is done accordiagtte structures size
and this limitates this approach to moderate Re-numbersernmg wall-turbulence
around bodies. The fact that the spectrum part to be modell@&s is extended from
the low to the high frequencies allows the use of statistizddulence modelling, that
is very efficient in high Reynolds number modelling of wallf® In the time-domain,
the equations are the phase-averaged Navier-Stokes @ugiatvhere the turbulent
stresses have to be modelled by reconsidered statistibalémce modelling closures.
We had conjectured (Braza, 2002) that due to the non-limgaraction between the
coherent part and the incoherent othesre must exist a shape and slope modification
of the inertial part in the spectrum, in the vicinity of theae This has been now
quantified, either by means of the LDV data or by the presenlysftime-dependent
PIV data), (Brazat al.,2006).

The modification of the energy spectrum in the inertial rategals to modified
turbulence scales in the context of the statistical twoatign modelling, as achieved
in a previous work of us (Jiat al.,1994, Hoaraet al.,2002, Bouhadjét al.,2002), by
means of the second-order moment closures. This yieldoaseteration of the eddy-
diffusion coefficient for the class of two-equation modwdlj as well as an improved
damping function to attenuate turbulence towards the Wadlgt al.,1994).

5. The turbulence modelling

The Reynolds stress transport model (RSTM) has been uskd phase-averaged
Navier-Stokes system, to derive the modification of theulahce scales involved in
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the evaluation of the eddy-diffusion coefficierif to be used in the OES two-equation
modelling. In this study, the computation up to the real \wak been achieved by us-
ing the RSTM model (Laundat al.,1975), and (Shima, 1988)’s turbulence damping
towards the solid wall. This is an original element of thisdst in the state of the art,
where the RSTM model is difficult to use towards the solid s/bkcause of stability
problems, whenever the computational grid is not adequ2iften, zonal approaches
are used combining the RSTM in an outer region and a lowegraldss of modelling
near the wall. However, by using zonal approaches, thetwbilithe RSTM model
of capturing the normal stress anisotropy is lost in the snegion. In the present
study, this benefit has been preserved by achieving coniputatth the RSTM up
to the real wall. The second-order turbulence modellingsda® use a behavior law
for modelling the turbulent stresses. It uses full transpquations for the Reynolds
stress tensor, where third-order correlations have to teeften:

Duiuj

Di :ij-i-D;jj—FPij-i-Hij—Eij

where the turbulent diffusion is the one proposed by ([Zalgl.,1970):

D?.: a (C’Sﬁukulam>

Y Oy € oz,

The viscous diffusion and the production are exact terms:

, _ 0 ( oum; R (RO P —
Dij B 6:ck (V 8Ik ) P” B (uzu}C 8Ik +UJUk 6xk)

The redistribution term is split into the slow part, the dhpart and the wall reflection
part as suggested by (Shima, 1988):

IL;; = ®; + ©F; + 3

2 ~ € 2
(I)le = -7 (P” — gPéﬂ) (I)gj = _CQE (uiuj — gkéﬂ)

(I)lu; = fu |:045(H7 - géwp) - 003(D1J - géwp) + 008/€SU:|
fuw =exp [—(0.015k1/2y/u)4]

Finally we have:

-1 2
P = i(P”) Eij = géijg

Dy = — (umk oU}, 6Uk)

8xj +ujUk 8171



Flow prediction around pitching airfoil 461

We solve the modified dissipatiégn= ¢ — D as proposed by (Chien, 1982):

08 — 0% o [k OF 928 - g &2
v i m— = Cer— | —(Wiuj) 5— ) P 5 7 — Le - D
ot T Vias, Caxi{a(uuﬂaxjwaxﬁ Cahig—Calog+
with:
k
D =2v—
y2

The constant used are the classical ones:

Cs=022 C.=018 Co=18 ~=06 C.q=144 Cp=19

A better universality of the employed constants is achidwedhe RSTM than
with first-order closures. Furthermore, the turbulencelpobion term is provided as a
function of the resolved turbulent stresses and therefasenot submitted to the lim-
itations of the Boussinesq law. A better description of #adling edge region is then
achieved, especially with respect to the passage from thanéa to the transitional
and afterwards to the turbulent near-wall regions.

The numerical behavior of the RSTM up to the wall in unsteaaly firediction has
been carefully studied in the present work. The convergefite transport equations
is achieved using a higher order of iterations within theetistep, comparing with
the two-equation models. Indeed that the RSTM modellingvsh® more unstable
character because it is eddy-viscosity free and for thisaed needs numerically a
higher number of iterations within a time-step to reach evgence.

Figure 7. Comparison of the prediction of the leading edge region betwtwo differ-
ent order closures showing the formation of a laminar stelalyble. Left: Reynolds
stress transport model (RSTM) up to the wall (Shima’s neatwersion); right: OES
modifiedk — ¢ low Reynolds number model of Chien

The flow around a NACAO0012 airfoil at = 20° and a Reynolds number 6>
is computed with the Reynolds Stress model described irhin@revious section. A
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very good representation of the physics for the separatiduble (Figure 7) and for
the vortex shedding is obtained (Figures 8 and 9).
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Figure 8. Computation of the flow around a NACA0012/&t = 10° anda = 20°
with the RSTM of (Laundest al.,1975)
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Figure 9. RSTM results for the flow around a NACA0012 airfoil, Re%18=20° at
the sectiore/c = 1.226 andy/c = 0.272, capturing the inherent unsteadiness and
vortex sheddingx V' > velocity component

5.1. The eddy-diffusion coefficient

In the context of two-equation modelling, the unsteady afmerof the phase-
averaged Navier-Stokes equations does not suffice for aleteripjprovement of the
prediction of unsteady separated flows if the modelling exggions are kept the same
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as in fully developed turbulent steady-state flows (in stizil equilibrium). Certainly,
the OES approach captures the unsteady organised modasdieapected to develop
during the time evolution of the convection term. Howeviee, €énergy of these modes
in the spectrum is broadened (lowered) and in some casgsdathped if the clo-
sure hypotheses for the continuous part of the spectrumairphysically adapted.
A global effect of this default is seen in the prediction of timean value and of the
amplitude of the fluctuating drag coefficient, both undedpred. This weakness of
the two-equation models is strengthened in the case ofigaslige accelerated flows,
as those around bodies.

It is well known that these models provide an excessive lefiélirbulence pro-
duction (Jinet al.,1994). The excessive rate of kinetic energy in the upstregion
of the flow (around the leading edge) comes from the adopfitimeoBoussinesq ap-
proximation: the turbulence stresses are modelled as arlifin@ction of the strain
rate by means of the eddy viscosity concept. This modellomes from a simple
analogy and from an extension of the (exact) BoussinesgHawstands for the rela-
tion between the molecular stresses and the strain rate thleontinuum hypothe-
sis for a Newtonian fluid and therefore derive the well knovavigr-Stokes system.
The adoption of Boussinesq approximation has given sat@fia results in equilib-
rium turbulent flows under the (steady) Reynolds-averagedaior. The Boussinesq
approximation is therefore satisfactory in the case of & fatcomplished energy
cascade from the big to small eddies, where the strain ratetanphysical turbu-
lence diffusion are in balance, (e.g. far-field wakes, sinty region of jets, steady-
state boundary layers). In the case of leading-edge doedretcelerated flows of
the present interest, it is known that the strain-rate islpmanant in the vicinity
of the leading edge region, where the turbulence diffusgophysically very low.
Obviously, the modelling through the Boussinesq law presid turbulence produc-
tion, P;; = 0(< wyu; >< U; >)/0z;, that is excessively high. This yields an ex-
cessively high level of the turbulent kinetic energy, trgbuhe modelling relation:
v = C, k%/e whereC,, = 0.09 after numerical optimisations based on turbulent
flows in statistical equilibrium, according to the standegdsion of thek — ¢ model,
Figure 10.

The implementation of the RSTM model has offered the pod#sild assess an
equivalent eddy-diffusivity coefficient to be employedwotequation modelsin OES.
The cross-term of the turbulence anisotropy tensor haséednated by means of the
RSTM results (Figure 11). A non-constant behavior of thenter < uwv > / < k >
is found in the near-wall region. It will be remembered thas tquantity is almost
constant in equilibrium boundary layers (Bradshetwal.,1967) and it has the value of
0.3. Under the equilibrium hypothesis of "Production=[0jasion", the well known
C,, value of 0.09 can be deduced. In the present case of noniauit flow, the
variation of — < uv > / < k > forms a "plateau” at the value of 0.2 (Figure 11).
This indicates that the eddy-diffusion coefficie@, should have a lower value than
the one of equilibrium boundary layers.
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a Streamlines at dimensionless tittie = b Streaklines
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Figure 10. Computation of the flow around a NACA0012R¢ = 10° anda = 20°
with the original version of thé — £ Chien’s model (URANS computation)
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Figure 11. Longitudinal evolution of < uv > / < k > in the recirculation area an
in the wake (see sketch)

In the present study, the evaluation of thg coefficient has been possible through
an a posterioriquantification of the turbulent kinetic energy and théelds calcu-
lated by the RSTM. An equivalent eddy viscosityhas been deduced by adopting
a posteriorithe Boussinesq law. The optimum value & has been determined by
the relationv; = C,, k?/e. Table 1 shows the order of magnitude of thg values
in the near regionThe order of magnitude @, recommendable for massively sepa-
rated unsteady flows is found 0.(xperimental results by (Aubrun, 1998) have also
indicated this order of magnitude for turbulent flows wittheoent structures.
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This value ofC), as well as the aforementioned modified damping function are
used in a modified version of the— ¢ model. Therefore, the model referred as the
OES model is the (Chien, 1982)— « model with the two modifications”,, = 0.02
and f, = 1 — exp(—0.0002y™ — 0.000065y2). The behaviour of the modified
OES-k — e model has been tested firstly for a fixed NACA0012 wing at twela-
grees of incidence, developing a massive unsteady sepaiatid vortex shedding,
according to the experimental results of (Fadeal.,1998).

Table 1. Evaluation of an equivalerd,, coefficient by means of the RSTM

x/c ylc equivalentC),
3.610°%2 ] 3.21072 0.0158
0.45 57102 0.01859

0.9064 0.15 0.01938
1.41 -0.678 0.0178
1.23 0.11 0.0172
0.73 0.19 0.024

Itis shown that the OES approach is able to predict the sBpam@nd detachment,
in agreement with the experiment, as well as the frequenttyedhherent unsteadiness
(experimental Strouhal number 0.51), Figure 9. The meag dral lift coefficients
are shown in Table 2. A good agreement is obtained. Furthrerthere is no tendency
of over-predicting the drag coefficient, as often occuréiwlie standard two-equation
modelling.

Table 2. Prediction of the aerodynamic coefficients compared to ex@ats for the
flow around a NACA0012 ate = 10° anda = 20°

Drag Lift
Experience | 0.32006| 0.75381
OESk — ¢ 0.29355| 0.86575

Originalk — ¢ | 0.34248| 1.04824

Concerning the coherence of this model in respect of the flovegjuilibrium, it
is worthwhile to notice that the equilibrium behaviour ih@rently restituted in the
regions where the flow physics reach this state: the flow ¢éeslwnder the modified
modelling is unsteady. The part of the resolved turbulerigs fhe part of modelled
turbulence yield the sum obeying to the equilibrium assuwnptvith an equivalent
value of theC, coefficient 0.09. Therefore, the velocity profiles and tlebustresses
calculated after post-treatment of the time-dependerntitiga are in accordance with
the equilibrium stage in the respective flow regions.
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5.2. Results

Computations are performed with the NSMB code (Navier-&sakultiblock) for
the pitching airfoil test-case of (Caet al.,1977, McCrosket al.,1976) and (McAl-
isteret al.,1978) at Reynolds number of order one million. The physieahmeters
of the simulation are given in Table 3. An O-type mesh has lsed. The modified
OESk — ¢, and OES-k — w turbulence models (Hoaraat al.,2002) are compared
with the behaviour of thé — w/SST model (Menter, 1994). The computational grid is
500 x 226. The unsteady global parameters versus time are shownumeFl@ and in
Figure 13. A good comparison with the experimental data byOvieskey and Mc Al-
istair is achieved. Table 4 shows the maxima and minima cditkeeaged aerodynamic
coefficients in comparison with the experiment. The isaieity contours are shown
in Figures 14 and Figure 15 according to the OES- ¢ andk — w/SST respectively.
The OES-k — ¢ allows a more rich creation of organised vortices that ahnébited
by thek — w/SST, especially in the descending phase of the motion. H&-®@ — w
provides practically comparable results with the GES- ¢ model in respect of the
iso-vorticity contour dynamics and for the sake of savingcsp these results are not
presented. The overall comparison between the OES appamaichrevious URANS
one (the SST in this case) indicates the improvements aathigy OES using the same
grid size.

Table 3. Physical flow parameters

Reynolds number 0.98 x 10°
Mean incidence 15°
Oscillation amplitudef«) 10°

Pitch axis location

1/4 of chord length

Oscillation frequencyw)

0.0170383 rad/seq

Reduced drequency

0.1

Mach number

0.072

Table 4. Averaged maximum values of the aerodynamic coefficients

Experiment OESk —w | OESk —¢ | SSTk —w
Cp (max) 0.92 0.9 0.9 0.9
Cr, (max) 2.2 2.1 2.1 2.0
Cp, (max) -0.4 -0.36 -0.36 -0.3
pulsation @) | 0.0170383 rad/se¢

The fluid structure interaction according to the presentystaptured by the OES
approach yields the formation of a series of smaller scajarosed vortices down-
stream of the leading edge during the ascending phases ofdtien, (angled4.1°
and17.2°, Figure 14). These vortices considerably grow and detaattioally from
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the leading edge during the descending phase of the motibe.c®nvected vortex
downstream of the trailing edge forms a mushroom like stmast(angle24.2°).

500 K 1000 1500 0 500 1000 1500
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1000 1500 3 500
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a CLift b CDr'ag
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»

Qs
"
50 500

1000
t

C«

Figure 13. Time-dependent aerodynamic coefficients (drag, kfty, w—SST
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a6.14° b 8.43°

C 14.43° d 17.27°

e22.57° f 24.23°

g 24.72° pitch down h 23.52° pitch down

Figure 14. Iso-vorticity contours at different phase anglés; e—OES
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al0.8° b 13.8°

|

€ 19.9° d 22.3°

|
®

e 24.9° f 24.8° pitch down

g 21.7° pitch down h 19.1° pitch down

Figure 15. Iso-vorticity contours at different phase anglés; w—SST
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6. Conclusion

The dynamic mesh adaptation method indicates a robust behavior and provides
results that capture the fluid structure interaction dynamics in the case of pitching
airfoils motion, providing rich vortex dynamics in accordance with experimental vi-
sualisations. The numerical approach by this method indicates achievement of more
accurate dynamic stall phenomenon in respect to the physics. The OES macrosimula-
tion approach provides a good representation of the vortex dynamics concerning the
interaction at high Reynolds number turbulent pitching flow around the NACA0012
airfoil, with extrema aerodynamic parameters close to the experiment. This approach
provides a more rich coherent structures dynamics in the formation and the stall phases
than previous URANS approaches.
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8. Annex: governing equations and numerical implementatio
8.1. Governing equations

In two dimensions, the Navier-Stokes equations for an astecompressible
flow can be written under conservative and non-dimensiaraifin a general, non-
orthogonal, curvilinear coordinate system:

Re \ ¢ "y

07, 0F oF 1 (06 o
ot 9  On  Re

p pU pV

~ pu > pulU +&p | & puV +ngp

=J E=J F=J

1 pv poU + &yp poV +nyp

e (e+p)U (e+p)V
0 0

~ ngmm + g Ty D NeTex + MNyTx

G=J vy R=J vy
CaTya + EyTyy NaTyz + My Tyy

whereg is the unknown vectoZ, F andG, R are the inviscid and the viscous fluxes,
respectively. u,v are the cartesian velocity components in x and y directiothe
density,p the pressure andthe total energy per unit volume, defined as:

u? + v?
2
wheree; is the specific internal energy.

€= pe;+p
U andV are the so-called contravariant velocities algrand»:

U=&u+&v V=nu+nv

The stresses terms are given as:

Tog = % (duy — 2vy) Ty = % (4vy — 2uy)

Toy = Tyo = B (Uy + Vz)
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where:

Uy = Ugly + UnNe Uy = ugly + Unty
we defined, andg, as:

B = ’;—'ueix F UTpg + VTay By = VP—Meiy + UTye + UTyy
r T

R, P, v andp are respectively, the Reynolds number, the Prandtl nunifoer,
ratio of specific heat, and the dynamic viscosity. We can detie dimensionless
laminar viscosity by the Sutherland law as:

110.4
To + 1

110.4
T T

wlw

p= T
WhereT) is a reference temperature.
The metric terms are :

R U RN
L= 7 J =g

whereJ = z¢y, — x,y¢ is the jacobian of the transformation. Finally, the presgur
is related tae; andp by the perfect gas equation of state:

p=(y—1)pe;

The dimensionless variables are specified through the cleorgth, the uniform
stream velocity, and density.

8.2. Numerical method

8.2.1. The spatial scheme

The convection-pressure terms, because of their hyperbiodiracter, are respon-
sible of weak solutions; their discretisation should bdisightly stable to capture
flow discontinuities (shock waves) without diminishing #hecuracy of the scheme.
The Roe’s upwind scheme (Roe, 1981) among other, is apptepriadapted to the
capture of shock waves and has moreover good propertiestufitst
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The discretisation of thg-directional inviscid tern gives:

@ B E:Jr%j_E:f%j
o ) Ag
ij

whereE™* is the numerical flux, and it is expressed as:

% Ira il
EiJr%j 9 |:E’L'+%j + EiJr%j - Dz‘+%j}

The damping functio® has the following form:
1 ~
Diy1j=IAliyy, {‘Alﬂéj - qi+§g}

whereA is the Roe’s matrix.

Following theMUSCL! approach (van Leer, 1979), one can obtain a spatially higher
order differencing by taking' andq™ as follow:

1 {(1 —B)Agiy1;+ 5Aqi*%3}

l
qi-ﬁ-%j =qij + B

, 1
Gy =G5~ 5 {(1 = B)Agiy1;+ 5Aql‘+%ﬂ}

whereAq;, 1; = git1; — ¢, 9 = J g, andg € [0, 1].

By takings = % a second-order accurate half-upwind scheme or the saldaitenm
scheme is adopted in this study (see (Yee, 1987)).

8.2.2. The temporal scheme

The explicit third-stage third-order Runge-Kutta sche®ieuet al.,1988) is used.
Re-writting th Navier-Stokes equations as:

97 _

)

1. Monotonic Upstream Schemes for Conservation Laws.
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this scheme reads:

ij 6 ij ij 3 ij
~(n+1) _ ~3)
qi;l = 4y

The advantage of Runge-Kutta scheme lies in the fact thafthgal discretisation
is totally cut out of the temporal one; this ensure us an agpioée and non-negligible
freedom in the choice of the numerical spatial scheme.



