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ABSTRACT. The computation of fluid forces acting on a rigid or deformable structure 
constitutes a major problem in fluid structure interaction. However, the majority of 
numerical tests consists in using two different codes to separately solve pressure of the fluid 
and structural displacements. In this paper, a monolithic with an ALE formulation approach 
is used to implicitly calculate the pressure of an incompressible fluid applied to the structure. 
The projection method proposed by Gresho is used to decouple the velocity and pressure. 
RÉSUMÉ. Le souci majeur des problèmes d’interaction fluide-structure est le calcul des forces 
fluides qui agissent sur une structure rigide ou déformable. Cependant, la majorité des essais 
numériques consiste à utiliser deux codes différents pour résoudre séparément la pression du 
fluide des déplacements de la structure. Dans cet article, un code monolithique avec une 
approche de formulation ALE est employé pour calculer implicitement la pression d’un fluide 
incompressible appliquée à la structure. La méthode de projection proposée par Gresho est 
utilisée pour découpler la vitesse et la pression. 
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1. Introduction 

A computational procedure is developed to solve problems of viscous 
incompressible flows interacting with rigid or deformable structure. The arbitrary 
Lagrangian Eulerian method (ALE) is used to move the internal fluid nodes whereas 
the boundary fluid nodes move with the structure. The coupling of the mesh motion 
equations and the fluid equations is essentially done through contact surface 
boundary conditions. In continuum mechanics, two descriptions are considered for 
the motion in a continuum media: 

– the first is the Eulerian description, where we focus attention on a particular 
volume in space. The volume is fixed in with respect to a laboratory frame, and we 
study the fluid as it passes through the fixed volume. The description is one in which 
the fluid is continuously renewed inside the volume, the Eulerian description is not 
the simplest in which the basic equations of fluid motion can be formulated. A 
convective term is introduced to express the material time derivative in the reference 
configuration. The convective term gives a nonsymmetrical form of the Galerkin 
formulation. Since the computational domain is fixed, the Eulerian description has 
the advantage of preserving the mesh regularity; 

– the second is the Lagrangian description, in which we identify and follow a 
particular region of fluid. The volume of fluid changes in shape, while the total mass 
remains constant. In the Lagrangian description, the mesh of the computational 
domain moves with the particle fluid velocity. In the Lagrangian description, the 
motion of the mesh may lead to element entanglement; this description is preferred 
for problems with small motion. 

In this paper, we present the algorithm of a monolithic code which permits to 
compute the structural displacement, fluid velocity and pressure at the same time. In 
order to solve the problem, we use a finite element formulation to solve the 
governing equations for the structure and the Navier-Stokes equations with a 
Lagrangian formulation. If we solve the governing equations for the fluid in Eulerian 
or Arbitrary Langrangian Eulerian (ALE) formulation, we use the “split” operator 
described in Section 4. In order to solve fluid structure interaction problems, we 
have to compute the pressure acting on the structure. The projection method, 
introduced initially by Chorin and Temam (1968) and proposed by Gresho (1990) is 
implemented to meet this requirement. The numerical example studied in this paper 
shows the interest of an implicit pressure for this type of problems. This paper is 
organized as follows: in the Section 2, the ALE formulation is described. In the 
Section 3, the governing equations are presented. The Sections 4 and 5 are devoted 
respectively to the description of the structural and fluid analysis algorithm. In the 
Section 6, the numerical implementation is described and a numerical test is 
proposed in the Section 7. More precisely, we validate the algorithm on the case of 
the flow between two cylinders, numerical results that indicate the effectiveness of 
the approach are presented.  
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2. The ALE description 

The ALE description for incompressible viscous flows has been developed by 
Hughes et al., (1981), to solve free surface flows and fluid structure interaction 
problems. A general kinematics theory was developed by Hughes, which serves as 
the basis of the Lagrangian-Eulerian description. For this purpose, the authors define 
three domains in space, and mappings from one domain to the other. The first one, 
called the spatial domain, is considered as the domain on which the fluid problem is 
posed. The spatial domain is generally in motion, because of moving boundaries. 
The second domain, called the material domain, is to be thought of as the domain 
occupied at time t = 0 by the material particles which occupy the spatial domain at 
time t. The third domain, called the reference domain, is defined as a fixed domain 
throughout. From these domain descriptions, we can see that the Eulerian description 
is obtained when the spatial domain coincides with the reference domain, whereas 
the Lagrangian reference is obtained when the material domain coincides with the 
reference domain. 

Both the material and spatial domains are generally in motion with respect to the 
reference domain; it is convenient to express the material time derivative of a 
physical property φ in the reference configuration. 

φφφ ∇+=
•

., ct  [1] 

where 
•
φ is the material time derivative, and φ,t is the time derivative when freezing 

coordinates in the reference domain, c is the convective velocity. 

mvvc −=  [2] 

v is the fluid velocity, and vm is the mesh velocity. In the Eulerian description, the mesh 
velocity is zero, vm = 0, whereas in the Lagrangian description vm = v and c = 0. 

In the ALE formulation, the mesh nodes move with an arbitrary velocity. The 
choice of the mesh velocity constitutes one of the major problems with the ALE 
description. Different techniques have been developed for updating the mesh in a 
fluid motion, depending on the fluid domain. For problems defined in simple 
domains, the mesh velocity can be deduced through a uniform or non uniform 
distribution of the nodes along straight lines ending at the moving boundaries. For 
general computational domains, the mesh velocity is computed through partial 
differential equations, with appropriate boundary conditions (see Longatte et al., 
2003). A more general diffusion equation can be used for the mesh velocity: 

0))1(( =∇+ vdiv τ  [3] 
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whereτ is a non dimensional function given on each element by: 

elem∆
∆−∆

= minmaxτ  [4] 
in which ∆elem represents the area of the current element. The parameter τ is designed 
in order to prevent distortion of small elements. 

3. Governing equations 

The Lagrangian formulations are frequently used to solve the structural 
problems. Indeed, displacements of the nodes and the elements on a Lagrangian 
mesh correspond to the movements of material. The material edges always coincide 
with the edges of the elements. Thus, if the material sharply becomes deformed, the 
mesh is subjected to large distortions. In general, the structural deformations are 
weak so that the Lagrangian mesh remains regular and is not subjected to distortions. 
The boundary conditions are easily imposed because the edges of the mesh represent 
the limits of the physical domain during calculation. For these reasons, the 
Lagrangian formulations are much appreciated. In the Cartesian coordinate system, 
the displacement of the structure u in a domain ΩS (see Figure 1) is governed by 

( ) iSjij
i

S gu
t
u

ρσρ +=
∂

∂
,2

2
 [5] 

with initial and boundary conditions 

[ ]Tuu DSii ,0on ×Ω=
∧

δ  [6] 

in which, σij, ρS, gi and iu
∧

 stand for, respectively, the Cauchy stress tensor, the 
structure density, gravity acceleration components and imposed displacement 
components. δΩDS is the structural displacement boundary region. T is the final time 
of the run. 

Two points of view are generally considered to describe the movement of a fluid. 
The first is Lagrangian where the motion of the mesh follows that of the fluid. The 
disadvantage of this description is to generate large mesh distortions. The second is 
Eulerian and consists in studying the movement of the fluid in fixed positions. The 
domain of study is fixed and the fluid is updated constantly in this one. This method 
introduces a term of convection into the equations to be solved. It avoids the great 
distortions of mesh. However, the difficulty is deferred to the interface where it is 
difficult to represent the boundary conditions for a problem of interaction fluid 
structure. 
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Figure 1. Fluid and structure domains 

So, we made recourse to a mixed formulation. This later is the ALE method 
which combines at the same time Eulerian and Lagrangian descriptions to describe 
the movement of the fluid particles. In this framework, the velocity of the 
incompressible viscous fluid in a domain ΩF is characterized by the mass and 
momentum conservation laws such that 

[ ]Tv Fii ,0in0, ×Ω=  [7] 

( ) [ ]Tgvvv
t
v

Fijij
F

ji
m
jj

i ,0in1
,, ×Ω=−−+

∂
∂ τ

ρ
 [8] 

where vi and ρF indicate, respectively, the flow velocity components and the fluid 
density. The term vm represents the velocity of the mesh. If vm = 0, we obtain the 
Eulerian formulation because the convective velocity of the mesh is nil. If vm = v, we 
obtain the Lagrangian formulation for which the convective velocity is the fluid 
velocity. The quantity vALE = v – vm is the relative velocity and the stress tensor τ is 
commonly defined by: 

( ) ijijjiFij pvv δµτ −+= ,,  [9] 

where µF is the dynamic viscosity. 

The momentum equation is to be solved with the initial condition and the 
boundary conditions on the boundary region δΩDF: 

( ) Fiv Ω= in00  [10] 

[ ]Tvv DFii ,0on ×Ω=
∧

δ  [11] 

where iv
∧

are the imposed velocity components on δΩDF. 

ΩS ΩF 

∂ΩDS ∂ΩDF 

∂ΩOUT 

∂ΩI ∂u/∂t 
v 

p = 0
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The boundary conditions on the fluid structure interface δΩI are given by: 

[ ]T
t

u
v I

i
i ,0on ×Ω

∂
∂

= δ  [12] 

and p = 0, on the outflow boundary δΩOUT. 

4. Structural analysis algorithm 

To model the structural behaviour, we use the elastic constitutive law. So the 
Cauchy stress tensor is integrated incrementally in time (see Hallquist, 1998): 

tij
n
ij

n
ij ∆+=

•
+ σσσ 1  [13] 

where the superscript n indicates the value of the quantity at time t = n∆t and the dot 
denotes the material time derivative given by: 

kijkkjikijij ωσωσσσ ++= ∇
•

 [14] 

in which ω is the spin tensor 












∂
∂

−
∂
∂

=
i

j

j

i
ij x

u
x
u

2
1ω  [15] 

and σ∇ is the Jaumann stress tensor 

IdTr 







+=

••
∇ ελεµσ 2  [16] 

where µ, λ are the Lamé coefficients and Tr is the trace. The strain tensor ε is 
defined as follows: 

( )ijjiij uu ,,2
1 +=ε  [17] 

Introducing the Young modulus E and the Poisson number ν which are defined 
as: 
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( )
λµ

λµµ
+
+= 32E  [18] 

( )λµ
λν
+

=
2

, [19] 

the Jaumann stress tensor can be written: 

















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+
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••

∇ IdTrE ε
ν

νε
ν

σ
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 [20] 

So the computation of the displacement u is split into three steps: 

– Strain tensor. The first consists in calculating the strain tensor ε with the 
displacement obtained at the last time step. 











+=
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ij uu ,,

1
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1ε  [21] 

– Cauchy stress tensor. With the new value 
1+• n

ijε and by neglecting rotations, the 

Cauchy stress tensor σ is computed  
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– Displacement update. The double integration of the residue gives: 

( )n
i

n
jij

S

n

i

n

i gtuu +∆+= +
•+•

1
,

1

σ
ρ

 [23] 

tuu
n

i
n
i ∆=

+•
+

1
1  [24] 

where the dot is the time derivative. 

Numerical computational of Equations [21] to [24] is performed with a finite 
element method. 
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5. Fluid analysis algorithm 

It is well known that the main difficulties arising in the numerical solution of the 
convection-diffusion equations are due to their no-self-adjoint character. The 
standard Galerkin method leads to no physical spatial oscillations when applied to 
the high convective case. To preclude such anomalies, the most popular method 
being the use of upwind differencing on the convective term via Petrov-Galerkin 
methods (see, for example, Heinrich et al., Heinrich and Zienkiewicz, Belytscho et 
al.). Although theses methods are precise and stable, we will use a “split” method 
which is a simple mean to obtain a robust and effective formulation. This time-split 
method decomposes the time step into two phases: 

– phase 1 is a solution of the Lagrangian equations of motion (advection terms 
are nil) updating the velocity field by the effects of all forces. For the fluid, the 
velocity-pressure formulation of the discretized problem is decoupled by the 
projection method (for more details, see Medic and Mohammadi (1999) and Cho 
and Lee (2003)); 

– phase 2 adds advection contributions, and is required for runs that are Eulerian 
or contain some relative motion of mesh and fluid. 

In order to effectively solve the pressure and velocities satisfying the continuity 
constraint [7] for the phase 1, we adopt the fractional method proposed by Gresho 
(1990). The idea of these methods is to decouple the velocity v and the pressure p. 
These are based on a resolution in three steps of the Navier-Stokes equations. 

Hereafter, we describe briefly the above method in Langrangian formulation. 

– Intermediate velocity. The first step consists in calculating an intermediate 
velocity v*, solution of the Naviers-Stokes equation without taking into account the 
continuity constraint. 

F
n
i

n
i

F

n
jji

F

Fn
i

n
i gpvtvv Ω








+−∆+=

+
in1

,,
1*

ρρ
µ

 [25] 

I

n
in

i t
u

v Ω∂
∂

∂
=

+
on

1*  [26] 

– Projection. As the velocity v* does not yet satisfy the incompressibility 
condition [7], it is projected on a divergence free space to get an adequate 
approximation of the velocity. This is obtained from: 

i
F

ii ptvv ,
* ∆∆+=

ρ
 [27] 

with vi,i = 0 in ΩF. The term ∆p is a corrective pressure. 
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The second step consists in deriving a Poisson equation for the pressure p. In 
fact, by taking the divergence of the Equation [27] and using the incompressibility 
condition [7], we obtain: 

F
n

ii
n
ii

F
v

t
p Ω

∆
=∆

++ in11 1*
,

1
,ρ

 [28] 

Once the corrective pressure ∆pn+1 has been determined, the final velocity field is 
obtained from the intermediate velocity v* and ∆p: 

F
n
i

F

n
i

n
i ptvv Ω∆∆−= ++∗+ in1

,
11

ρ
 [29] 

– Pressure update. Since v is the physical velocity, the pressure p can be given 
from ∆p. 

11 2 ++ ∆+= nnn ppp  [30] 

For the phase 2, we used a first order Godunov method: the Donor Cell (see 
Benson, 1992 and Amsden et al., 1980). This step is bypassed for a purely 
Lagrangian calculation. In all other cases (Eulerian and ALE calculation) the relative 
velocity vALE is not nil, and we must calculate the flux of momentum between cells. 
For each cell (see Figure 2), we calculate the volume swept out by each of faces 
relative to their Lagrangian positions xL. According to the sign of these volumes, we 
add or remove momentum to the cell. 
 

 

 

 

 

 

 

 

 

 

 

Figure 2. Volume swept out by a face in one direction 

x(t) xL(t+∆t) 

vALE 
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6. Numerical implementation 

In the course of the Langrangian phase, we compute structural displacements and 
intermediate velocities necessary to the projection method. To obtain displacements 
and velocities, we compute nodal forces from respectively the Equations [25] 
and [26]. This allows us to use the same method to solve the structural behaviour and 
the liquid dynamic response. The difference between the structural algorithm and the 
fluid algorithm is the computation of stress tensors σ  of the structure and τ of the 
fluid with the laws (see Equations [20] and [9]) which are different. Then, we solve 
the pressure form the Equations [28] and [30]. So, we obtain the velocity which is 
solenoidal (div(v) = 0). For the Lagrangian nodes, we move the domain to update 
the coordinates of the nodes. And for the other nodes, we compute the momentum 
flux of the cell in order to update the velocity. 

The numerical algorithm is sketched on figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. Flowchart for the time-incremental fluid structure numerical analysis 
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7. Numerical results 

To illustrate this numerical method, we study the case of a confined flow between 
two cylinders which are considered as infinite (see Figure 4). The diameter of the 
outer cylinder is D = 5,5.10-2 m and that of the inner cylinder is d = 2,2.10-2 m. The 
thickness of the walls is e = 10-3 m. The structural density, the Young modulus and 
the Poisson number are respectively ρS = 2700 kg.m-3, E = 69 000 MPa and v = 0,3. 
The fluid density and the kinematical viscosity are respectively 
ρF = 1000 kg.m-3 and µ = 1,7545.10-2 m2.s-1. Only the inner cylinder is excited, the 
other is fixed. Its velocity has the form: 

)sin()(),,,( tfAtvtzyxv x π==  [31] 

with an amplitude A = 10-3 m and a frequency f = 38,7 Hz.  
 

 
 

Figure 4. Problem description 

In this example, δΩI = δΩDS and δΩDF = δΩOUT = ∅. 

We compare our results obtained by the method described in this paragraph 6 
with those obtained by ASTER-SATURN and provided by Electricité De France 
(EDF) (Bendjeddou, 2005). In this paper, we examine the evolution of the pressure 
at the points A and B which are diametrically opposite (see Figures 4 and 5). To not 
deform the fluid mesh and create great distortions with the structural displacement, 
we use an ALE mesh for the elements near the inner mobile cylinder and an Eulerian 
mesh for the others elements (see Figure 5). This enables us to obtain a good 
approximation of the pressure of the element since in this case the mesh is not 
crushed. 
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Figure 5. Computational mesh 

 
Figure 6. Pressure evolution at the points A and B 

 
 
 

Eulerian mesh 

ALE mesh

fixed cylinder 

mobile cylinder 
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Figure 7. Pressure evolution at the points A and B (ASTER-SATURNE) 

Figures 6 and 7 show the pressure evolution at two points obtained by the method 
adopted here and ASTER-SATURNE code respectively. We can observe that our 
results agree well with those reported by EDF. Moreover, the frequency of the 
response is the same frequency as that the imposed velocity defined by the 
Equation [31]. This study seems to enable us to validate the present numerical 
method of resolution for the equations described in the paragraph 1 for the rigid 
body. 

8. Conclusion 

In this paper, an ALE formulation for viscous incompressible flow, and a strong 
coupling algorithm for fluid structure interaction problems, where structural nodes 
and fluid nodes are merged have been presented. A spatial finite element 
discretization is used to solve both fluid and structure problems. However, for the 
advection term of the Navier-Stokes equation, a first order Godunov method or a 
second Van Leer algorithm can be used. For the computation of the fluid dynamic 
response, the projection method defined by Gresho is implemented in order to 
handle the pressure term in the Navier Stokes equations. Numerical test shows that 
the projection method is an appropriate one for predicting fluid structure interaction 
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problem. The extension of this work will be the computation of fluid forces that act 
on a deformable structure in order to take into account the real structural behaviour. 
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