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ABSTRACT.In the present paper different occurring phenomena during the interaction between
certain structural configurations and laminar incompressible flows are investigated. Prelimi-
nary investigations concerning the grid movement technique provide the basis for the adequate
treatment of the fluid structure interaction problems. Several mechanisms according to real ex-
periments are presented. Systematical numerical studies of material parameters are performed
on the basis of a moderately complex fluid structure interaction test configuration. The solution
procedure involves the finite-volume flow solver FASTEST, the finite-element structural solver
FEAP, and the coupling interface MpCCI.

RÉSUMÉ. Dans cet article des phénomènes différents apparaissant pendant l’interaction entre
certaines configurations structurales et des écoulements laminaires et incompressibles sont ex-
plorés. Des investigations précédentes concernant la technique de mouvement du maillage four-
nissent la base pour le traitement adéquat des problèmes d’interaction fluide structure. Confor-
mément aux expériences réelles divers mécanismes sont représentés. A la base des configura-
tions d’interaction fluide structure de test faiblement complexe des études numériques des para-
mètres matériaux sont effectuées systématiquement. La procédure de résolution inclut le solveur
d’écoulement du fluide basé sur la méthode des volumes finis FASTEST,le solveur structural
basé sur la méthode des éléments finis FEAP et l’interface de couplage MpCCI.
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1. Introduction

The interaction of fluids and deformable bodies often cause complex physical se-
quences occurring in many applications in industry and science. Besides the task of
solving the coupled problem from the mathematical point of view, a further challenge
exists in understanding and describing the corresponding mechanisms. Most of these
problems are accompanied by large structural deformationsleading to highly non-
linear phenomena where the classical theory of small oscillations becomes invalid.

In the present paper such kind of coupled problems involvinglaminar incompress-
ible flows are investigated with respect to the mechanical behavior and the coupling
mechanisms. The numerical solution of the coupled problem is done by an implicit
partitioned solution approach. The method is realized on the basis of the finite-volume
flow solver FASTEST (FASTEST, 2004), the finite-element structural solver FEAP
(Taylor, 2002), and the coupling interface library MpCCI (SCAI, 2004). To stabilize
the whole solution procedure an underrelaxation techniqueis employed determining
the magnitude of the coupling scheme. In addition, multigrid techniques for accelerat-
ing the computations are applied for the fluid part. For the mesh movement algebraic
and elliptic approaches are considered, which are investigated comparatively in a pre-
liminary study.

2. Governing equations

We consider a problem domainΩ consisting of a fluid partΩf and a solid part
Ωs, which regarding the shape as well as the location of fluid andsolid parts can
be arbitrary. For the fluid domain partΩf we assume a flow of an incompressible
Newtonian fluid. In this case the basic conservation equations governing transport of
mass and momentum for a fluid control volumeVf with surfaceSf are given by:

∫

Sf

(vj − v
g
j )nj dSf = 0 , [1]

d

dt

∫

Vf

ρfvi dVf +

∫

Sf

[ρfvj(vi − v
g
i )nj − Tijnj ] dSf =

∫

Vf

ρfffi dVf , [2]

wherevi is the velocity vector with respect to Cartesian coordinates xi, t is the time,
ρf is the fluid density, andffi are external body forces (e.g., buoyancy forces).v

g
i is

the velocity with whichSf may move (grid velocity) due to displacements of solid
parts. The stress tensorTij for incompressible Newtonian fluids with the pressurep

and the dynamic viscosityµf is defined by:

Tij = µf

(

∂vj

∂xi

+
∂vi

∂xj

)

− pδij . [3]
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The model equations for the solid domainΩs may take rather different forms de-
pending on the concrete problem and coupling mechanisms involved. The models
range from a simple rigid body motion without any deformation of the solid up to
strongly nonlinear (physically and/or geometrically) deformations. The basic balance
equation for momentum for the solid domainΩs can be written as

ρsüi −
∂σij

∂xj

= ρsfsi , [4]

whereui is the displacement,σij denotes the Cauchy stress tensor,ρs is the density
of the solid, andfsi are external volume forces acting on the solid (e.g., gravitational
forces).

The solid model equations are completed by a suitable (problem dependent) con-
stitutive equation relating the stresses with strains:

σij = Wij(εkl) [5]

with a suitable strain tensorεkl. Here, for the considered test cases the St. Venant-
Kirchhoff material is employed (e.g., (Ogden, 1997)).

The problem formulation has to be closed by prescribing suitable boundary and
interface conditions. On solid and fluid boundariesΓs andΓf standard conditions as
for individual solid and fluid problems can be prescribed. For the velocities and the
stresses on a fluid-solid interfaceΓi we have the conditions

vi = u̇b
i and σijnj = Tijnj , [6]

whereu̇b
i is the velocity of the interface.

3. Numerical fluid structure coupling scheme

The discretization of the problem domain is based on a block-structuring tech-
nique. Fluid and solid parts are assigned to different blocks. Solid blocks are treated
by the finite-element solver FEAP (see (Taylor, 2002)). For the fluid blocks, which
can be defined as moving or fixed, the parallel multigrid finite-volume flow solver
FASTEST is employed (see (FASTEST, 2004; Schäferet al., 2001)). Both solvers
involve second-order spatial discretizations and fully implicit second-order time dis-
cretizations.

For the fluid structure coupling an implicit partitioned approach is employed. In
Figure 1 a schematic view of the iteration process, which is performed for each time
step, is given. After the initializations the flow field is determined in the actual flow
geometry. From this the friction and pressure forces on the interacting walls are com-
puted. These are passed to the structural solver as boundaryconditions. The structural
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solver computes the deformations, with which then the fluid mesh is modified. After-
wards the flow solver is started again.

In the fluid solver a discrete form of the space conservation law

d

dt

∫

Vf

dV =

∫

Sf

v
g
j nj dS [7]

is taken into account in order to compute the additional connective fluxes in [1]-[2] for
blocks that are moving. This is donevia the swept volumesδVc of the control volume
faces for which one has the relation (see (Demirdz̆ić et al., 1998) and (Demird̆zić et
al., 1990)):

∑

c

δV n
c

∆tn
=

V n
f − V n−1

f

∆tn
=

∑

c

(vg
j njSf)

n
c , [8]

where the summation indexc runs over the faces of the control volume, the indexn

denotes the time leveltn and∆tn is the time step size. By this way interface displace-
ments enter the fluid problem part in a manner strictly ensuring mass conservation.

The fluid structure interaction (FSI) iteration loop is repeated until a convergence
criterionε is reached, which is defined by the change of the mean displacements:

<FSI = max
i=1,2,3

∑N
k=1 |u

k,m−1
i − u

k,m
i |

N
< ε , [9]

wherem is the FSI iteration counter andN is the number of interface nodes. Note that
an explicit coupling method would be obtained, if only one FSI iteration is performed.

The data transfer between the flow and solid solvers within the partitioned solu-
tion procedure is performedvia an interface realized by the coupling library MpCCI
(see (SCAI, 2004)). In Figure 2 the corresponding information flow is represented
schematically. MpCCI is used for controlling the data communication as well as for
carrying out the interpolations of the data from the fluid andsolid grids.

After the initialization MpCCI is provided with the geometry information at the
fluid-solid interface for both grids. From the flow solver these are the coordinates of
the control volume vertices and centers at the interface. From the structural solver
only the node coordinates are required. With these geometryinformations the forces
at the nodes of the structural grid are interpolated and passed to the structural solver.
The displacements from the structural solver at the nodes are transfered to MpCCI,
which interpolates the displacements to the control volumevertices of the fluid grid
interface. Afterwards the complete fluid grid is adapted (see below) and the corre-
sponding coordinates of the control volume centers are computed. Finally, the new
geometry informations are passed to MpCCI for the next iteration.
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Figure 1. Flow chart of coupled solution procedure
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An update of the geometry information of the solid grid is notnecessary, since the
structural finite-element computations always relate to the original solid grid. Note
that with the considered approach nearly arbitrary discretizations for the fluid and
solid subproblems can be used,i.e., there is no need for matching grids.

Various test computations have shown that the coupling scheme is rather sensitive
with respect to the deformations in the first FSI iterations.Here, situations that are far
away from the physical equilibrium can arise, which may leadto instabilities or even
the divergence of the FSI iterations. In order to counteractthis effect an underrelax-
ation is employed. The actually computed displacementsuact are (linearly) weighted
with the valuesuold

i from the preceding iteration to give the new displacementsunew
i :

unew
i = αFSIu

act
i + (1 − αFSI)u

old
i , [10]

where0 < αFSI ≤ 1. Note that the underrelaxation does not change the final con-
verged result.

4. Grid movement techniques

The method for moving the grid in the fluid domain constitutesan important com-
ponent of the coupled solution procedure, in particular in the case of larger structural
deformations. Besides the requirements that no grid folding occurs and that the mesh
exactly fits the moving boundaries one has to take care that distortions of control vol-
umes are kept to a minimum in order not to deteriorate the discretization accuracy and
the efficiency of the solver.

4.1. Numerical schemes

We consider algebraic and elliptic mesh generation techniques for the grid move-
ment with capability of boundary orthogonality. To simplify the presentation we de-
scribe the approaches for a single two-dimensional structured block surrounded by 4
boundary curves I to IV (see Figure 3). The generalization tothe three-dimensional
case and to multiple blocks is straightforward.

For a structured two-dimensional block there is a one-to-one mapping~x(ξ, η) =
(x(ξ, η), y(ξ, η)) of the physical coordinates~x = (x, y) to computational coordinates
(ξ, η) where without loss of generality0 ≤ ξ ≤ 1 and0 ≤ η ≤ 1. In each FSI iter-
ation the coordinates of the interior grid points have to be computed from the (given)
boundary points distribution.
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Figure 3. Deformation of structured two-dimensional block

First, we consider algebraic approaches. A very simple method is obtained by lin-
ear interpolation between opposite boundaries, e.g. boundary I to III. Let the distances
between neighboring grid points be

di,j = ‖~xi,j − ~xi−1,j‖ i = 1 . . . N, j = 0 . . . M, [11]

with the overall lengths

Lj =

N
∑

i=1

di,j j = 0 . . . M. [12]

The normalized lengths for the parametrization are

L̄i,j =
1

Lj

i
∑

m=1

dm,j i = 1 . . . N, j = 0 . . . M, L̄0,j = 0, [13]

and finally the whole domain is computed by

~xi,j = (~xN,j − ~x0,j) · L̄i,j + ~x0,j i = 0 . . . N, j = 0 . . . M. [14]

A further algebraic method is the linear transfinite interpolation (TFI), where the
interior grid points are computed by

~x(ξ, η) = (1 − η)~x(ξ, 0) + η~x(ξ, 1) + (1 − ξ)~x(0, η) + ξ~x(1, η)

−ξ [η~x(1, 1) + (1 − η)~x(1, 0)]

−(1 − ξ) [η~x(0, 1) + (1 − η)~x(0, 0)] . [15]

The algebraic methods are simple, but deteriorated grid cells and even grid folding
may occur.
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For an elliptic grid movement we adopt an approach describedin (Thompsonet
al., 1999) which is based on the following (elliptic) Poisson equation for the physical
coordinates:

a~xξξ − 2b~xξη + c~xηη + (aP 1
11 − 2bP 1

12 + cP 1
13)~xξ

+(aP 2
11 − 2bP 2

12 + cP 2
13)~xη = ~0 [16]

with the control functions

~P11 =
1

sηtξ − sξtη

[

tη −sη

−tξ sξ

] [

sξξ

tξξ

]

[17]

~P12 =
1

sηtξ − sξtη

[

tη −sη

−tξ sξ

] [

sξη

tξη

]

[18]

~P13 =
1

sηtξ − sξtη

[

tη −sη

−tξ sξ

] [

sηη

tηη

]

[19]

and the abbreviations

a = xηxη + yηyη, b = xξxη + yξyη, c = xξxξ + yξyξ . [20]

An indexξ andη denotes the corresponding derivatives. Figure 4 shows how the map-
ping between the computational space and the physical domain is performed through
the parameter space(s, t) that can be used to control the quality of the mesh.
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Figure 4. Mapping strategy for elliptic grid movement

We consider a parameter space withs(I) = 0, s(III) = 1, t(IV) = 0, and
t(II) = 1. The point distribution alongs(II), s(IV), t(I), and t(III) arises from
linear interpolation along these boundaries involving thenormalized arc length. The
inner parameter domain is adapted by solving simultaneously:

s = s(IV)(1 − t) + s(II)t , [21]

t = t(I)(1 − s) + t(III)s . [22]
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Next, the control functionsP i
11, P i

12, P i
13, i = 1, 2 can be computed according

to [17] to [19] and remain unchanged during the solution of [16]. The derivatives in
Equation [16] are approximated by central differences and aPicard iteration process
is used for linearization:

ak−1~xk
ξξ − 2bk−1~xk

ξη + ck−1~xk
ηη

+(ak−1P 1
11 − 2bk−1P 1

12 + ck−1P 1
13)~x

k
ξ

+(ak−1P 2
11 − 2bk−1P 2

12 + ck−1P 2
13)~x

k
η = ~0 . [23]

In each step this equation system is solved by the Gauß-Seidel algorithm (the com-
putation time for this step is negligible compared to the total time) for the unknown
grid coordinatesxk

i,j andyk
i,j , i = 1 . . . N − 1, j = 1 . . . M − 1. The Picard itera-

tion process is repeated as long as a certain convergence criterion is satisfied. Within
the FSI iteration process the coordinates of the previous iteration are applied as initial
values. The whole solution algorithm, which is summarized schematically in Figure 5
operates like a mesh smoother. In any case a boundary conforming mesh without grid
folding results.

The described method can be extended according to (Thompsonet al., 1999),
(Spekreijse, 1995) with respect to boundary orthogonality. First a boundary conform-
ing grid without grid folding is computed with the elliptic method explained above.
On this mesh we consider the Laplace equations:

4s =
∂2s

∂x2
+

∂2s

∂y2
= (

1

J
asξ −

1

J
bsη)ξ + (−

1

J
bsξ +

1

J
csη)η = 0, [24]

4t =
∂2t

∂x2
+

∂2t

∂y2
= (

1

J
atξ −

1

J
btη)ξ + (−

1

J
btξ +

1

J
ctη)η = 0, [25]

with the abbreviations

a = xηxη + yηyη, b = xξxη + yξyη,

c = xξxξ + yξyξ, J = xξyη − xηyξ, [26]

in combination with the Neumann boundary conditions

∂s

∂~n
= 0,

∂t

∂~n
= 0, [27]
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Figure 5. Flow chart of elliptic mesh movement method

where~n = (n1, n2) is the outward unit normal vector. Since the calculations for both
variabless andt are similar, further derivations are outlined fors only. Equation [24]
involves a divergence expression that allows for applying the finite volume method:

∫

Ω
(
1

J
asξ −

1

J
bsη)ξ + (−

1

J
bsξ +

1

J
csη)η dξdη

=

∫

∂Ω

[

1

J
(sξ(an1 − b n2) + sη(−b n1 + c n2))

]

dσ = 0, [28]

where the integration is done for a control volumeΩ and its boundary∂Ω with the
line elementdσ, respectively. The computational domain is discretized byunit control
volumes for inner points and half control volumes for boundary points, leading to one
system of linear equations fors. Since the boundary condition [27] transforms to

1

J
(sξ(an1 − b n2) + sη(−b n1 + c n2)) = 0, [29]
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these terms have to be set to zero for the desired orthogonal grid lines at boundaries.
During the solution process, boundary points are moved along edges (s(IV ), s(II))
until convergence is reached. These points are combined by cubic Hermite interpola-
tion:

s = s(IV )(1 + 2t)(1 − t)2 + s(II)(3 − 2t)t2, 0 ≤ t ≤ 1, [30]

t = t(I)(1 + 2s)(1 − s)2 + t(III)(3 − 2s)s2, 0 ≤ s ≤ 1. [31]

Since the interpolation is analytically given, the Jacobian matrix and its inverse
can easily be calculated and solved simultaneously fors andt by the Newton algo-
rithm. As initial condition the parameter space values fromthe first elliptic solution
are applied, leading to convergence after one or two Newton iterations. Finally the
desired grid is computed by solving the elliptic equations once again with the new
control functions. Figure 6 shows the whole algorithm schematically on the basis of
an asymmetrically deformed domain with boundary orthogonality on all four edges.
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Figure 6. Example of generating a boundary orthogonal grid

The advantages of this approach lie in the great flexibility allowing independent
orthogonalization of all four boundaries while keeping theedge point distribution un-
changed. Furthermore the method is very robust and even works in cases of huge
deformations (see Section 4.2).
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4.2. Numerical results

In this section, we investigate the influence of the grid movement and compare the
algebraic and elliptic approaches described in Section 4.1. As a test case we consider
a laminar flow around a rotating cylinder fixed in a channel which allows for a system-
atic variation of the amount of grid movement. Figure 7 showsthe geometry and the
corresponding block structure consisting of two fixed blocks at the inlet and the outlet
and four moving blocks belonging to an O-grid around the cylinder. The kinematic
viscosity is defined asνf = 10−3 m2/s and the fluid density isρf = 1.0 kg/m3. At
the inflow a parabolic velocity profile with mean velocityū = 0.2 m/s which together
with the cylinder diameter ofD = 0.1 m gives the Reynolds numberRe = 20. To
get a physically two-dimensional problem a symmetry boundary condition is applied
in the third direction. The cylinder is rotated in steps of 5 degrees. The grid adaption
according to the rotating cylinder is done on the one hand by linear and transfinite
interpolation belonging to algebraic methods and on the other hand by elliptic ap-
proaches also supplying boundary orthogonality as outlined in Section 4.1. After each
step a steady flow computation is performed until grid folding or divergence of the it-
erations occur. 125 000 control volumes and exactly the sameparameters are used for
all cases and for all angles of torsion. For comparison a reference solution obtained by
a computation with 450 000 control volumes on an undeformed mesh is considered.
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U=V=W=0

U=V=W=0
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Figure 7. Test configuration for grid movement techniques (units in m)

In Figures 8 and 9 the grids with the maximum angle of torsion for which the
last converged solution could be achieved are illustrated.It should be mentioned that,
except the linear interpolation, the boundaries II and IV are approximated by a cubic
spline interpolation to get angles of aboutα = 45o andβ = 90o (see Figure 7).While
the elliptic approach allows for an angle of 95o the linear interpolation works until 70o.
TFI begins to fail from 50o on. The elliptic approach in combination with boundary
orthogonality reaches values even up to 100o.

In Figure 10 a comparison of the lift coefficients with varying rotation angle is
shown. The TFI is nearly congruent with the orthogonal elliptic approach that also
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gives satisfying results even for larger angles. The usual elliptic method shows nearly
the same values. The linear interpolation leads to high deviations from begin on.

Figure 8. Maximum possible grid distortions with linear (left, 70o) and transfinite
interpolated (right, 50o) grid movements

Figure 9. Maximum possible grid distortions with elliptic smoother (left, 95o) and
additional boundary orthogonality around the cylinder (right, 100o)

In Figure 11 the numbers of iterations required to obtain theconverged solution for
varying rotation angle are indicated. The iteration numbers increase with increasing
angle. While for small angles the linear interpolation is slightly faster, the situation
changes for larger angles due to the heavy distortions of control volumes near the
boundary. The values for TFI increase dramatically caused by grid distortions around
the cubic spline.

In summary, considering both, accuracy and efficiency, one can state that for small
distortions,i.e., with angles of torsion≈ 0o − 20o, the algebraic methods work satis-
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factorily, but for larger angles with the elliptic approaches significantly more accurate
results can be obtained. The latter even still work in cases where the algebraic ap-
proaches leads to grid folding. TFI only is useful for very small displacements because
of the high computing times for larger deformations.
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Figure 10. Comparison of lift coefficients with algebraic and ellipticgrid movements

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Angle of torsion in degree

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

11000

11500

12000

12500

13000

Ite
ra

tio
ns

algebraic linear
algebraic tfi
elliptic
elliptic orthogonal

Figure 11. Comparison of computational effort with algebraic and elliptic grid move-
ments



Fluid excited structural vibrations 505

5. Numerical investigation of fluid excited vibrations

5.1. Comparison with experiments

First, fluid structure interaction phenomena are studied ona real test case. The
corresponding experiments are performed by the Institute of Fluid Mechanics at Uni-
versity of Erlangen-Nürnberg (see (Gomeset al., 2006)).
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55
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Outlet,0−Gradient
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Figure 12. Geometric properties of test channel (units in mm)

Figure 12 shows the geometric properties of the test channelincluding the struc-
tural configuration presented in Figure 13. For the (highly viscous) fluid polyethy-
lene glycol is chosen with densityρf = 1050 kg/m3 and kinematic viscosityνf =
1.64 · 10−4 m2/s. The structural configuration consists of a cylindrical aluminum
front body (ρs = 2828 kg/m3, E = 7 · 1010 N/m2), a thin membrane of stainless
steel (ρs = 7855 kg/m3, E = 2 · 1011 N/m2), and a rectangular rear mass (ρs =
7800 kg/m3, E = 2 · 1011 N/m2). The configuration is fixed in the channel with
one rotational degree of freedom positioned at the center ofthe cylinder, where no
friction is assumed at the fixing point. The gravity force is aligned with thex-axis.
The physical problem can be considered as two-dimensional what was confirmed by
several measurements. In the simulations this is represented by symmetry boundary
conditions inz-direction.
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11

71

Figure 13. Sketch of structural configuration
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For the structural discretization 920 linear solid hexahedrons (in-plane) are applied
in combination with enhanced strain formulations (see (Taylor, 2003)) allowing for
very large aspect ratios. The fluid domain is discretized by 13 444 (in-plane) control
volumes. For mesh adaption the elliptic method is applied.

For a better understanding of the fluid structure interaction mechanism first an
eigenfrequency analysis for the structure is carried out bya pure structural simulation.
The first two eigenmodes are shown in Figure 14 (the trivial rigid body motion with
0.048 Hz is not considered). In the first mode with frequency 6.12 Hz the front body
moves in the same direction as the rear mass, while in the second mode with frequency
30.07 Hz the moving directions of the front and the end mass are opposite.

First mode (6.12 Hz) Second mode (30.07 Hz)

Figure 14. Eigenmodes of structural configuration

5.1.1. First swiveling motion with low inlet velocity

Applying an uniform inlet velocity of̄u = 1.14 m/s (Re ≈130) the structure starts
vibrating by itself, in the computation as well as in the experiment, and oscillates with
the first swiveling motion,i.e., the front body moves in the same direction as the rear
mass. Figure 15 shows a comparison of the superposition of structural deformations.
The corresponding trailing edge displacements for one period are presented in Fig-
ure 16 (experimental results from internal communication with (Gomeset al., 2006)).
The slope shapes are similar. The amplitude of the computation is a little larger then
in the experiment. The reason of this appears to be the assumption of a totally two-
dimensional problem. In the experiment a small gap between the rear mass and the
side walls arises that results in a small damping effect. Since the first swiveling mo-
tion is qualitatively similar to linear small vibrations, one can state that with damping
the amplitude decreases. The computed swiveling motion frequency is 7.0 Hz (see
Figure 17) and the corresponding experimental value is 6.64Hz (from internal com-
munication with (Gomeset al., 2006)). A snapshot of the velocity component in
x-direction is given in Figure 18.
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Figure 15. Superposition of images at a time-phase angle of 90o and 270o, experiment
(left), computation (right), first swiveling motion

Experiment Computation

Figure 16. Comparison of trailing edge displacements for one period, first swiveling
motion
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Figure 17. Spectral representation of rear mass and front body oscillations (from sim-
ulation results) for first swiveling fluid structure interaction motion
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Figure 18. Snapshot of velocity inx-direction for first swiveling fluid structure inter-
action motion

5.1.2. Second swiveling motion with higher inlet velocity

Increasing the uniform inlet velocity tōu = 1.37 m/s (Re ≈170) the structure
oscillates with the second swiveling motion,i.e., the front body moves in opposite di-
rection as the rear mass. Figure 19 shows the superposition of structural deformations
for experiment and computation. A comparison with Figure 15shows the difference
between the two modes, particularly the intersection pointin the second case. In Fig-
ure 20 a comparison between experiment and simulation for the displacement of the
trailing edge in thex-y-plane is shown. The experimental and numerical results are
in very good agreement. The maximumy-amplitude in both cases is between 18 and
20 mm. The slope shapes are nearly equal. In that case the damping effect mentioned
before obviously is less significant. The experimental and numerical frequencies are
13 Hz±1.5% and 12.7 Hz,i.e., there is a very good agreement. The spectral represen-
tation of the rear mass and front body oscillations obtainedfrom the simulation results
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Figure 19. Superposition of images at a time-phase angle of 90o and 270o, experiment
(left), computation (right), second swiveling motion

Experiment Computation

Figure 20. Comparison of trailing edge displacements for one period, second swivel-
ing motion
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is shown in Figure 21 indicating that other occurring frequencies are negligibly small.
The frequency analysis also indicates that the first swiveling motion frequency is close
to the pure structural first eigenfrequency, but regarding the second swiveling motion
this is not the case.

A snapshot of the velocity component inx-direction is given in Figure 22. The
oscillation is periodic but not harmonic what is expected for non-linear vibrations. A
comparison with Figure 18 illustrates the larger deformation, the higher velocities and
the larger frequency in case of the second swiveling motion.
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Figure 21. Spectral representation of rear mass and front body oscillations (from sim-
ulation results) for second swiveling fluid structure interaction motion
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Figure 22. Snapshot of velocity inx-direction for second swiveling fluid structure
interaction motion
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5.2. Influence of material parameters on fluid excited structuralvibrations

Now, material properties causing different structural behavior are varied and stud-
ied systematically. The investigations are performed withregard to realistic material
properties to have the possibility to compare the phenomenawith those of the preced-
ing section.

The same test channel as before is used (Figure 12) with the configurations pre-
sented in Figure 23. The structure consists of a rigid front plate (ρs = 7855 kg/m3),
fixed with one rotational degree of freedom in the center and an attached membrane
(configuration (a)). Combining the membrane with a rear mass(geometry is fixed)
at the trailing edge leads to a second configuration (configuration (b)). To limit the
amount of varying parameters, both the front body and the fluid properties are kept
unchanged during the investigation. For comparison the displacements of points A
and B, respectively, and the overall deformation are considered. As initial condition
15 mm deviation of point B is prescribed.

1 1

85

25 25 20
85

7

D DA B A
B

Configuration (a) Configuration (b)

Figure 23. Structural test configurations (units in mm)

The fluid domain is discretized with 15 840 control volumes (in-plane) and
symmetry boundary conditions. For acceleration a multigrid solution approach
is employed. The highly viscous fluid polyethylene glycol (ρf = 1075 kg/m3,
νf = 5·10−4 m2/s) with an uniform inlet velocity of̄u = 2 m/s results in a Reynolds
number ofRe = 340. Since the membrane undergoes very large deformations(local
strains are still moderate) the elliptic smoother is indispensable for mesh adaption,
otherwise grid folding occurs. The structure is discretized by 320 linear solid hexa-
hedrons (in-plane) applying an enhanced strain formulation. St. Venant-Kirchhoff’s
material law is chosen for linear material behavior with kinematics of large deforma-
tions and small strains.

All parameters and results are summarized in Table 1. First,configuration (a) is
considered with real properties for the membrane (ρs = 7855 kg/m3, E =2·1011 N/m2)
varying the thickness. Starting withD = 0.03 mm results in a non-periodic oscillation
as described in Figure 24. Two images are superposed where the front plate reaches
the upper and lower turning point. The front body swivels non-periodically around an
angleα. Taking Figure 25 into account, at a time of about 0.45 seconds α changes
its sign and the swiveling motion takes place at the oppositeside of the x-axis. The
same effect recurs approximately att = 0.8 seconds. The reason for the non-periodic
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behavior is the very thin membrane. As the thickness gets smaller and smaller the
structure loses its stiffness and the configuration reacts like a flag fixed in a fluid
stream,i.e., the movement gets more and more chaotic.

α

Figure 24. Superposition of front plate turning points for non-periodic oscillation
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Figure 25. Non-periodic structural vibrations with very thin membrane

The non-periodic behavior disappears by increasingD to 0.08 mm and 0.13 mm,
respectively, leading to steady small displacements of points A and B. Note that vary-
ing the membrane thickness is similar to changing its stiffness.

Next, the membrane density is varied. With a value ofρ = 1
4
·7855 kg/m3 (E = 2·

1011 N/m2,D = 0.08 mm) also steady displacements result. The same is valid for
ρ = 7855 kg/m3 (as mentioned before) andρ = 4·7855 kg/m3. Increasing the den-
sity 64 times toρ = 64·7855 kg/m3 a damped oscillation occurs. Finally withρ =
128·7855 kg/m3 andρ = 256·7855 kg/m3 a stable periodic first swiveling motion is
achieved with huge amplitudes as it can be seen in Figures 26 and 27. Figure 28 illus-
trates the dependency of the movement of points A and B on the membrane density.
The transient regions for which the behavior changes are notclearly distinguished and
are therefore indicated with dotted lines.
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Figure 26. Superposition of front plate turning points for periodic huge oscillation
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Figure 27. Periodic oscillation in first swiveling motion, configuration (a)

Figure 29 illustrates the corresponding mesh movement indicating the large defor-
mation and the excellent grid adaption by the elliptic approach. The algebraic methods
certainly will fail for this task. One can state that for configuration (a) it is only possi-
ble to get a periodic motion by increasing the density dramatically what, however, is
not practicable with real materials.
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Figure 28. Dependency of the amplitudes/displacements on the membrane density

Figure 29. Mesh movement corresponding to huge structural deformation
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Next, configuration (b) is considered including a rear mass of varying density at
the trailing edge. With a small mass, e.g., polyethylene with ρs = 950 kg/m3, all dis-
placements are zero. Changing the mass material to steel,ρs = 7855 kg/m3, leads to a
periodic first swiveling motion as shown in Figures 30 and 31.

Figure 30. Superposition of images at a time-phase angle of 90o and 270o for peri-
odic oscillation (first swiveling motion)
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Figure 31. Periodic oscillation in first swiveling motion, configuration (b)

Finally, the membrane stiffness is varied. Decreasing the Young’s modulus to
E = 1

8
·1011 N/m2 andE = 1

2
·1011 N/m2, respectively, results in a periodic oscillation

in the second swiveling motion as presented in Figures 32 and33. The amplitudes de-
crease and the frequency rises from 8.9 Hz (first swiveling motion) to 13.6 Hz (second
swiveling motion). Comparing Figures 30 and 32 with those ofSection 5.1 (Fig-
ures 15, 19), one can recognize a similar phenomenon, especially the additional inter-
section point for the second swiveling motion and the increasing swiveling frequency.
Applying a higher stiffnessE = 8·1011 N/m2 leads to a damped oscillation up to zero
displacements. Figure 34 illustrates how the amplitudes depend on the Young’s mod-
ulus of the membrane. The transient regions are not clearly distinguished and marked
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with dotted lines therefore. Note the highly non-linear behavior, in particular the dif-
ferent increase and decrease of amplitudes of points A and B.

Figure 32. Superposition of images at a time-phase angle of 90o and 270o for peri-
odic oscillation (second swiveling motion)
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Figure 33. Periodic oscillation in second swiveling motion, configuration (b)

The results can be summarized as follows. A stable periodic swiveling motion
applying real materials can only be achieved with a rear mass. Without a weight the
membrane density has to be increased dramatically to achieve a stable motion. If
the stiffness is too high the oscillations are damped and thedisplacements tend to
zero. Thus, the mechanism of this fluid structure interaction configuration is that the
kinematic energy of the flow is transferred to the structure which transcribes it in terms
of motion (Figure 35 (1)). If the stiffness is appropriate the membrane begins to bend
and the fluid damping effect is low (2a), otherwise the movement is rapidly abandoned
(2b). If the density is too small the kinetic energy, stored in the structure is insufficient
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to move the membrane to a position corresponding to that where it is started at the
opposite side (3a). Only if this is achieved a periodic swiveling motion is obtained
(3b).
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Figure 34. Dependency of the amplitude/displacement on the membrane Young’s
modulus, configuration (b)
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Figure 35. Mechanism of the fluid structure interaction configuration
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Table 1. Material parameters and the corresponding structural behavior

Config. Membrane Rear mass

(a) / (b) ρ[kg/m3] E [N/m2] D [mm] ρ[kg/m3]] Structural behavior

a 7855 2·1011 0.03 – non-periodic

a " " 0.08 – steady displacements

a " " 0.13 – steady displacements

a 1

4
·7855 2·1011 0.08 – steady displacements

a 1·7855 " " – steady displacements

a 4·7855 " " – steady displacements

a 64·7855 " " – damped oscillation to steady displ.

a 128·7855 " " – periodic, first mode, tall amplitude

a 256·7855 " " – periodic, first mode, huge amplitude

b 7855 2·1011 0.08 950 (PE) zero displacements

b " " " 7855 periodic, first mode, moderate ampl.

b 7855 1

8
·1011 0.08 7855 periodic, second mode, moderate ampl.

b " 1

2
·1011 " " periodic, second mode, moderate ampl.

b " 2·1011 " " periodic, first mode, moderate ampl.

b " 8·1011 " " damped oscillation to zero

6. Conclusion

Investigations of mechanisms for fluid structure interaction configurations have
been presented. Preliminary studies with respect to the grid movement illustrated the
advantages of an elliptic approach, in particular in case oflarge mesh deformations.
The complex structural behavior during fluid excited oscillations on the basis of an
experimental configuration has been presented, especiallythe transition from a first
swiveling motion to a second swiveling motion by increasingthe fluid velocity. An
identical phenomenon has been confirmed by other corresponding computations with
excellent coincidence. In parameter studies, a variety of structural behavior, ranging
from non-periodic vibrations, damped oscillations to periodic first and second swivel-
ing motions have been found. Studying such kind of effects also gave a possibility to
validate the employed implicit partitioned solution approach.
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