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ABSTRACT.In the present paper different occurring phenomena during the intena between

certain structural configurations and laminar incompressible flows avestigated. Prelimi-

nary investigations concerning the grid movement technique provideastis for the adequate
treatment of the fluid structure interaction problems. Several mecharasoording to real ex-
periments are presented. Systematical numerical studies of materéahpters are performed
on the basis of a moderately complex fluid structure interaction test coafign. The solution

procedure involves the finite-volume flow solver FASTEST, the finiteelestructural solver

FEAP, and the coupling interface MpCCI.

RESUME. Dans cet article des phénomenes différents apparaissant penddetdation entre
certaines configurations structurales et des écoulements laminairesoghpressibles sont ex-
plorés. Des investigations précédentes concernant la technique demeut du maillage four-
nissent la base pour le traitement adéquat des problémes d’interaatide Btructure. Confor-
mément aux expériences réelles divers mécanismes sont repsegetadase des configura-
tions d'interaction fluide structure de test faiblement complexe des étudesrigues des para-
meétres matériaux sont effectuées systématiquement. La procédeésmtigion inclut le solveur
d’écoulement du fluide basé sur la méthode des volumes finis FASIEEBNeur structural
basé sur la méthode des éléments finis FEAP et l'interface de couplag€EMpC

KEYWORDSFSI, large deformations, fluid excited vibrations, elliptic grid generation.

MOTS-CLES :interaction fluide structure, grandes déformations, vibrations excitéekefaide,
maillage elliptique.

DOI:10.3166/REMN.16.491-51® 2007 Lavoisier, Paris. Tous droits réservés

REMN — 16/2007. Fluid structure interaction, pages 491 to 519



492 REMN- 16/2007. Fluid structure interaction

1. Introduction

The interaction of fluids and deformable bodies often caoseptex physical se-
quences occurring in many applications in industry andmeee Besides the task of
solving the coupled problem from the mathematical pointiew a further challenge
exists in understanding and describing the correspondechamisms. Most of these
problems are accompanied by large structural deformatieading to highly non-
linear phenomena where the classical theory of small asiciis becomes invalid.

In the present paper such kind of coupled problems invollangnar incompress-
ible flows are investigated with respect to the mechanichhbier and the coupling
mechanisms. The numerical solution of the coupled probkdone by an implicit
partitioned solution approach. The method is realized efotsis of the finite-volume
flow solver FASTEST (FASTEST, 2004), the finite-elementustural solver FEAP
(Taylor, 2002), and the coupling interface library MpCCC@&, 2004). To stabilize
the whole solution procedure an underrelaxation technisjeeployed determining
the magnitude of the coupling scheme. In addition, mulligechniques for accelerat-
ing the computations are applied for the fluid part. For themmaovement algebraic
and elliptic approaches are considered, which are invastigcomparatively in a pre-
liminary study.

2. Governing equations

We consider a problem domain consisting of a fluid parf); and a solid part
Qs, which regarding the shape as well as the location of fluid solil parts can
be arbitrary. For the fluid domain paft; we assume a flow of an incompressible
Newtonian fluid. In this case the basic conservation egnatgmverning transport of
mass and momentum for a fluid control volufiiewith surfaceS; are given by:

/(Uj - vf)nj de = 0, [1]

St

d g

q | Prvi dVi + [ [prvj(vs — v9)nj — Tijn 1 dSe = [ pefra AV, [2]
Vi St Ve

wherev; is the velocity vector with respect to Cartesian coordisatet is the time,

pr is the fluid density, and; are external body forces (e.g., buoyancy forces)is
the velocity with whichS; may move (grid velocity) due to displacements of solid
parts. The stress tens®y; for incompressible Newtonian fluids with the presspre
and the dynamic viscosity; is defined by:

a’U]‘ 81}1‘
Tij = [t (0561 + 8—17]) - p(szj . [3]
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The model equations for the solid domd&ig may take rather different forms de-
pending on the concrete problem and coupling mechanisnwdved. The models
range from a simple rigid body motion without any deformatif the solid up to
strongly nonlinear (physically and/or geometrically) atefiations. The basic balance
equation for momentum for the solid domdi can be written as

. 00;j
PsUi — P s psfsia [4]
Lj
whereu; is the displacement;; denotes the Cauchy stress tenggris the density
of the solid, andf,; are external volume forces acting on the solid (e.g., gatienal
forces).

The solid model equations are completed by a suitable (prollependent) con-
stitutive equation relating the stresses with strains:

oij = Wij(er) [5]

with a suitable strain tensay,;. Here, for the considered test cases the St. Venant-
Kirchhoff material is employed (e.g., (Ogden, 1997)).

The problem formulation has to be closed by prescribingablét boundary and
interface conditions. On solid and fluid boundad&sandI's standard conditions as
for individual solid and fluid problems can be prescribedr the velocities and the
stresses on a fluid-solid interfafewe have the conditions

- b
Vj = Uy and 0N = Tijnj, [6]

whered? is the velocity of the interface.

3. Numerical fluid structure coupling scheme

The discretization of the problem domain is based on a b#taketuring tech-
nique. Fluid and solid parts are assigned to different ldoSolid blocks are treated
by the finite-element solver FEAP (see (Taylor, 2002)). fkerfluid blocks, which
can be defined as moving or fixed, the parallel multigrid fiwibume flow solver
FASTEST is employed (see (FASTEST, 2004; Schéteal, 2001)). Both solvers
involve second-order spatial discretizations and fullylieit second-order time dis-
cretizations.

For the fluid structure coupling an implicit partitioned apach is employed. In
Figure 1 a schematic view of the iteration process, whicker$gomed for each time
step, is given. After the initializations the flow field is danined in the actual flow
geometry. From this the friction and pressure forces onrteracting walls are com-
puted. These are passed to the structural solver as bourwiatitions. The structural
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solver computes the deformations, with which then the fluegimis modified. After-
wards the flow solver is started again.

In the fluid solver a discrete form of the space conservation |

d
T dv = /v?nj ds [7]
Vi St

is taken into account in order to compute the additional eative fluxes in [1]-[2] for
blocks that are moving. This is don& the swept volumeé&V, of the control volume
faces for which one has the relation (see (Dewiget al, 1998) and (Demirzic et

al., 1990)):

d cn Vit — anl n
Z At = At : = Z(’U;gnjsf)c ) (8]

n
C

where the summation indexruns over the faces of the control volume, the index
denotes the time leve), andAt,, is the time step size. By this way interface displace-
ments enter the fluid problem part in a manner strictly engumass conservation.

The fluid structure interaction (FSI) iteration loop is rafes until a convergence
criterione is reached, which is defined by the change of the mean dispkus:

N k,m—1 k,m
Vo —u
max 2= | 2 |<<€7 [9]

RFSI _
i=1,2,3 N

wherem is the FSl iteration counter and is the number of interface nodes. Note that
an explicit coupling method would be obtained, if only oné E&ation is performed.

The data transfer between the flow and solid solvers withenpirtitioned solu-
tion procedure is performeda an interface realized by the coupling library MpCCI
(see (SCAI, 2004)). In Figure 2 the corresponding infororafilow is represented
schematically. MpCCl is used for controlling the data comination as well as for
carrying out the interpolations of the data from the fluid antid grids.

After the initialization MpCClI is provided with the geomgtinformation at the
fluid-solid interface for both grids. From the flow solver skeare the coordinates of
the control volume vertices and centers at the interfacemRhe structural solver
only the node coordinates are required. With these geonrdtisgmations the forces
at the nodes of the structural grid are interpolated andeplssthe structural solver.
The displacements from the structural solver at the nodesransfered to MpCCl,
which interpolates the displacements to the control volueréices of the fluid grid
interface. Afterwards the complete fluid grid is adaptec (selow) and the corre-
sponding coordinates of the control volume centers are otedp Finally, the new
geometry informations are passed to MpCClI for the nexttitena
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An update of the geometry information of the solid grid is netessary, since the
structural finite-element computations always relate @dtiginal solid grid. Note
that with the considered approach nearly arbitrary disgagons for the fluid and
solid subproblems can be usée,, there is no need for matching grids.

Various test computations have shown that the couplingrsetis rather sensitive
with respect to the deformations in the first FSI iteratidfere, situations that are far
away from the physical equilibrium can arise, which may leaihstabilities or even
the divergence of the FSl iterations. In order to countetfsisteffect an underrelax-
ation is employed. The actually computed displacemetftsare (linearly) weighted
with the values:$'d from the preceding iteration to give the new displacemepts:

new act old

ui" = apgiui® + (1 — apsr)uy™©, [10]

where0 < apg; < 1. Note that the underrelaxation does not change the final con-
verged result.

4. Grid movement techniques

The method for moving the grid in the fluid domain constitasmportant com-
ponent of the coupled solution procedure, in particulahindase of larger structural
deformations. Besides the requirements that no grid fgldecturs and that the mesh
exactly fits the moving boundaries one has to take care thtdrtons of control vol-
umes are kept to a minimum in order not to deteriorate the'glization accuracy and
the efficiency of the solver.

4.1. Numerical schemes

We consider algebraic and elliptic mesh generation tectasdor the grid move-
ment with capability of boundary orthogonality. To simplthe presentation we de-
scribe the approaches for a single two-dimensional stredthlock surrounded by 4
boundary curves | to IV (see Figure 3). The generalizatiothéothree-dimensional
case and to multiple blocks is straightforward.

For a structured two-dimensional block there is a one-t+mappingz(£,n) =
(z(&,1m),y(&,n)) of the physical coordinates = (x, y) to computational coordinates
(&,m) where without loss of generality < ¢ < 1 and0 < n < 1. In each FSl iter-
ation the coordinates of the interior grid points have to tajpguted from the (given)
boundary points distribution.
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structured block deformation process

fsi— n -
si-state 7> fsi—state n+1

structured block

Figure 3. Deformation of structured two-dimensional block

First, we consider algebraic approaches. A very simple atkithobtained by lin-
ear interpolation between opposite boundaries, e.g. myndo . Let the distances
between neighboring grid points be

dij = |Ti; — Tic1 4] i=1...N,j=0...M, [11]
with the overall lengths

Lj:Zd,-,yj j=0...M. [12]
The normalized lengths for the parametrization are

Li,j%j;dmyj i=1...N,j=0...M, Ly; =0, [13]

and finally the whole domain is computed by

A further algebraic method is the linear transfinite intéation (TFI), where the
interior grid points are computed by

2 mn) = (1-=n)Z(&0)+nz( 1)+ (1—&)L(0,1) +EF(1,n)
—£Z(1,1) + (1 = n)Z(1,0)]
—(1 =€) [n#(0, 1) + (1 — 1)Z(0,0)] . [15]

The algebraic methods are simple, but deteriorated grig aetl even grid folding
may occur.
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For an elliptic grid movement we adopt an approach describb§@hompsonet
al., 1999) which is based on the following (elliptic) Poissomatipn for the physical
coordinates:

aZee — 2bTey + Ty + (Pl — 20P, + cPly) %

+(aP} —26P% + cPR)E, = O [26]
with the control functions
Bu = — L[t s | ] se | [17]
Spte — sety | —te  S¢ || lee |
= 1 [ ¢ —5, | [ sep |
Py = —— ] n &n [18]
Sntf _Sﬁtn L _ff S¢ || t&n J
ﬁlg = ; [ tn _577 11 S"]"] ] [19]
spte — sety | —te  S¢ | | tan |
and the abbreviations
a4 = Tnly +YnYy, 0= Tely+YelYy, €= TeTe +Yele - [20]

An index¢ andn denotes the corresponding derivatives. Figure 4 shows hewap-
ping between the computational space and the physical dasperformed through
the parameter spage, ¢) that can be used to control the quality of the mesh.

n t
1 11 1 I
| Il 7> I I >
y
LV % T
Computational space Parameter space Physical domain

Figure 4. Mapping strategy for elliptic grid movement

We consider a parameter space wtfi) = 0, s(IlT) = 1, ¢((IV) = 0, and
t(II) = 1. The point distribution along(II), s(IV), ¢(I), and¢(III) arises from
linear interpolation along these boundaries involvingribemalized arc length. The
inner parameter domain is adapted by solving simultangousl

s = sIV)(1—1t)+ s(Il)t, [21]
t = t(I)(1—s)+t(I)s. [22]
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Next, the control functiong”,, Pj,, Pj;, i = 1,2 can be computed according
to [17] to [19] and remain unchanged during the solution @&][IThe derivatives in
Equation [16] are approximated by central differences aRitard iteration process
is used for linearization:

k—1=k k—1 -k k—1 -k
a’ T — 2b Ty + T,

AP - 2y APl

=1}

+(a" Tt PE — 20" PR + M PR EE = [23]

In each step this equation system is solved by the Gaul3{&dgdeithm (the com-
putation time for this step is negligible compared to thalttitne) for the unknown
grid coordinates:} ; andyf;,i = 1...N —1,j = 1...M — 1. The Picard itera-
tion process is repeated as long as a certain convergentegariis satisfied. Within
the FSl iteration process the coordinates of the previanatibn are applied as initial
values. The whole solution algorithm, which is summarizeftesnatically in Figure 5
operates like a mesh smoother. In any case a boundary canfpmesh without grid
folding results.

The described method can be extended according to (Thomgtsah 1999),
(Spekreijse, 1995) with respect to boundary orthogondhiinst a boundary conform-
ing grid without grid folding is computed with the ellipticethod explained above.
On this mesh we consider the Laplace equations:

9%s  O%s 1 1 1 1

As = o5+ i (Fase = Sbsy)e + (= 5bse + zesy)y =0, [24]
0%t 0%t 1 1 1 1

At = — + — = (—=ate — =bt ——bt —ct =0 25
ax2+ay2 (Ja‘f J "7)5—"_( J 5+JC77)77 ’ [ ]

with the abbreviations
a = TyTy+YnYy, b=yt Yeyn,
¢ = TeXetYeYe, J=Teyn — TyYe, [26]

in combination with the Neumann boundary conditions

Os ot

95 _p, L 27
57 =0 35=0 [27]
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Calculate boundaries by interpolation,
update moved coupled edges,
fixed edges remain unchanged

l

[ Calculate appropriate grid control map J

[ Determine control functions P 4,R,,F 5 with CDS approximation j
keket1 lk=1

‘ Building discrete equations with CDS, ‘
boundary points remain unchanged

l

[ Solve linear equations for x—coordinates

i

[ Solve linear equations for y—coordinates J

Global
convergence
satisfied 2

no

[Solution of the fluid field J

Figure 5. Flow chart of elliptic mesh movement method

wherefi = (n1, nq) is the outward unit normal vector. Since the calculatiomsfuth
variabless andt are similar, further derivations are outlined foonly. Equation [24]
involves a divergence expression that allows for applyirgfinite volume method:

1 1 1 1
Jo (jasf — jbsn)ﬁ + (_jb85 + jcsn)n dédn

= /aQ {% (se(ani —bng) + s,(=bny +cng))| do =0, [28]

where the integration is done for a control volufeand its boundary$2 with the
line elementio, respectively. The computational domain is discretizediycontrol
volumes for inner points and half control volumes for bougdeints, leading to one
system of linear equations fer Since the boundary condition [27] transforms to

1
i (s¢(any —bna) + sy(—=bni +cng)) =0, [29]
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these terms have to be set to zero for the desired orthogdddirges at boundaries.

During the solution process, boundary points are movedgadalyes £(1V), s(11))
until convergence is reached. These points are combinedltig Elermite interpola-

tion:
s(IV)YA 4+26)(1 — )2 + s(II)(3 —2t)t%, 0<t <1, [30]
t = t(I)(1+2s)(1 —s)* +t(II1)(3 —2s)s*, 0<s<1. [31]

®
I

Since the interpolation is analytically given, the Jacolieatrix and its inverse
can easily be calculated and solved simultaneously fand¢ by the Newton algo-
rithm. As initial condition the parameter space values fithi first elliptic solution
are applied, leading to convergence after one or two Newtrations. Finally the
desired grid is computed by solving the elliptic equationseagain with the new
control functions. Figure 6 shows the whole algorithm schgeally on the basis of
an asymmetrically deformed domain with boundary orthogjynan all four edges.

cubic Hermite
interpolation
by Newton

solve elliptic
equations

solve Laplace
equations

solve elliptic
equations

Figure 6. Example of generating a boundary orthogonal grid

The advantages of this approach lie in the great flexibilitgwang independent
orthogonalization of all four boundaries while keeping duge point distribution un-
changed. Furthermore the method is very robust and evensworkases of huge
deformations (see Section 4.2).
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4.2. Numerical results

In this section, we investigate the influence of the grid nmoeet and compare the
algebraic and elliptic approaches described in SectionAsT test case we consider
alaminar flow around a rotating cylinder fixed in a channelchtallows for a system-
atic variation of the amount of grid movement. Figure 7 shivesgeometry and the
corresponding block structure consisting of two fixed bkakthe inlet and the outlet
and four moving blocks belonging to an O-grid around therzdgr. The kinematic
viscosity is defined as; = 102 m?/s and the fluid density is; = 1.0 kg/m?. At
the inflow a parabolic velocity profile with mean velocity= 0.2 m/s which together
with the cylinder diameter oD = 0.1 m gives the Reynolds numbéte = 20. To
get a physically two-dimensional problem a symmetry bomndandition is applied
in the third direction. The cylinder is rotated in steps ofeégbes. The grid adaption
according to the rotating cylinder is done on the one handrimal and transfinite
interpolation belonging to algebraic methods and on therottand by elliptic ap-
proaches also supplying boundary orthogonality as outlin&ection 4.1. After each
step a steady flow computation is performed until grid fojdam divergence of the it-
erations occur. 125 000 control volumes and exactly the gmrameters are used for
all cases and for all angles of torsion. For comparison aeate solution obtained by
a computation with 450 000 control volumes on an undeformesimis considered.

a U=V=\E0

0.2
U=V=W:0

-

[

——
-
—
——
S ——
-
.
-
-
-
[

f—

Figure 7. Test configuration for grid movement techniques (units in m)

In Figures 8 and 9 the grids with the maximum angle of torsimnvihich the
last converged solution could be achieved are illustrdteshould be mentioned that,
except the linear interpolation, the boundaries Il and I¥ @pproximated by a cubic
spline interpolation to get angles of abeut= 45° andg = 90° (see Figure 7).While
the elliptic approach allows for an angle of*@&e linear interpolation works until 70
TFI begins to fail from 50 on. The elliptic approach in combination with boundary
orthogonality reaches values even up to?100

In Figure 10 a comparison of the lift coefficients with varyirotation angle is
shown. The TFl is nearly congruent with the orthogonal &tippproach that also
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gives satisfying results even for larger angles. The udliiptie method shows nearly
the same values. The linear interpolation leads to highatievis from begin on.
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Figure 9. Maximum possible grid distortions with elliptic smoothé&ff, 95°) and
additional boundary orthogonality around the cylinderghi, 100)

In Figure 11 the numbers of iterations required to obtaircthererged solution for
varying rotation angle are indicated. The iteration nurebiecrease with increasing
angle. While for small angles the linear interpolation igislly faster, the situation
changes for larger angles due to the heavy distortions dff@owlumes near the
boundary. The values for TFI increase dramatically caugegtiol distortions around
the cubic spline.

In summary, considering both, accuracy and efficiency, amestate that for small
distortions,i.e., with angles of torsion= 0° — 20°, the algebraic methods work satis-
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factorily, but for larger angles with the elliptic approastsignificantly more accurate
results can be obtained. The latter even still work in cadesreithe algebraic ap-
proaches leads to grid folding. TFI only is useful for veryadirdisplacements because
of the high computing times for larger deformations.

00— 1T 1T T T T T T T T T T T T T T T ]

0.01}— —
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Lift coetticient

-0.01
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Figure 10. Comparison of lift coefficients with algebraic and elliptiid movements
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Figure 11. Comparison of computational effort with algebraic andpit grid move-
ments
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5. Numerical investigation of fluid excited vibrations
5.1. Comparison with experiments
First, fluid structure interaction phenomena are studie@ oeal test case. The

corresponding experiments are performed by the Institufdusd Mechanics at Uni-
versity of Erlangen-Nirnberg (see (Gonwsl., 2006)).

U=V=W=0
Inlet Outlet, 0-Gradient

240
’
-
x
250

U=V=w=0

338 ) 310 1
I I |

Figure 12. Geometric properties of test channel (units in mm)

Figure 12 shows the geometric properties of the test chanaleiding the struc-
tural configuration presented in Figure 13. For the (higtiscous) fluid polyethy-
lene glycol is chosen with densify = 1050 kg/m® and kinematic viscosity; =
1.64 - 10~*m?/s. The structural configuration consists of a cylindrickingnum
front body (p, = 2828kg/m?, E = 7-10'°N/m?), a thin membrane of stainless
steel p, = 7855 kg/m?, E = 2 - 10'! N/m?), and a rectangular rear masgs (=
7800kg/m?, E = 2 - 10" N/m?). The configuration is fixed in the channel with
one rotational degree of freedom positioned at the centéneotylinder, where no
friction is assumed at the fixing point. The gravity force lig@ed with thez-axis.
The physical problem can be considered as two-dimensiohat was confirmed by
several measurements. In the simulations this is repregdayt symmetry boundary
conditions inz-direction.

0 04$ 14
71 ‘41_0»

Figure 13. Sketch of structural configuration
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For the structural discretization 920 linear solid hexabed (in-plane) are applied
in combination with enhanced strain formulations (see I@iay®003)) allowing for
very large aspect ratios. The fluid domain is discretized 444 (in-plane) control
volumes. For mesh adaption the elliptic method is applied.

For a better understanding of the fluid structure interactieechanism first an
eigenfrequency analysis for the structure is carried ow pyre structural simulation.
The first two eigenmodes are shown in Figure 14 (the trivigitirbody motion with
0.048 Hz is not considered). In the first mode with frequendy 61z the front body
moves in the same direction as the rear mass, while in thedenode with frequency
30.07 Hz the moving directions of the front and the end mas®pposite.

First mode (6.12 Hz) Second mode (30.07 Hz)

(D—FO—

Figure 14. Eigenmodes of structural configuration

5.1.1. First swiveling motion with low inlet velocity

Applying an uniform inlet velocity ofi = 1.14 m/s (Re ~130) the structure starts
vibrating by itself, in the computation as well as in the expent, and oscillates with
the first swiveling motioni.e., the front body moves in the same direction as the rear
mass. Figure 15 shows a comparison of the superpositiomumftstal deformations.
The corresponding trailing edge displacements for oneodeare presented in Fig-
ure 16 (experimental results from internal communicatiéh {Gomeset al,, 2006)).
The slope shapes are similar. The amplitude of the computétia little larger then
in the experiment. The reason of this appears to be the asisumgf a totally two-
dimensional problem. In the experiment a small gap betwkerrdar mass and the
side walls arises that results in a small damping effectceésthe first swiveling mo-
tion is qualitatively similar to linear small vibrationsne can state that with damping
the amplitude decreases. The computed swiveling motiaquéecy is 7.0Hz (see
Figure 17) and the corresponding experimental value is8z@rom internal com-
munication with (Gome®t al, 2006)). A snapshot of the velocity component in
z-direction is given in Figure 18.
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Figure 15. Superposition of images at a time-phase angle 6f8@ 270, experiment
(left), computation (right), first swiveling motion

Experiment Computation
40 40
30 301
20 20

y [mm]
e :
y )

-20 -20
-30 _s0f
=40 40
# [mm] # [mm]

Figure 16. Comparison of trailing edge displacements for one periggt fwiveling
motion
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Figure 17. Spectral representation of rear mass and front body ogaltes (from sim-
ulation results) for first swiveling fluid structure intettéan motion

Figure 18. Snapshot of velocity im-direction for first swiveling fluid structure inter-
action motion

5.1.2. Second swiveling motion with higher inlet velocity

Increasing the uniform inlet velocity to = 1.37m/s (Re =170) the structure
oscillates with the second swiveling motidre., the front body moves in opposite di-
rection as the rear mass. Figure 19 shows the superpositgiruotural deformations
for experiment and computation. A comparison with Figurestiéws the difference
between the two modes, particularly the intersection paitite second case. In Fig-
ure 20 a comparison between experiment and simulation &digplacement of the
trailing edge in thec-y-plane is shown. The experimental and numerical results are
in very good agreement. The maximysamplitude in both cases is between 18 and
20 mm. The slope shapes are nearly equal. In that case théntpeifect mentioned
before obviously is less significant. The experimental amaherical frequencies are
13Hz+ 1.5% and 12.7 Ha,e,, there is a very good agreement. The spectral represen-
tation of the rear mass and front body oscillations obtafnam the simulation results
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Figure 19. Superposition of images at a time-phase angle 6f8@ 270, experiment
(left), computation (right), second swiveling motion
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Figure 20. Comparison of trailing edge displacements for one periedpsd swivel-
ing motion
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is shown in Figure 21 indicating that other occurring fremgies are negligibly small.
The frequency analysis also indicates that the first swigeatiotion frequency is close
to the pure structural first eigenfrequency, but regardiegsiecond swiveling motion
this is not the case.

A snapshot of the velocity component indirection is given in Figure 22. The
oscillation is periodic but not harmonic what is expectedrfon-linear vibrations. A
comparison with Figure 18 illustrates the larger deforomtthe higher velocities and
the larger frequency in case of the second swiveling motion.

0.02
- —— rear mass 8
= 0.015— — front body |
g i Frequency =12.7 Hz )
2 0.01 —
a
<E,: L 1
0.005— —
0 — —_—
0 10 20 30 40 50 60 70

Frequency [Hz]

Figure 21. Spectral representation of rear mass and front body ogaltes (from sim-
ulation results) for second swiveling fluid structure iratetion motion

Figure 22. Snapshot of velocity in-direction for second swiveling fluid structure
interaction motion
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5.2. Influence of material parameters on fluid excited structuralbrations

Now, material properties causing different structuraldbr are varied and stud-
ied systematically. The investigations are performed wetpard to realistic material
properties to have the possibility to compare the phenométhathose of the preced-
ing section.

The same test channel as before is used (Figure 12) with tifeggaoations pre-
sented in Figure 23. The structure consists of a rigid frdatep(p, = 7855 kg/nt),
fixed with one rotational degree of freedom in the center andttached membrane
(configuration (a)). Combining the membrane with a rear nfgesmetry is fixed)
at the trailing edge leads to a second configuration (cordtgur (b)). To limit the
amount of varying parameters, both the front body and thd fluoperties are kept
unchanged during the investigation. For comparison thelaliements of points A
and B, respectively, and the overall deformation are cameil As initial condition
15 mm deviation of point B is prescribed.

Configuration (a) Configuration (b)
A i B 1A il
1¢ - T . ; ~ ¢B
‘ 85 | ‘ 85

Figure 23. Structural test configurations (units in mm)

The fluid domain is discretized with 15840 control volumes-glane) and
symmetry boundary conditions. For acceleration a muttiggolution approach
is employed. The highly viscous fluid polyethylene glycek (= 1075kg/m,
ve =510-* m?/s) with an uniform inlet velocity ofi = 2 m/s results in a Reynolds
number ofRe = 340. Since the membrane undergoes very large deformgtimred
strains are still moderate) the elliptic smoother is indisgable for mesh adaption,
otherwise grid folding occurs. The structure is discretibg 320 linear solid hexa-
hedrons (in-plane) applying an enhanced strain formuiatit. Venant-Kirchhoff’s
material law is chosen for linear material behavior withddmatics of large deforma-
tions and small strains.

All parameters and results are summarized in Table 1. FKosifiguration (a) is
considered with real properties for the membrane<(7855 kg/ni, E =2-10' N/m?)
varying the thickness. Starting with = 0.03 mm results in a non-periodic oscillation
as described in Figure 24. Two images are superposed whefeotit plate reaches
the upper and lower turning point. The front body swivels-peniodically around an
anglea. Taking Figure 25 into account, at a time of about 0.45 sesondhanges
its sign and the swiveling motion takes place at the oppasite of the x-axis. The
same effect recurs approximatelytat 0.8 seconds. The reason for the non-periodic
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behavior is the very thin membrane. As the thickness getdlemand smaller the
structure loses its stiffness and the configuration reaktsd flag fixed in a fluid
streamj.e., the movement gets more and more chaotic.

y

-

e

7

Figure 24. Superposition of front plate turning points for non-petimdscillation

—— Point A ‘
— Point B

Displacement [m]
o

0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9
Time [s]

Figure 25. Non-periodic structural vibrations with very thin membean

The non-periodic behavior disappears by increagintgp 0.08 mm and 0.13 mm,
respectively, leading to steady small displacements aftpd and B. Note that vary-
ing the membrane thickness is similar to changing its st#ffn

Next, the membrane density is varied. With a valug of} - 7855 kg/m (E = 2-
10'' N/m?, D = 0.08 mm) also steady displacements result. The same i fiali
p = 7855kg/nt (as mentioned before) angd= 4.7855kg/m. Increasing the den-
sity 64 times top = 647855 kg/mt a damped oscillation occurs. Finally with=
1287855 kg/nt andp = 2567855 kg/ni a stable periodic first swiveling motion is
achieved with huge amplitudes as it can be seen in Figures®8a Figure 28 illus-
trates the dependency of the movement of points A and B on #mbrane density.
The transient regions for which the behavior changes areleatly distinguished and
are therefore indicated with dotted lines.
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Figure 26. Superposition of front plate turning points for periodicgeuoscillation
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Figure 27. Periodic oscillation in first swiveling motion, configurati (a)

Figure 29 illustrates the corresponding mesh movementatidig the large defor-
mation and the excellent grid adaption by the elliptic appio The algebraic methods
certainly will fail for this task. One can state that for canfiation (a) it is only possi-
ble to get a periodic motion by increasing the density drécally what, however, is
not practicable with real materials.
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Figure 28. Dependency of the amplitudes/displacements on the membearsity
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Figure 29. Mesh movement corresponding to huge structural deformatio
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Next, configuration (b) is considered including a rear mdssoying density at
the trailing edge. With a small mass, e.g., polyethylené wit= 950 kg/n¥, all dis-
placements are zero. Changing the mass material to gteef,855 kg/nd, leads to a
periodic first swiveling motion as shown in Figures 30 and 31.

y

~

Figure 30. Superposition of images at a time-phase angle ¢f&td 270 for peri-
odic oscillation (first swiveling motion)
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Figure 31. Periodic oscillation in first swiveling motion, configurati (b)

Finally, the membrane stiffness is varied. Decreasing tbeng’s modulus to
E={-10"'N/m? and E = {-10'! N/m?, respectively, results in a periodic oscillation
in the second swiveling motion as presented in Figures 323hd he amplitudes de-
crease and the frequency rises from 8.9 Hz (first swivelingjonpto 13.6 Hz (second
swiveling motion). Comparing Figures 30 and 32 with thoseSettion 5.1 (Fig-
ures 15, 19), one can recognize a similar phenomenon, edlyebe additional inter-
section point for the second swiveling motion and the insireaswiveling frequency.
Applying a higher stiffnes® = 8-10'' N/m? leads to a damped oscillation up to zero
displacements. Figure 34 illustrates how the amplitudgede on the Young's mod-
ulus of the membrane. The transient regions are not cleatiynduished and marked
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with dotted lines therefore. Note the highly non-linear &éhr, in particular the dif-
ferent increase and decrease of amplitudes of points A and B.

Figure 32. Superposition of images at a time-phase angle ¢f&td 270 for peri-
odic oscillation (second swiveling motion)
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Figure 33. Periodic oscillation in second swiveling motion, configioa (b)

The results can be summarized as follows. A stable periogliiceting motion
applying real materials can only be achieved with a rear méagthout a weight the
membrane density has to be increased dramatically to acliestable motion. If
the stiffness is too high the oscillations are damped andlitiglacements tend to
zero. Thus, the mechanism of this fluid structure interactionfiguration is that the
kinematic energy of the flow is transferred to the structuné&tWtranscribes it in terms
of motion (Figure 35 (1)). If the stiffness is appropriate thembrane begins to bend
and the fluid damping effect is low (2a), otherwise the mowvetiserapidly abandoned
(2b). If the density is too small the kinetic energy, storethie structure is insufficient
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to move the membrane to a position corresponding to thatevihés started at the
opposite side (3a). Only if this is achieved a periodic slingemotion is obtained

(3b).
30 T T T T T
~—— Point A
= — Point B
£ 25 1
12
o
o 20t 1
(]
Q
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& 15t ,
e Damped
[} Periodic, second Periodic, first .\ oscillations
'g 10+ swiveling motion 7 swiveling motion to zero B
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Figure 34.Dependency of the amplitude/displacement on the membraneg’s

modulus, configuration (b)

(1) (2a) (2b)
Vflu1d —_— VSO”d
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Mﬁig\

forces
damping
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low density —> insufficient high density —> sufficient
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Figure 35. Mechanism of the fluid structure interaction configuration
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Table 1. Material parameters and the corresponding structural baba

Config. Membrane Rear mass
@/ (b) | plkg/m®] | E[N/mM?] | D[mm] | plkg/m®]] Structural behavior
a 7855 2.10'! 0.03 - non-periodic
a " " 0.08 - steady displacements
a 0.13 - steady displacements
a 1.7855 2.10'! 0.08 - steady displacements
a 1.7855 " " - steady displacements
a 4.7855 " " - steady displacements
a 64-7855 " " - damped oscillation to steady displ.
a 1287855 " " - periodic, first mode, tall amplitude
a 2567855 " " - periodic, first mode, huge amplitude
b 7855 2.10't 0.08 950 (PE) zero displacements
b " " " 7855 periodic, first mode, moderate ampl.
b 7855 Lo 0.08 7855 periodic, second mode, moderate ampl.
b " Lot " " periodic, second mode, moderate ampl.
b 2.10t" " " periodic, first mode, moderate ampl.
b 8.10'! " " damped oscillation to zero

6. Conclusion

Investigations of mechanisms for fluid structure inte@ttconfigurations have
been presented. Preliminary studies with respect to tldengovement illustrated the
advantages of an elliptic approach, in particular in caserge mesh deformations.
The complex structural behavior during fluid excited ostitins on the basis of an
experimental configuration has been presented, espethialyransition from a first
swiveling motion to a second swiveling motion by increasthg fluid velocity. An
identical phenomenon has been confirmed by other corregppaodmputations with
excellent coincidence. In parameter studies, a varietyrattural behavior, ranging
from non-periodic vibrations, damped oscillations to péit first and second swivel-
ing motions have been found. Studying such kind of effects ghve a possibility to
validate the employed implicit partitioned solution apgeh.
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