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ABSTRACT. The modelling of parachutes at Irvin Aerospace Inc. was based on the penalty 
Euler-Lagrange coupling method to compute the interaction between an Arbitrary Lagrange 
Euler formulation for the air flow and an updated Lagrangian finite element formulation for 
the canopy dynamics. This approach did not permit the effect of fabric porosity to be 
accounted for. In this paper, a new porosity Euler-Lagrange coupling models the fabric 
permeability by assessing the interaction forces based on the Ergun porous flow model. This 
paper provides validations for the technique when considering parachute applications and 
discusses the interest of this development to the parachute designer. 
RÉSUMÉ. La modélisation de parachutes à Irvin Aerospace Inc. reposait sur la méthode de 
couplage Euler-Lagrange par pénalisation afin de calculer l’interaction entre une 
formulation ALE (Arbitrary Lagrange Euler) pour la dynamique de l’air et une formulation 
lagrangienne en éléments membranaires pour modéliser la canopée du parachute. Cette 
approche ne permettait pas de prendre en compte la perméabilité de la canopée. Dans ce 
papier, une nouvelle méthode de couplage Euler-Lagrange modélise les effets poreux en 
évaluant les forces d’interaction basées sur le modèle d’écoulement poreux d’Ergun. Ce 
papier présente des validations de la méthode en l’appliquant à des problèmes de parachute 
et discute l’intérêt de ce développement pour la conception de parachute.   
KEYWORDS: parachute, permeability, penalty Euler-Lagrange coupling, porous coupling, ALE 
formulation, Ergun Equation. 
MOTS-CLÉS : parachute, perméabilité, couplage Euler-Lagrange par pénalisation, couplage 
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1. Introduction 

Two forms of porosity are considered in parachute design: geometric porosity 
and fabric permeability. Geometric porosity is defined as the ratio of all open areas 
or physical gaps to the total canopy area. Fabric air-permeability is defined as the 
airflow through the canopy cloth in CFM/ft2 (cubic feet per minute per square foot), 
at ½ inch water pressure. When considering parachutes consisting of both geometric 
porosity and fabric permeability, a term referred to as equivalent porosity is often 
used. Parachute porosity, whether geometric or permeability based is an important 
matter in the design of a parachute canopy. It affects drag performance, stability and 
opening forces. Parachute drag performance, maximum oscillation angle, and 
opening forces all reduce with increasing porosity. In the majority of applications, 
the reduction in stability and opening forces is advantageous but the decrease in drag 
is not. Further, a parachute that is too porous will not open at all. The substitution of 
an impervious material with a highly permeable fabric can turn a parachute from a 
wandering sloth into a plummeting stabilizer. An accurate consideration of fabric 
permeability has long eluded the parachute designer. The permeability of the canopy 
is devised to limit the “wake recontact phenomenon” or better known as “canopy 
collapse”. (Spahr et al., 1981) first discussed the phenomenon of wake recontact 
using wake momentum considerations. They noticed that if the deceleration of the 
canopy is too important, the axial velocities in the wake region may be much larger 
than the parachute ones, what allows the wake to catch up with the parachute and 
collapse it. Thus, blowing through a porous fabric to push the wake away is 
important to prevent the parachute from collapsing.  

The numerical simulation of the porous parachute problem is a complex fluid 
structure interaction phenomenon. To appropriately simulate, and therefore 
understand and predict, this behavior requires an accurate method of assessing this 
complex relationship. Analysis of a parachute or a flow field without its associated 
partner is excluding the inherent interaction between the two. In this paper, the 
canopy permeability is taken into account by a new Euler-Lagrange coupling 
formulation (Benson, 2004; Aquelet et al., 2005). The parachute meshed by 
Lagrangian finite elements is immersed in an ALE grid, which modeled the air fluid 
flow. The fluid structure interaction force computed by an Euler-Lagrange coupling 
is based on the Ergun equation (Ergun, 1952). The Lagrangian finite element 
formulation uses a computational mesh that follows the material deformation. This 
approach is efficient and accurate for problems involving moderate deformations 
like the parachute or eventually flows that are essentially smooth. When this latter 
departs from this kind of smoothness, the ALE formulation must be used because the 
finite element mesh is independent from the material flow. This takes away all 
problems associated with distorted mesh that are commonly encountered with a 
Lagrangian approach. Thus the Euler Lagrange coupling using an ALE formulation 
for the fluid, is more suitable for solving parachute problems and more generally, 
fast transient porous fluid structure interaction problems. First, the ALE formulation 
is able to simulate fluid large deformations and second, the porous coupling can 
handle the interaction between the fluid and the parachute. A more detailed 
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description of the method is presented through the following parts. First the ALE and 
Lagrangian governing equations for the fluid and parachute respectively are 
described together with boundary conditions. Then a description of the porous Euler-
Lagrange coupling algorithm is presented. Further, the numerical method is validated 
by a porous parachute application with a comparison to experimental data. The 
numerical application in this paper focus on the terminal descent phase, for which 
experimental results are available in the database of Irvin Aerospace. 

2. Description of the fluid and structure problems 

The fluid is solved by using an ALE formulation (Benson, 1992) on a Cartesian 
grid that overlaps the porous structure, while this latter is discretised by Lagrangian 
shells based on the Belytschko-Lin-Tsay formulation (Belytschko et al., 1984). 

2.1. ALE description of Navier-Stokes equations 

For simplicity, the numerical simulations in this paper have been restricted to an 
Eulerian formulation for the fluid, although the formulation can be extended to an 
ALE formulation. The Eulerian formulation is a particular case of the ALE finite 
element formulation. Thus a general ALE point of view is first adopted to solve the 
Navier-Stokes equations before presenting the Eulerian formulation. 

In the ALE description of motion, an arbitrary referential coordinate is 
introduced in addition to the Lagrangian and Eulerian coordinates (Hughes et al., 
1981; Souli, 2000). The total time derivative of a variable f with respect to a 
reference coordinate can be described as Equation [1]: 

),().(),(),( txfgradwv
t

txf
dt

tXdf −+
∂

∂=  [1] 

where X  is the Lagrangian coordinate, x  is the ALE coordinate, v  is the particle 

velocity and w  is the velocity of the reference coordinate, which will represent the 
grid velocity for the numerical simulation, and the system of reference will be later 
the ALE grid. Thus substituting the relationship between the total time derivative 
and the reference configuration time derivative derives the ALE equations. 

Let 3Rf ∈Ω , represent the domain occupied by the fluid, and let fΩ∂  denote 
its boundary. The equations of mass, momentum and energy conservation for a 
Newtonian fluid in ALE formulation in the reference domain, are given by:  

0=−++
∂
∂ )()()( ρρρ gradwvvdiv

t
 [2] 
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fdivvgradwv
t
v +=−+
∂
∂ )()().( σρρ    [3] 

vfvgradegradwv
t
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∂
∂ σρρ  [4] 

where ρ  is the density and σ  is the total Cauchy stress given by:  

))()((. TvgradvgradIdp ++−= µσ  [5] 

where p  is the pressure and µ  is the dynamic viscosity. Equations [2]-[4] are 
completed with appropriate boundary conditions. The part of the boundary at which 
the velocity is assumed to be specified is denoted by f

1Ω∂ . The inflow boundary 
condition is:  

fontgv 1)( Ω∂=  [6] 

The traction boundary condition associated with Equation [4] are the conditions 
on stress components. These conditions are assumed to be imposed on the remaining 
part of the boundary. 

fonthn 2)(. Ω∂=σ  [7] 

One of the major difficulties in time integration of the ALE Navier-Stokes 

equations [2]-[4] is due to the nonlinear term related to the relative velocity ( wv − ). 
For some ALE formulations, the mesh velocity can be solved using a remeshing and 
smoothing process. In the Eulerian formulation, the mesh velocity 0=w , this 
assumption eliminates the remeshing and smoothing process, but does not simplify 
the Navier-Stokes equations [2]-[4]. To solve equations [2]-[4], the split approach 
detailed in (Benson, 1992; Hughes, 1981) and implemented in most hydrocodes such 
as LS-DYNA® is adopted in this paper. Operator splitting is a convenient method 
for breaking complicated problems into series of less complicated problems. In this 
approach, first a Lagrangian phase is performed, using an explicit finite element 
method, in which the mesh moves with the fluid particle. In the CFD community, 
this phase is referred to as a linear Stokes problem. In this phase, the changes in 
velocity, pressure and internal energy due to external and internal forces are 
computed. The equilibrium equations for the Lagrangian phase are: 

fdiv
dt
vd += )(σρ   [8] 
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vfvgrad
dt
de .)(: += σρ  [9] 

The mass conservation equation is used in its integrated form Equation [11] 
rather than as a partial differential equation (Belytschko et al., 2001). Although the 
continuity equation can be used to obtain the density in a Lagrangian formulation, it 
is simpler and more accurate to use the integrated form Equation [10] in order to 
compute the current density ρ : 

0ρρ =J   [10] 

where 0ρ  is the initial density and J is the volumetric strain given by the Jacobian: 


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In the second phase, called advection or transport phase, the transportation of 
mass, momentum and energy across element boundaries are computed. This may be 
thought of as remapping the displaced mesh at the Lagrangian phase back to its 
initial position. The transport equations for the advection phase are: 

)()0,(

0)(.

0 xx

gradc
t

φφ

φφ

=

=+
∂
∂

 [12] 

where wvc −=  is the difference between the fluid velocity v , and the velocity of 

the computational domain w , which will represent the mesh velocity in the finite 
element formulation. In some papers (Hughes et al., 1981; Belytschko et al., 2001) 

c  is referred as the convective velocity. The hyperbolic equation system [12] is 
solved by using a finite volume method. Either a first order upwind method or 
second order Van Leer advection algorithm (Van Leer, 1977) can be used to solve 
Equation [12]. The advection method is successively applied for the conservative 
variables: mass, momentum and energy with initial condition 0φ (x), which is the 
solution from the Lagrangian calculation of Equations [8]-[9] at the current time. In 
Equation 12, the time t is a fictitious time: in this paper, time step is not updated 
when solving for the transport equation. There are different ways of splitting the 
Navier-Stokes problems. In some split methods, each of the Stokes problem and 
transport equation are solved successively for half time step. The following 
paragraph presents the description of the structure.  



526     REMN – 16/2007. Fluid structure interaction 

2.2. Lagrangian description of the porous structure 

In this paragraph the porous structure problem is described at the macroscopic 
scale and the Belytschko-Lin-Tsay shell formulation (Belytschko et al., 1984) is 
employed to model the parachute. 

Let 3Rs ∈Ω , the domain occupied by the porous structure, and let sΩ∂  denote 
its boundary. An updated Lagrangian finite element formulation is considered: the 
movement of the thin porous medium sΩ  described by )3,2,1(),( =itxi  can be 

expressed in terms of the reference coordinates )3,2,1(),( =itX i  and time t:  

),( tXxx ii α=    [13] 

The momentum equation is given by Equation [16] in which σ  is the Cauchy 

stress, ρ is the density, f  is the force density, 
dt
vd

 is acceleration and n  is the unit 

normal oriented outward at the boundary sΩ∂ :  

fdiv
dt
vd += )(σρ  [14] 

vfvgrad
dt
de .)(: += σρ  [15] 

The solution of Equations [14]-[15] satisfies the displacement boundary 
condition Equation [16] on the boundary s

1Ω∂  and the traction boundary condition 

Equation [17] on the boundary s
2Ω∂ .  

)(),( tDtXx = on s
1Ω∂  [16] 

)(. tn τσ = on s
2Ω∂  [17] 

In this paper, the shell formulation used to model the parachute canopy is the 
Belytschko-Lin-Tsay formulation (Belytschko et al., 1984). The Belytschko-Lin-
Tsay shell 4-node element is based on a co-rotational coordinate system and a 
constitutive computation using a rate of deformation. The embedded element 
coordinate system that deforms with the element is defined in term of four corner 
nodes. As the element deforms, an angle may exist between the fiber direction and 
the unit normal of the element coordinate system. The magnitude of this angle is 
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limited in order to keep a plane shell geometry. In this local system, the Reissner-
Mindlin theory gives the velocity of any point in the shell according to the velocity 
of mid-surface and the rotations of the element’s fibers. Then the rates of 
deformation are computed at the center of the element. The new Cauchy stresses are 
computed by using the material model and by accounting for the incremental 
rotation, R∆ , which is obtained by expressing the element base vectors at t(n+1) in 
the local system at t(n). Then, the element-centered resultant forces and moments are 
obtained by integrating the stresses through the thickness of the shell. The relations 
between these forces and moments and the local nodal forces and moments are 
obtained by performing the principle of virtual power with one point quadrature. 
Finally, the global nodal forces and moments are derived by using the transformation 
relations defined by the global components of the corotational unit vectors. The 
following section presents the porous Euler-Lagrange coupling method, which 
handles the fluid - porous structure problem. 

3. Fluid – porous structure interaction 

In an explicit time integration problem, the main part of the procedure in the time 
step is the calculation of the nodal forces. After computation of fluid and structure 
nodal forces, we compute the forces due to the coupling, these will only affect nodes 
that are on the fluid - porous structure interface. For each structure node, a depth 

penetration d  is incrementally updated at each time step, using the relative velocity 

relv  at the slave and master node. For this coupling, the slave node is a structure 
mesh node, whereas the master node is not a fluid mesh node, it can be viewed as a 
fluid particle within a fluid element, with mass and velocity interpolated from the 
fluid element nodes using finite element shape functions. The location of the master 
node is also computed using the isoparametric coordinates of the fluid element. If 

n
d represents the penetration depth at time ntt = , it is incrementally updated in 
Equation [18]: 

tvdd
n
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nn
∆+=

++
.

2/11
      [18] 

In Equation [18] 
2/12/12/1 +++

−=
n

f

n

s

n

rel vvv in which the fluid velocity fv  is 

the velocity at the master node location and the structure velocity sv  is the velocity 

at the slave node location. The coupling acts only if penetration occurs, 0. <
n

s dn , 

where sn  is built up by averaging normals of structure elements connected to the 
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structure node. The porous coupling forces are derived from the integration of the 
Ergun Equation (Ergun, 1952) on the shell volume: 

( )2.),(.),(
ˆ srelsrel nvbnva
zd

dp ερεµ +=  [19] 

in which ẑ  is the local position along the fiber direction of the shell element and ε  

is the porosity: 
total

void

v

v
=ε . µ and ρ are the dynamic viscosity and density, 

respectively The coefficient ),( εµa  is the reciprocal permeability of the porous 
shell or viscous coefficient. ),( ερb  represents the inertia coefficient. For flows 
under very viscous conditions the second term in Equation [19], which represents the 
inertia effects drops out and the Blake-Kozeny equation for laminar flows in porous 
media is obtained. At high rates of flow it is the first term or viscous term, which 
drops out and the Blurke-Plummer equation for turbulent flows in porous media is 
obtained. For the parachute application the inertia effects should be preponderant. 
These coefficients can be derived from the Ergun theory: 

32

2)1(150
ε
εµ

D
a

−
=   [20] 

3
)1(75.1

ε
ερ

D
b −=  [21] 

D is a characteristic length defined by: 
S

VD )1(6 ε−=  with V, the volume of the 

canopy and S, the “wetted” surface. 

The Ergun equation describes the magnitude of porous flow velocity at a given 
differential pressure based upon two coefficients. These coefficients assume a constant 
porosity, not to be confused with a constant permeability. Porosity is a characteristic of 
the fabric, whereas permeability is a description of the flow velocity at a given 
condition. Many materials can be highly porous without being permeable. It should 
also be noted that the porosity of some fabrics can change significantly with applied 
load but in the applications of this paper, a constant and uniform porosity is assumed. 
Figure 1 displays historical permeability data (AFFDL-TR-78-151 report, 1978) of a 
common parachute cloth fabric, of particular interest is the widely used MIL-C-7020 
Type III. 
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Figure 1. Parachute fabric permeability data (AFFDL-TR-78-151 report, 1978) 

The data shown in Figure 1 was obtained at constant porosity, fluid viscosity and 
density. Under these assumptions the viscous and inertia parameters in Equation [19] 
are constant. To determine these coefficients, the Ergun theoretical permeability 
should be a parabolical fit of the experimental one. Thus the coefficients were 
computed by solving the following system: 







+=

+=
2
222

2
111

../

../

vbvaedp

vbvaedp
  [22] 

where e is the shell thickness and the couple of points ),( 11 dpv  and ),( 22 dpv  
was chosen on so that the Ergun equation fits the experimental plot as close as 
possible. 

The force F derived from Equation [19] is applied to both master and slave nodes 
in opposite directions to satisfy force equilibrium at the interface coupling, and thus 
the coupling is consistent with the fluid structure interface condition namely the 
action-reaction principle. At the structure coupling node, we applied a force: 

FFs −=  [23] 
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whereas for the fluid, the porous coupling force is distributed to the fluid element 
nodes based on the shape functions, at each node i (i=1,..,8), the fluid force is scaled 
by the shape function iN : 

FNF i
i
f .=  [24] 

where iN  is the shape function at node i. Since FF i
f

i

=∑
=

8

1

, the action-reaction 

principle is satisfied at the coupling interface. The following paragraph presents the 
validation of this approach to a parachute in terminal descent. 

4. Numerical application 

4.1. Simulation methodology 

Before the development of the porous Euler-Lagrange coupling it was possible to 
analyse the parachute problem. A penalty Euler-Lagrange coupling algorithm 
permitted the interaction of the Eulerian formulation for the flow field, and the 
Lagrangian formulation for the parachute. Similarly to penalty contact algorithm 
(Belytschko et al., 1989), the coupling force in Equations [23]-[24] for the penalty 
Euler-Lagrange coupling is given by: 

dkF .=  [25] 

where k represents the spring stiffness, and d the penetration computed by 
Equation [17]. The penalty Euler-Lagrange coupling was applied with the following 
methodology for parachute performance predictions at Irvin: 

– model the parachute using a Lagrangian formulation, 
– model the fluid domain using a Navier-Stokes based Eulerian formulation, 
– perform the analyses using conditions similar to a wind tunnel, i.e. infinite mass 

flow; equating the results to the quasi-steady-descent phase of the parachute flight. 

The last step reduced the computational cost associated with modelling vast 
spatial timelines associated with real parachute functions, specifically deployment 
and inflation. It also permitted the reduction in complexity of boundary conditions. 
Irvin developed this methodology several years ago and it has yielded excellent 
results for a number of parachutes with a low-permeability fabric. (Tutt, 2005) has 
previously published data that described the use of the penalty coupling to simulate 
the parachute behavior. This work discussed the benefit of visualizing the flying 
shape and anticipating the performance of a newly designed tactical mass assault 
troop parachute, prior to fabrication and testing. Particularly noteworthy is the 
replication of an undesirable flight characteristic exhibited by a replacement 
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candidate for the venerable T-10 mass tactical assault parachute. The identification, 
and subsequent removal, of this flight mode through simulation design iterations 
demonstrated the powerful potential of such techniques. The modified version of that 
parachute system is now undergoing operational testing and will replace the T-
10 later in this decade. Figure 2 illustrates a flight test with simulation flow field 
velocity vectors overlaid. The fabric shown in Figure 2 is classified as a low-
permeability fabric. When assessing the steady state characteristics of this parachute 
the approximation of an impermeable fabric was valid. Minimal differential pressure 
is developed across the canopy when a constant rate of descent is achieved. 
 

 

Figure 2. Flight test and simulation comparison 

However the study in (Tutt, 2005) exposed also the inability to consider fabric 
permeability as an authentic limitation that would restrict the application of the 
methodology for a number of applications. To circumvent this drawback the porous 
Euler-lagrange coupling was developed and it now replaces the penalty coupling in 
the previous methodology. The following paragraph compares the two coupling 
method and shows the limits of the penalty coupling in solving parachute problems 
with a high-permeable canopy fabric. 

4.2. Parachute simulation 

A pertinent example of a parachute design that could not accurately be assessed 
using the penalty Euler-Lagrange coupling is the TP8 low altitude troop parachute. 
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The TP8 is an aeroconical class of parachute. Aeroconical parachutes are commonly 
used for aircrew ejection systems. The TP8, shown in Figure 3, is fabricated from 
two base cloths of different permeability. The crown of the canopy is constructed 
from cloth exhibiting a permeability of 0.0508m/s (10 CFM/ft2), and the major part 
of the skirt is rated at 0.4064m/s (80 CFM/ft2), both at ½ inch water pressure. 

 

 

Figure 3. TP8 flight test 

Drag coefficient, DC , is widely used as a measure of parachute performance and 
is defined by: 
 

0
22/1 SV

F
C D

D
ρ

=  [26] 

where DF  is the drag force, 0S canopy surface area and V is the velocity at the 
inlet of the channel. 



A new fluid structure coupling     533 

Test data indicates that the TP8 exhibits a drag coefficient of approximately 0.6. 
A constant flow rate is applied to the inlet of the wind tunnel modeled by the 
Eulerian grid. This flow rate equates to the steady rate of descent in an actual flight 
test. The parachute is modeled by a Lagrangian formulation. Two different 
simulations are compared with the experimental test:  

– in the first modelling, the fluid structure interaction is handled by a penalty 
Euler-Lagrange coupling and, 

– in the second one, the fluid structure interaction problem is solved with a 
porous Euler-Lagrange coupling.  

 

 

Figure 4. Drag force time history data 

Figure 4 provides time history data of the drag force produced by the canopy 
when subjected to a flow velocity of 5.486 m/s (18 ft/s). On this figure, the coupling 
force time history reaches the steady state after 9s. The drag coefficient is computed 
after this time. The penalty coupling predicts a drag coefficient of 0.75. Clearly, this 
prediction is in conflict with the experimental value of 0.6, a value derived from a 
significant and reliable test series. The assumption of an impervious canopy cloth is 
the obvious factor in the difference between test and simulation results. Figure 5 
presents a qualitative assessment of the permeability affect. It illustrates a cross-
section of flow velocity for the TP8 simulation with and without accounting for 
fabric permeability. This figure presents an excellent illustration of the influence of 
fabric permeability in parachute design. The porous flow through the canopy cloth 
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has completely changed the nature of the parachute wake. The large recirculation of 
air behind the parachute remains very close to the canopy on the left and has a 
significant effect on the parachute stability. By permitting air to flow through the 
canopy, the recirculating air has been pushed further downstream where it has 
considerably less influence on the stability of the parachute. Thus the “wake 
recontact phenomenon”, which may cause the parachute collapse, is clearly 
prevented. This results in a discernible difference in drag coefficient. Figure 6 gives 
also a quantitative comparison of the same simulation with and without permeability. 
The data clearly depicts the reduction in drag associated with the incorporation of 
permeability. Also noticeable is the reduction in numerical noise, this is associated 
with a more benign parachute inflation, a characteristic of porous canopies. The 
steady-state drag force from Figure 4 can be used to calculate a modified drag 
coefficient; the simulation now predicts a Cd of 0.59, which is close to the 
experimental value: 0.6. 

 

 

            WITHOUT PERMEABILITY        WITH PERMEABILITY 

Figure 5. Visualization of the permeability effect 
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5. Conclusion 

The combination of bluff body aerodynamics and a highly deformable structure, 
fabricated from a porous media, creates a truly unique and multifaceted environment. 
To appropriately simulate, and therefore understand and predict, this behavior 
requires an accurate method of assessing this complex relationship. This paper has 
provided a description of the implementation and validation of the porous Euler-
Lagrange coupling algorithm for a transient dynamic finite element method. It has 
also discussed the importance of such a development to the parachute engineer and 
the future of parachute design. Numerical results have been shown to provide 
excellent correlation with actual test data, providing an authentic capability to model 
parachutes fabricated from permeable fabrics. The prospective goals of this ongoing 
research are to incorporate the effect of fluid viscosity and particularly density 
changes during parachute flight. This will enable extremely high altitude and 
interplanetary aerodynamic decelerators to be evaluated over a range of conditions. 
Also of interest is the influence of fabric loading on porosity and the subsequent 
change in permeability. 
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