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ABSTRACT.An Eulerian-Lagrangian fluid-structure coupling approachis presented. The method
is dedicated when several thin structures are immersed in a fluid domain. Moreover, the struc-
tures may have large displacements. The finite element method is used for the space discretiza-
tion. A fractional time scheme is used for time integration.The main point of the method is that
the fluid mesh is fixed and is completely independent of the structure positions. In order to take
into account the interface inside the fluid elements, new functions are added in the velocity and
pressure fluid fields by using the extended finite element method X-FEM.

RÉSUMÉ.Une approche Euler-Lagrange pour le calcul couplé fluide-structure est présentée. La
méthode est dédiée au cas de plusieurs structures minces immergées ayant de grands mouve-
ments. La méthode des éléments finis est utilisée pour la discrétisation en espace. Le schéma
d’intégration en temps est semi-implicite à pas fractionnés. Le point fort de la méthode réside
dans le fait que le maillage fluide est fixe et indépendant de laposition des structures. Afin de
prendre en compte les discontinuités liées à la présence desinterfaces dans le maillage fluide,
les champs d’approximations de vitesse et de pression sont enrichis par l’ajout de nouvelles
fonctions par la méthode des éléments finis étendus X-FEM.

KEYWORDS: fluide-structure interaction, Euler-Lagrange, thin immersed structures, large
displacements, incompatible and overlapped meshes, enrichment (X-FEM), fractional time
scheme.

MOTS-CLÉS : interaction fluide-structure, Euler-Lagrange, structures minces immergées,
grands mouvements, maillages incompatibles, maillages recouvrants, enrichissement (X-FEM),
schéma fractionné en temps.
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1. Introduction

This paper presents an approach to compute a fluid-structurecoupled system in dy-
namics. The fluid is viscous, incompressible and can be with or with no flow. Several
thin structures are immersed in the fluid. From the fluid pointof view, they are seen
as surfaces with no thickness (Figure 1). The structures canhave large displacements.
Although this first study is applied for ana priori known structure displacements the
method can be extended to flexible structures.

The finite element method is used to discretize the fluid domain. The structures
are localized in the fluid by level-sets. The time integration scheme is based on a
fractional time scheme (Tralliet al., 2005b; Tralliet al., 2005a).

The arbitrary Lagrange-Euler (ALE) is classically used to treat this kind of prob-
lem. However, spurious mesh distorsions appear when the structures have large rela-
tive displacements.

The proposed method, based on the three following points, avoids this disadvan-
tage:

1) an Eulerian description is used for the fluid while a Lagrangian description is
used for the structure (prescribed structural displacements in this work), the method
takes the advantages of both representations;

2) the fluid mesh is completely independent of the structure positions, this avoids
remeshing strategies and mesh distorsions around the interfaces;

3) the fluid approximation fields are enriched by adding new functions around the
fluid-structure interfaces in order to take into account thepression jump as well as
the velocity gradient discontinuity, this enrichment is based on the so called extended
finite element method (X-FEM) (Moëset al., 1999).

A first application of the proposed method has been done in (Legayet al., 2006)
for a compressible fluid. The fluid was only on one side of the structure, therefore
there was no need of enrichment in the fluid approximation. Inother terms, only
the two first points of the method were used. The X-FEM has already been applied
to model evolving interfaces in a fluid domain: solidification problem (Chessaet al.,
2002), two-phase flow (Chessaet al., 2003a; Walhornet al., 2005), bio-film membrane
(Bordas, 2003).

Similar methods have been developped. Several meshless methods as SPH or EFG
and more recently the natural element method (NEM) (Martinez et al., 2003) allow
to deal with large boundary displacements. Other methods use the idea of a fixed
fluid mesh containing the structure: the immersed finite element method (Zhanget
al., 2004), the immersed boundary method (Peskin, 2002) and thefictitious domain
methods (Glowinskiet al., 2001; Baaijens, 2001; Bertrandet al., 1997). These meth-
ods do not use any enrichment in the fluid approximation.
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Figure 1. Fluid-structure interaction problem where several thin structures are im-
mersed in the fluid

2. Problem description

2.1. Strong form of the fluid equations

The fluid (Ω domain, Figure 1) is incompressible and viscous. It has an Eulerian
description. The momentum equations are

ρv̇i + ρvi,jvj − τij,j − ρgi = 0 in Ω [1]

whereρ is the density,vi is the Eulerian velocity andgi is the gravity. The stress
tensorτij is given by

τij = −pδij + 2µeij [2]

wherep is the pressure andµ is the viscosity. The strain rate tensoreij is given by

eij =
1

2
(vi,j + vj,i). [3]

Boundary conditions in terms of velocity are

vi − v
g
i = 0 on ∂vΩ [4]

wherevg
i is the given velocity on the∂vΩ boundary. Boundary conditions in terms of

traction are

σijnj − t
g
i = 0 on ∂tΩ [5]
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whereni is the external unit normal vector toΩ andtgi is the given traction force on
∂tΩ boundary. The incompressibility equation is

vi,i = 0 in Ω. [6]

2.2. Strong form of the fluid-structure coupling equations

Eachkth structure has its owna priori known displacement in this work, therefore
the interface condition, for a non-slip interface, is

vi − vsk

i = 0 on Γk [7]

wherevsk

i is thekth structure known velocity andΓk is the interface known position
between the fluid and thekth structure. This condition becomes for a slip interface

vin
sk

i − vsk

i nsk

i = 0 on Γk [8]

wherensk

i is the unit normal vector toΓk.

2.3. Weak form of the coupled system

The weak form for the coupled system is: findvi such that∀δvi,

∫

Ω

δvi ρ
(

v̇i + vi,jvj

)

dΩ +

∫

Ω

δvi,jτijdΩ

−

∫

Ω

δviρgidΩ −

∫

∂Ω

δviτijnjdS + β
∑

k

∫

Γk

δvi

(

vi − vsk

i

)

dΓk = 0 [9]

with vi,i = 0. This last condition is treated by a three step algorithm detailled in
Section 3.3.

The interface velocity continuity is enforced by a penalty term (the last term of
[9]) whereβ is an arbitrary large scalar. For a slip interface conditionthis penalty
term becomes

β
∑

k

∫

Γk

δvin
sk

i

(

vjn
sk

j − vsk

j nsk

j

)

dΓk [10]

Note that this enforcement can be obtained by using distributed Lagrange multipliers
as it has been done in (Kölkeet al., 2006).
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Figure 2. Level-sets are used to localize a structure. The structure is on the zero level-
setφ, in theφ1 andφ2 positive domain (gray domain). The same level-set functions
can be used to localize several structures. These functionsare discontinuous from a
structure neighborhood to an other

3. Discretization

3.1. Space discretization

The fluid discretization is based on the finite element method. A 9-node quadri-
lateral element is used for the veloticity field (N9

I (x) shape functions) while a 4-node
quadrilateral element is used for the pressure field (N4

I (x) shape functions). The sec-
ond element is based on the 4 corner nodes of the first. ThisQ2-Q1choice passes the
LBB condition (Brezzi, 1974).

3.2. Structure localizations

In the fluid domain, the position of a structure is given by thezero level-set of a
functionφ(x, t) (Figure 2) (Sethian, 1999). Such a function is for instance the signed
distance to the interface. This function is updated by thea priori known structure po-
sition at each time. The functionφ(x, t) is positive on one structure side and negative
on the other side.

In the case of an open structure with two tips, two other functionsφ1(x, t) and
φ2(x, t) are used to localize the tips. The two tip positions are such thatφ1(x, t) = 0
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andφ2(x, t) = 0 with the conditionφ(x, t) = 0. The structure is in the domain where
φ1(x, t) andφ2(x, t) = 0 are both positives.

When several structures are immersed, they are all described by the three last level-
setsφ(x, t), φ1(x, t) andφ2(x, t). These three functions are correct around each struc-
ture, that means they describe correctly thekth structure, but they are discontinuous
from a structure neighborhood to an other. However, when structure collisions are ex-
pected, each structure has to have its own set of three level-sets and numerical contact
strategy has to be implemented as for instance in (Laureet al., 2005).

The level-set functions are interpolated in the elements byusing the quadratic ap-
proximation of the 9-node element.

3.3. Time scheme

The used time scheme has been developped recently. More details can be found in
(Tralli et al., 2005b) and (Tralliet al., 2005a). It is based on a third order Runge-Kutta
integration. The incompressibility equation is solved separately by a fractional time
step strategy. The momentum equation are then solved by a semi-implicit scheme.
The scheme can be decomposed into three steps:

1) equilibrium: solve momentum equation by a semi-implicitscheme with no tak-
ing into account the incompressibility, an intermediate velocity field v∗i is obtained;

2) projection: under very general hypotheses, it is possible to split a generic vector
field into the sum of a solenoidal field and an irrotational field: v∗i = vi + χ,i. The
scalar fieldχ is an additional unknown potential;

3) correction: the end-of-step variablesvi andp are computed fromv∗i andχ.

4. Space approximation enrichment

4.1. Partition of unity principle

A partition of unity is a set of functionfi(x) defined onΩPU such that their sum-
mation inΩPU is 1. This property allows to introduce any arbitrary functionsψ(x)
in the approximation space inΩPU (Melenket al., 1996) (Babŭskaet al., 1997). The
approximation ofg(x) can then be enriched inΩPU with an additional functionψ(x),

g(x) =
∑

j

Nj(x)Gj +
∑

i

fi(x)ψ(x)Ag
i [11]

whereNj is the shape function of thejth node,Gj is the nodal unknown ofg(x) on
thejth node, andAg

i is a new unknown associated to theith function of the partition
of unity.
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Figure 3. Partition of unity support. The enriched domain is the set ofall the fluid
elements which are cut by the structures

4.2. Enriched fluid approximation

4.2.1. Partition of unity supportΩPU

The enriched domainΩPU is the set of all the fluid elements cut by the structures
(Figure 3). These elements can be found by the knowledge of the three functions
φ(x, t), φ1(x, t) andφ2(x, t) (Section 3.2).

The domain which is between the enriched and the non-enriched domain is the
so called blending domain. A blending element may introducespurious terms in the
approximation. Strategies to correct these elements have been developped (Chessa
et al., 2003b). The chosen functions in this work for partition of unity, velocity and
pressure approximations and for the enrichment do not introduce spurious terms as it
is shown in (Legayet al., 2005).

4.2.2. Velocity field

From a structure side to the other, velocity is continuous but its gradient is dis-
continuous (Figure 4). The approximation is enriched by a ramp like function, for
instance by using the absolute value of the signed distance to the interface. The cho-
sen partition of unity is the set of the 4 bilinear shape functionsN4

j (x). The enriched
velocity approximation inΩPU becomes

vi =
∑

I∈S

N9

I (x)VIi +
∑

J∈Senr

N4

J(x)(|φ(x, t)| − |φ(xJ , t)|)A
v
Ji [12]

whereS is the set of mesh nodes,VIi is the ith component of theIth node veloc-
ity, Senr is the set of enriched nodes,xJ is theJ th node coordinates andAv

Ji is an
additional unknown.
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Figure 4. Discontinuity of the velocity gradient from a structure side to the other.
Ramp like enrichment of the velocity approximation

~n

p along~n

~t

Heaviside function in an
element cut by the interface

Γ

φ(x) = 0

sign(φ(x))

Figure 5. Pressure discontinuity from a structure side to the other. Heaviside like
enrichment of the pressure approximation

4.2.3. Pressure field

From a structure side to the other, pressure is discontinuous (Figure 5). The ap-
proximation is enriched by a Heaviside like function, for instance by using the sign of
the signed distance to the interface. As well as for the velocity enrichment, the chosen
partition of unity is the set of the 4 bilinear shape functionsN4

j (x). The enriched
pressure approximation inΩPU is

p =
∑

I∈S

N4

I (x)PI +
∑

J∈Senr

N4

J(x)(sign(φ(x, t) − sign(φ(xJ , t))A
p
J [13]

wherePI is theIth node pressure andAp
J is an additional pressure unknown.



Enriched finite elements for FSI 153

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

Fixed structure

Driven cavity

1m.s−1

2m

2.75m, 17 elements

2m, 12 elements
ρ=1kg.m−3

µ=0.2

Figure 6. Driven cavity problem
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non-comp. mesh with no enrichmentcompatible mesh

Figure 7. Velocity and pressure profiles at t=1s for the driven cavity problem

5. Applications

5.1. Driven cavity

The computational fluid domain is a rectangular separated bya fixed rigid structure
(Figure 6). The structure is placed arbitrarily in the fluid mesh. The left part is a
square in which the left boundary is driven in order to have the well known driven
cavity problem. The right part has only fixed boundaries, it is expected to have no
fluid velocity as well as a constant zero pressure.
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1m.s
−1

3m.s
−1

1m.s
−1

3m.s
−1

a) No enrichment is used b) Enrichment is used

Figure 8. Velocity profiles for the divided channel. The dotted line correspond to the
exact velocity while the continuous line is the numerical one

Figure 7 shows velocity and pressure along~x and~y for the stationnary state. Three
results are compared: compatible mesh on the interface, non-compatible mesh with
no enrichment, non-compatible mesh with enrichment. The three computations give
almost the same results in the driven cavity part (left part). In the right part, the
results show clearly that the enrichment is necessary to recover both zero velocity and
pressure fields. This example shows that the method can decouple two fluid domains
separated by an arbitrary located structure in the fluid mesh.

5.2. Divided channel

A fixed horizontal structure is immersed in a rectanguler fluid domain. The struc-
ture cut the fluid domain into two independent domains. The upper fluid boundary is
driven with a 1 m.s−1 horizontal velocity while the lower one is driven with a 3 m.s−1

horizontal velocity. The expected velocity profile at the steady state is linear in each
domain. The expected pressure is constant.

The results are shown on Figure 8 at steady state for both cases when the enrich-
ment is not used (Figure 8a) and when the enrichment is used (Figure 8b). Velocity
profiles are drawn for several sections. The velocity gradient discontinuity is well
modeled when the enrichment is used and the exact solution isrecovered while it is
not when no enrichment is used.

5.3. Translating piston in a channel

A rigid piston is immersed in a one-dimensionnal channel (10m × 1 m) filled by
an inviscid fluid (Figure 9). It has a constant accelerationap = 0.1 m.s−2. It can easily
be shown that the pressure gradient in the fluid is equal top,x = −ρap whereρ = 2
kg.m−3 is the fluid density while the velocity along~x is equal to the piston velocity
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Figure 9. Translating piston in a channel

Figure 10.Pressure field for the translating piston in a channel. The dotted line cor-
respond to the exact pressure while the continuous line is the numerical one

at each time. Since the pressure is imposed to be zero on the two ends of the channel,
there is a large pressure jump from one side to the other one ofthe piston.

The pressure field is plotted on Figure 10 for several time steps. The piston moves
within several fluid elements. The pressure jump through thepiston is exactly catched
by the Heaviside enrichment. The numerical velocity in the channel is not plotted
since it is exactly the piston velocity at each time step.

5.4. Fixed immersed structure in a driven cavity

The fluid domain is a rectangular cavity, driven on the upper boundary (Figure 11).
Figure 12 shows the streamlines at the stationnary state as well as the pressure field.
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Figure 11. Fixed structure in a driven cavity

Figure 12. Streamlines and pressure field for the fixed immersed structure problem at
t=0.5s

The pressure jump is well catched accross the structure. Thestreamlines are correct
and go over the structure.

5.5. Translating structure in a cavity

A straight structure is immersed in a closed cavity (Figure 13). The structure is
initially placed vertically in the left side of the cavity, it has an horizontal constant
velocity. Figure 14 shows the streamlines as well as the pressure field for several
time steps. The pressure jump accross the structure is well catched. The streamlines,
represented for the relative velocity between fluid and structure, are correct.
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Figure 13. Translating structure in a cavity

0.03s 0.7s

2.0s1.4s

Figure 14. Streamlines and pressure field for the translating structure problem. The
streamlines are represented for the relative velocity between fluid and structure

5.6. Two rotating structures in a cavity

Two straight structures rotate in a closed cavity (Figure 15). Figure 16 shows that
the streamlines as well as the pressure field for several timesteps are correct according
to the structures positions.
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Figure 15. Two rotating structures in a cavity
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Figure 16. Streamlines for the two rotating structures problem

6. Conclusion

The developped method can deal with a fluid structure interaction problem where
several thin structures are immersed. Moreover, the structure displacements can be
large. This first study is done for an incompressible and viscous fluid where the struc-
ture velocities are knowna priori.

The fluid mesh, using an Eulerian description, is fixed. The structures, localized
by level-sets, have arbitrary positions in the fluid mesh. These two essential points
avoid the mesh compatibility disadvantage along the interface.

In order to catch the pressure jump as well as the gradient velocity discontinuity
accross the interface, the fluid approximation space is enriched by appropriate new
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functions. This partition of unity based approach is calledthe extended finite element
method.

The applications are restricted in this article to low Reynolds number and laminar
flows in order to avoid boundary layer effects. In the presentapproach, a fine mesh
has to be used around the interface to take into account such an effect. The next
step would be to use a partition of unity enrichment to model the boundary layer by
introducing appropriate functions in the approximation around the interface with no
need of refining the mesh.

The applications show that:

– the method can decouple arbitrary a fluid domain into two separated domains,

– the pressure and gradient velocity discontinuities are well modeled,

– the structures can have large displacements,

– the method can deal easily with several immersed structures, a numerical contact
strategy has to be implemented if structure collisions occur.

Finally, the results show clearly the advantages of the proposed method. The next
step is to validate the method with flexible structures whichhas been done in a space-
time framework in (Kölkeet al., 2006).
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