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ABSTRACTAN Eulerian-Lagrangian fluid-structure coupling approastpresented. The method
is dedicated when several thin structures are immersed iniéhdlomain. Moreover, the struc-

tures may have large displacements. The finite element thigthused for the space discretiza-
tion. A fractional time scheme is used for time integratibhe main point of the method is that
the fluid mesh is fixed and is completely independent of tbetate positions. In order to take

into account the interface inside the fluid elements, newtions are added in the velocity and
pressure fluid fields by using the extended finite elementothett-EM.

RESUME.Une approche Euler-Lagrange pour le calcul couplé fluidersture est présentée. La
méthode est dédiée au cas de plusieurs structures mincexrg@es ayant de grands mouve-
ments. La méthode des éléments finis est utilisée pour |ét&ation en espace. Le schéma
d’intégration en temps est semi-implicite a pas fractigiriée point fort de la méthode réside
dans le fait que le maillage fluide est fixe et indépendant gmsition des structures. Afin de
prendre en compte les discontinuités liées a la présencénti$aces dans le maillage fluide,
les champs d’approximations de vitesse et de pression soiches par I'ajout de nouvelles
fonctions par la méthode des éléments finis étendus X-FEM.
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displacements, incompatible and overlapped meshes, heneiot (X-FEM), fractional time
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1. Introduction

This paper presents an approach to compute a fluid-strumbuged system in dy-
namics. The fluid is viscous, incompressible and can be withith no flow. Several
thin structures are immersed in the fluid. From the fluid pointiew, they are seen
as surfaces with no thickness (Figure 1). The structurefaae large displacements.
Although this first study is applied for anpriori known structure displacements the
method can be extended to flexible structures.

The finite element method is used to discretize the fluid dom@he structures
are localized in the fluid by level-sets. The time integnatscheme is based on a
fractional time scheme (Tralét al, 2005b; Tralliet al., 2005a).

The arbitrary Lagrange-Euler (ALE) is classically usedrtat this kind of prob-
lem. However, spurious mesh distorsions appear when thetstes have large rela-
tive displacements.

The proposed method, based on the three following pointddavhis disadvan-
tage:

1) an Eulerian description is used for the fluid while a Lagyian description is
used for the structure (prescribed structural displacdsienthis work), the method
takes the advantages of both representations;

2) the fluid mesh is completely independent of the structotipns, this avoids
remeshing strategies and mesh distorsions around thésioes:

3) the fluid approximation fields are enriched by adding nemcfions around the
fluid-structure interfaces in order to take into account phession jump as well as
the velocity gradient discontinuity, this enrichment iséd on the so called extended
finite element method (X-FEM) (Moét al., 1999).

A first application of the proposed method has been done igd.et al., 2006)
for a compressible fluid. The fluid was only on one side of tlacstire, therefore
there was no need of enrichment in the fluid approximation.othrer terms, only
the two first points of the method were used. The X-FEM hasadlyéeen applied
to model evolving interfaces in a fluid domain: solidificatiproblem (Chessat al,,
2002), two-phase flow (Chesetal,, 2003a; Walhorret al., 2005), bio-film membrane
(Bordas, 2003).

Similar methods have been developped. Several meshlebsdsais SPH or EFG
and more recently the natural element method (NEM) (Martieteal, 2003) allow
to deal with large boundary displacements. Other methodsthes idea of a fixed
fluid mesh containing the structure: the immersed finite eleihmethod (Zhangt
al., 2004), the immersed boundary method (Peskin, 2002) anfictiteous domain
methods (Glowinsket al., 2001; Baaijens, 2001; Bertrard al., 1997). These meth-
ods do not use any enrichment in the fluid approximation.
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Figure 1. Fluid-structure interaction problem where several thinustures are im-
mersed in the fluid

2. Problem description
2.1. Strong form of the fluid equations

The fluid 2 domain, Figure 1) is incompressible and viscous. It has dartam
description. The momentum equations are

pu; + puijvj — Tij; — pgi =0 in [1]

wherep is the densityp; is the Eulerian velocity and; is the gravity. The stress
tensorr;; is given by

Tij = —péij + 2/16@' [2]

wherep is the pressure andis the viscosity. The strain rate tensgy is given by

1
eij = 5(vij +v5). (3]
Boundary conditions in terms of velocity are
v; —v! =0 on 9,0 [4]

wherev! is the given velocity on thé, 2 boundary. Boundary conditions in terms of
traction are

TijNj — t? = 0 on &gQ [5]

3
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wheren; is the external unit normal vector £ andt! is the given traction force on
0¢$2 boundary. The incompressibility equation is

v =0 in Q. (6]

2.2. Strong form of the fluid-structure coupling equations

Eachk!" structure has its owa priori known displacement in this work, therefore
the interface condition, for a non-slip interface, is

v, — v =0 on Ty [7]

whereuv;* is thek!" structure known velocity anfl;, is the interface known position
between the fluid and thé" structure. This condition becomes for a slip interface

vnt —v*nit =0 on ' [8]

wheren;* is the unit normal vector td',.

2.3. Weak form of the coupled system

The weak form for the coupled system is: findsuch that/év;,
/ ov; p(% + ’U@jUj)dQ —|—/ 5’()1'7]‘7'7;de
Q
/5vlpgldQ / 0v;Tijn;dS + 8 Z/ 51)% vl — v )dI‘k =0 [9]

with v;; = 0. This last condition is treated by a three step algorithnaitlet in
Section 3.3.

The interface velocity continuity is enforced by a pena#iynt (the last term of
[9]) where 5 is an arbitrary large scalar. For a slip interface conditibis penalty
term becomes

ﬁz 5% (nj —v;’“ns’“) dry, [10]

Note that this enforcement can be obtained by using digatblagrange multipliers
as it has been done in (Kollet al., 2006).
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Figure 2. Level-sets are used to localize a structure. The structiomithe zero level-
seto, in the ¢; and ¢, positive domain (gray domain). The same level-set funstion
can be used to localize several structures. These funcimndiscontinuous from a
structure neighborhood to an other

3. Discretization
3.1. Space discretization

The fluid discretization is based on the finite element methp@-node quadri-
lateral element is used for the veloticity fiel®/{ (z) shape functions) while a 4-node
quadrilateral element is used for the pressure fiald (@) shape functions). The sec-
ond element is based on the 4 corner nodes of the first. Q2iQ1choice passes the
LBB condition (Brezzi, 1974).

3.2. Structure localizations

In the fluid domain, the position of a structure is given by tieeo level-set of a
function¢(z, t) (Figure 2) (Sethian, 1999). Such a function is for instaieesigned
distance to the interface. This function is updated byatipeiori known structure po-
sition at each time. The functiaf(z, ¢) is positive on one structure side and negative
on the other side.

In the case of an open structure with two tips, two other fiomst¢; (z,t) and
¢2(z, t) are used to localize the tips. The two tip positions are shahyt (z,t) = 0
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andgs(z,t) = 0 with the conditiony(z, t) = 0. The structure is in the domain where
¢1(z, t) andgs(z, t) = 0 are both positives.

When several structures are immersed, they are all desidipthe three last level-
setsp(z, t), o1 (z, t) andgs(z, t). These three functions are correct around each struc-
ture, that means they describe correctly & structure, but they are discontinuous
from a structure neighborhood to an other. However, wharctire collisions are ex-
pected, each structure has to have its own set of three $eteland numerical contact
strategy has to be implemented as for instance in (Latiat, 2005).

The level-set functions are interpolated in the elementsdiyg the quadratic ap-
proximation of the 9-node element.

3.3. Time scheme

The used time scheme has been developped recently. Moiks databe found in
(Tralli etal, 2005b) and (Trallet al., 2005a). Itis based on a third order Runge-Kutta
integration. The incompressibility equation is solvedasagely by a fractional time
step strategy. The momentum equation are then solved by kirsglicit scheme.
The scheme can be decomposed into three steps:

1) equilibrium: solve momentum equation by a semi-impkciheme with no tak-
ing into account the incompressibility, an intermediategy field v; is obtained;

2) projection: under very general hypotheses, it is possibbplit a generic vector
field into the sum of a solenoidal field and an irrotationaldiet’ = v; + x,;. The
scalar fieldy is an additional unknown potential;

3) correction: the end-of-step variablgsandp are computed from} andy.

4. Space approximation enrichment
4.1. Partition of unity principle

A partition of unity is a set of functiorf;(z) defined or2™ such that their sum-
mation in Q™ is 1. This property allows to introduce any arbitrary fuocis ¢ (z)
in the approximation space "’ (Melenket al, 1996) (Babgkaet al, 1997). The
approximation ofy(x) can then be enriched n* with an additional function)(z),

9(@) = D_Ni@)G; + ) fil@)v(@)A] [11]

whereN; is the shape function of thgh node,G; is the nodal unknown of(z) on
the j*" node, and4? is a new unknown associated to #i& function of the partition
of unity.
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Figure 3. Partition of unity support. The enriched domain is the sealbthe fluid
elements which are cut by the structures

4.2. Enriched fluid approximation

4.2.1. Partition of unity supporf2™’

The enriched domaife™ is the set of all the fluid elements cut by the structures
(Figure 3). These elements can be found by the knowledgeeothitee functions
¢(z,1), ¢' (z,t) andp?(z, t) (Section 3.2).

The domain which is between the enriched and the non-ertfidbenain is the
so called blending domain. A blending element may introcsm#&rious terms in the
approximation. Strategies to correct these elements haga Hdevelopped (Chessa
et al, 2003b). The chosen functions in this work for partition oity, velocity and
pressure approximations and for the enrichment do notdloite spurious terms as it
is shown in (Legat al.,, 2005).

4.2.2. \Velocity field

From a structure side to the other, velocity is continuousitsugradient is dis-
continuous (Figure 4). The approximation is enriched byrapdike function, for
instance by using the absolute value of the signed distantestinterface. The cho-
sen partition of unity is the set of the 4 bilinear shape fim(stN;‘(g). The enriched
velocity approximation if2"Y becomes

vi=Y N @Vi+ Y. Ni@(ela ) - lolz,, t))AY; [12]

1eS Jes§enr

whereS is the set of mesh nodesy; is thei!” component of thd*” node veloc-
ity, Se" is the set of enriched nodes, is the /" node coordinates andy, is an
additional unknown.
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Figure 4. Discontinuity of the velocity gradient from a structure esitb the other.
Ramp like enrichment of the velocity approximation
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Figure 5. Pressure discontinuity from a structure side to the otheeatiside like
enrichment of the pressure approximation

4.2.3. Pressure field

From a structure side to the other, pressure is discontim@Bigure 5). The ap-
proximation is enriched by a Heaviside like function, fostance by using the sign of
the signed distance to the interface. As well as for the vglenrichment, the chosen
partition of unity is the set of the 4 bilinear shape funcﬁdﬁ;‘(g). The enriched
pressure approximation ™ is

p=Y_ Ni@Pr+ Y Njz)(sign(d(a,t) - sign(d(z,,t)) A5 [13]

IeS Je§enr

whereP; is theI*" node pressure and’ is an additional pressure unknown.
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Figure 7. Velocity and pressure profiles at t=1s for the driven cavitylglem

5. Applications
5.1. Driven cavity

The computational fluid domain is a rectangular separatedftxed rigid structure
(Figure 6). The structure is placed arbitrarily in the fluigesh. The left part is a
square in which the left boundary is driven in order to hawe well known driven
cavity problem. The right part has only fixed boundariessiekpected to have no
fluid velocity as well as a constant zero pressure.
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Figure 8. Velocity profiles for the divided channel. The dotted liner@€spond to the
exact velocity while the continuous line is the numerica on

Figure 7 shows velocity and pressure alah@ndy for the stationnary state. Three
results are compared: compatible mesh on the interfacecaopatible mesh with
no enrichment, non-compatible mesh with enrichment. Theetltomputations give
almost the same results in the driven cavity part (left patt) the right part, the
results show clearly that the enrichment is necessary twvezdoth zero velocity and
pressure fields. This example shows that the method can giectwo fluid domains
separated by an arbitrary located structure in the fluid mesh

5.2. Divided channel

A fixed horizontal structure is immersed in a rectanguledfidomain. The struc-
ture cut the fluid domain into two independent domains. Theeufluid boundary is
driven with a 1 m.s! horizontal velocity while the lower one is driven with a 3 m!s
horizontal velocity. The expected velocity profile at theagty state is linear in each
domain. The expected pressure is constant.

The results are shown on Figure 8 at steady state for botls egsen the enrich-
ment is not used (Figure 8a) and when the enrichment is usgdré=8b). Velocity
profiles are drawn for several sections. The velocity gnaidééscontinuity is well
modeled when the enrichment is used and the exact soluti@edvered while it is
not when no enrichment is used.

5.3. Translating piston in a channel

A rigid piston is immersed in a one-dimensionnal channelrdl® 1 m) filled by
an inviscid fluid (Figure 9). It has a constant acceleratips 0.1 m.s™2. It can easily
be shown that the pressure gradient in the fluid is equgl,to= —pa, wherep = 2
kg.m~3 is the fluid density while the velocity alongis equal to the piston velocity



Enriched finite elements for FSI 155

0 L
. R

—
T 1
| H |

p=0. _accelerationa,, p=0

| |
TS S z

Figure 9. Translating piston in a channel
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Figure 10. Pressure field for the translating piston in a channel. Théeatbline cor-
respond to the exact pressure while the continuous linesisithmerical one

at each time. Since the pressure is imposed to be zero on ¢therttls of the channel,
there is a large pressure jump from one side to the other ottegdiston.

The pressure field is plotted on Figure 10 for several timpsst&he piston moves
within several fluid elements. The pressure jump througlpts®n is exactly catched
by the Heaviside enrichment. The numerical velocity in tharmel is not plotted
since it is exactly the piston velocity at each time step.

5.4. Fixed immersed structure in a driven cavity

The fluid domain is a rectangular cavity, driven on the upemuaary (Figure 11).
Figure 12 shows the streamlines at the stationnary stateeb&svthe pressure field.
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Figure 12. Streamlines and pressure field for the fixed immersed steiptoblem at
t=0.5s

The pressure jump is well catched accross the structure.stfeamlines are correct
and go over the structure.

5.5. Translating structure in a cavity

A straight structure is immersed in a closed cavity (Figusg. 1The structure is
initially placed vertically in the left side of the cavity, has an horizontal constant
velocity. Figure 14 shows the streamlines as well as thespresfield for several
time steps. The pressure jump accross the structure is atehed. The streamlines,
represented for the relative velocity between fluid andcstme, are correct.
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Figure 13. Translating structure in a cavity
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Figure 14. Streamlines and pressure field for the translating struetomoblem. The
streamlines are represented for the relative velocity leetwfluid and structure

5.6. Two rotating structures in a cavity
Two straight structures rotate in a closed cavity (Figurg Figure 16 shows that

the streamlines as well as the pressure field for severaldiaps are correct according
to the structures positions.
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Figure 15. Two rotating structures in a cavity
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Figure 16. Streamlines for the two rotating structures problem

6. Conclusion

The developped method can deal with a fluid structure intenaproblem where
several thin structures are immersed. Moreover, the straaisplacements can be
large. This first study is done for an incompressible andouisdluid where the struc-
ture velocities are knowa priori.

The fluid mesh, using an Eulerian description, is fixed. Thecstires, localized
by level-sets, have arbitrary positions in the fluid mesheSehtwo essential points
avoid the mesh compatibility disadvantage along the iaterf

In order to catch the pressure jump as well as the gradientitgldiscontinuity
accross the interface, the fluid approximation space ikad by appropriate new



Enriched finite elements for FSI 159

functions. This partition of unity based approach is catleglextended finite element
method.

The applications are restricted in this article to low Rdgsoumber and laminar
flows in order to avoid boundary layer effects. In the presgyroach, a fine mesh
has to be used around the interface to take into account sudffect. The next
step would be to use a partition of unity enrichment to modeltioundary layer by
introducing appropriate functions in the approximatioaward the interface with no
need of refining the mesh.

The applications show that:

— the method can decouple arbitrary a fluid domain into twasgied domains,
— the pressure and gradient velocity discontinuities arémwwedeled,
— the structures can have large displacements,

— the method can deal easily with several immersed strusitaneumerical contact
strategy has to be implemented if structure collisions accu

Finally, the results show clearly the advantages of the @sed method. The next
step is to validate the method with flexible structures wiiiak been done in a space-
time framework in (K6lkeet al., 2006).
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