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ABSTRACTThe eXtended Finite Element Methot-FEM) has been applied to a wide range of
applications, in particular for crack growth simulations structural mechanics. However, for
real applications (engineering simulations,...), eveorié does not need to mesh the crack, it is
necessary to take into account the different spatial sdaied to the size of the domain, the
geometry of the boundary, the size of the boundary with pleest displacement or loading,
the discretized "representation” of the crack,... In théspect, one proposes in this paper to
couple the eXtended Finite Element Method with a multi-gtidtegy. Details are given for
numerical implementation with a hierarchical finite elernstrategy. Finally, some examples
are given (mixed mode crack growth simulations) to validatemethod.

RESUME.La méthode des éléments finis étenddisFEM) a été appliquée a de nombreux
domaines de mécanique des structures, en particulier anhlsition de propagation de fis-
sures.Cependant, pour des applications industrielles, mémefgidare ne nécessite pas d’'étre
maillée explicitement, les différentes échelles spatiatsociées a la géométrie de la structure,
a celle de la fissure, aux conditions aux limites, etc., ddiégre prises en compte. Pour cela,
nous proposons dans cet article de coupler la méthode de®eéls finis étendus a la stratégie
multigrille. L'implémentation numérique dans le cadreldi@ents finis hiérarchiques est préci-
sée. Des exemples de propagation de fissure en mode mixensaite donnés pour valider la
méthode.

KeywoRrbsextended finite element method, multi-grid solver, crackwn simulations.
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1. Introduction

Literature on the coupling between the finite element metratidifferent multi-
scale strategies is rapidly expanding, on the one hand dhe tmprovement of multi-
grid solvers (Lubrechet al.,2000, Brandt, 1977, Parsoesal.,1990a, Gravouiét al.,
2003), or on the other hand due to the increasing of knowledgtae nonlinear be-
haviour of the microstructure (Fisét al., 2004, Stazi, 2003, Feyel, 2003). In this
presentation, our goal is to focus on improving the numétieatment of engineer-
ing applications in presence of discontinuities. In thispect, the eXtended Finite
Element Method is well suited to describe a discontinuitpoimpatible with the dis-
cretization of the structure (Moét al., 1999). In this case, one can consider the
mesh of the structure as a "coarse spatial scale" and thendiisaity as a "fine spatial
scale" (Guidaulet al.,2005). As a consequence, even in the case-BEM, one has
to define the mesh of the structure sufficiently fine to be ableléscribe" the geom-
etry of the discontinuity (cf. Figure 1). Furthermore, atfiae spatial scales can be
considered to improve the initial fixed mesh: complex geoyneftthe boundary, the
description of time evolving prescribed displacement @diag, or zone with high
stress gradients (Ribeaucoattal.,2005, Elguedgt al.,2005). For that purpose, one
proposes to couple the-FEM with a multi-grid strategy which allows to "capture"
all the spatial scales of the problefn. all this paper, one makes the assumption that
the linear fracture mechanics is valid for every scales.tifeumore, one considers
that a topological enrichment strategy (Bécktedl.,2005) is sufficient to describe the
K-dominated area.

In the first part, one describes the multi-grid strategy iraegal point of view. In
the second part, one discusses the development of mulé-sparators in the context
of X-FEM, then one proposes a specific implementation in the caseok clisconti-
nuity. In the last part, validation studies are proposediioted mode crack growth
simulation.

2. Multi-grid strategy

The principle of multi-grid methods is based on the fact ttestitive solvers are ef-
ficient to capture the high frequency part of the solutiom l@ss efficient to calculate
the low frequency part of the solution (Brandt, 1977, Passdral., 1990a, Parsonst
al., 1990b). In this respect, a point of departure is to considfardnt grids (meshes)
which are able to capture efficiently the different spatales of the solution.
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Figure 1. Example of an engineering mesh where a multi-scale apprisacbeded

2.1. The two grids algorithm

One considers a linear problem discretized on a fine mesimd a coarse mesh
M . The problem can be written as follow:

K, U, =F, on the fine mesh [1]

KyUy =Fy on the coarse mesh [2]
where respectively U, K and F are the discretized displacénséffness matrix and
external loading for each spatial scale.

The multi-grid algorithm for a linear problem can be desedwith the 6 following
steps for the:!" iteration.

Beginning of cyclek

— First relaxation step

One initializes the:™" cycle with the previous approximatidi“—! and one pro-
ceeds tav, iterations (in practice of the order of 2 to 5). One obtaire tiew ap-
proximationU" . The numbeuw, is fixed in the aim to decrease sufficiently the high
frequency error defined by: N

By = Uy — UF, [3]

The idea is then to try to reduce the low frequency error onlyh@ coarse mesh. For
that purpose, one define the residual as follow:

Ry = Fpy — K, UF 4]
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Moreover,K,, is a linear operator, one then has:

K, E,, = R, (5]

— Restriction step

The residual is now smooth and it can be well represented ®mdarse mesh.
One defined as the restriction operator from the fine scale to the coaale sin
this respect, one transfers the residual from the fine mettetooarse mesh:

Ry =IMR,, (6]

— Resolution of the coarse problem

Ky AUy = Ry [7]
where AUy, is the low frequency correction term. Becau8g is smooth,AU,,
should be a good approximation of it.

— Prolongation step

One defined}; as the prolongation operator from the coarse scale to thedaile.
In this respect, one transfers the coarse correction tertheofine scale:

AU, = I AUM (8]

— Correction step

AU, is assumed to be a good approximatiorflf. Then, according to [3] :
~k ~
U, =Uk + AU, [9]

~k
whereU,, is the updated solution. The first term on the right hand sigeasents the

high frequency contributioflvf,’f1 to the solution and the second one the low frequency
contribution.

— Second relaxation step

If needed, a second relaxation step (in practice of the afiérto 3 iterations) is
introduced in order to eliminate any high frequency errsuitng from the prolonga-
tion step. The new approximation bf, at the end of cyclé is nowU? .

End of cyclek

One obtains the convergence of the algorithm when the faligwriterion is true:

1Bl <e [10]

Furthermore, it can be noticed that the resolution of thesmproblem can be done
either with a direct solver or recursively with a limited nber of multi-grid cycles
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~ with a third coarser mesh, and so on (Lubreehal.,2000). Thus, the parameters
of multi-grid methods consist of not only the number of griaglved, but also the
manner in which the transition between scales is achievednlbe schown that such
approaches can converggixin), n is a parameter linked to the size of the discretized
problem (Parsonst al.,1990a), which can be compared to other iterative solvees lik
Gauss-Seideld(n?)) or conjugate gradient solver® (n?/?)).

2.2. Multi-scale operators

One has previously used restriction and prolongation dapex@?! and I7:. In
practice, these operators transfer nodal fields from therfiash to the coarse one
and inversely (Dureisseix, n.d.). One can also build theseoperators by preserving
the internal work on the different scales. As a consequéncean be shown that one
obtain the following relation:
=" [11]

Furthermore, it justifies the dual property of the two opamstwhere the first one
is used to reduce the residual forces, and the second oneltmprthe displacement
increment.

A classical way to build the prolongation operator is to usegshape functions to
interpolate the displacement field of the coarse scale thribecale. Then, the values
of the shape functions of the coarse mesh is related to thesnafdhe fine mesh in a
rectangular matrix.

3. Multi-scale operators and enrichment
3.1. Extended finite element method

The extended finite element method proposes to enrich Jotta! finite element
discretization (which is a particular case of the so calladifion of unity method)
(Melencket al., 1996, Moéset al., 1999). These enrichments have to capture the
displacement discontinuity and its asymptotic behavidose to the crack tip inde-
pendently of the mesh. For instance, if one considers a figatled scale represented
by a finite element mesh, the displacement fig(d) is:

u@) =) Nil@w+H) > Nil@a+) @ | 3 Ny | [12]

ieN €N cut i€ENsing

where N is the set of nodes of the mesN;(z) the shape function associated with
nodei. u; are the classical degrees of freedom, and;, b2;, bs;, bs; the additional
degrees of freedom linked to the additional functions ofdmmentH v ,v2,73, V4.

It can be noticed that these additional functions are definddpendently of any
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discretization: their local contribution is only repressh by their product with the
classical shape functions;(z) (cf. Figure 4a fory;). In this paper, one chooses a
topological enrichment by the fact thaf.,; only contains the nodes of the elements
completely cut by the crack, and;,,, the nodes of the elements containing the crack
tip. On Figure 2 one illustrates the strategy of local enrieht for a coarse and a
fine meshThe topological enrichment is here prefered to the geonaine (Béchet
et al., 2005) because one makes the assumption that at each distostilevel, the
singular enriched area is sufficient to well describe thedkthated area. However,
all the issues encoutered with a geometrical enrichmeategty should be the same
that the one dicussed below and the strategy adopted shedible to geometrical
enrichment.

coarse mesh element

************************************************

6 H i i 5 h 4 f [ .
C\J o Ry —9 ! ' fine mesh element
7 B ! 1= |
>5”7@B”{}7¢7” d E}é 7777777777777 singular and cut enrichments
I:l O on the coarse mesh
® 1
1 ’ | 3 ! O o singular and cut enrichments

on the fine mesh

crack

Figure 2. Overprinted coarse and fine meshes. Number and letters apeotively
related to the nodes of the coarse and the fine mesh

3.2. Formulation of the interpolation problem between two grids
and their enrichments

We remind that in this paper, all grids are enriched with aptogical X-FEM
strategy. The two multi-scale operators are linked by thatioe [11], this is why
one only focuses on the definition of the prolongation operadits role is to define
kinematics quantities’ on the fine meshb\ ¢ from kinematics quantitieg® on the
coarse meshM,.. Let us consider a non enriched nod@®f the fine mesh with the
coordinateg:,,. Its degrees of freedomy, are directly determined by the relation:

ul = u'(zy) [13]
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If the noden is an enriched node, one can write in a general point of view:

4
uh+ afH(zn) + Y bv(an) = (2, [14]
=1

Degrees of freedom/, af andbfn are not defined here in a one-to-one way by

Zny Eno

u®(z,). One can then distinguish the two following cases:

— degrees of freedom on the fine mesh can be one-to-one deéstrfiom the
degrees of freedom of the coarse mesh. In such a case, onthatise enrichments
of the node are compatible with the enrichments of the caaessh,

— degrees of freedom on the fine mesh can not be one-to-onenitetel from the
degrees of freedom of the coarse mesh. In this case, onelgdythé enrichments of
the node are incompatible with the enrichments on the coaesh.

Let us defineF = {fi(z)}, the set of enrichment functions. Recall that these
functions are independent on the discretization (cf. Fegl&). Let us consider a node
n of M with coordinates:,, enriched with a subsef; C F. The displacement of
this node can be written as:

o (@,) =l + Yl fil@,) VF [15]
JEFs

wherew/ is the vector of standard degrees of freedom linked to the nahdu/  is
the vector of additional degrees of freedom linked to emmieht functionsf; (z).

The displacement on the same coordinatesf the coarse mesh can also be writ-
ten as:

u(z,) =Y Nilw,) |uf+ Y uSifi@,) + Y, ulifi,)| VF [16]
ieN JEFy JEF\Fy

whereNy are the shape functions linked to the coarse mesh. It candvensihat the
enrichment is "compatible" if one verifies the following pesty:

YN | D wiifilz,) | =0 [17]

ieEN JEF\Fy
Indeed, one can then write:

ul(z,) = u(z,)

ul + >l fi@,) = Y N, (w+ > b fi(z,) | VF (18]

jeff ieEN jeff
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As a consequence, it is possible to identify the degreesetivm ofM ; in a one-to-
one way:

ul, = > Nf(z,)uf

ieN

uly = D Ni(z)u§ Vi
iEN
On the opposite case, (relation [17] is not verified), no tdieation is possible. En-
richment of node: is not compatible with the coarse mesh.

[19]

3.3. Example of compatible and incompatible enrichments withBEM

In this section, one considers the configuration definedgue 2. Furthermore,
one defines the two sets of nodes.bty:

81 = {a:jadaeafag} [20]
Sy = {b,c,h,i} [21]
In this particular case, the first set of nodgscorresponds to compatible enrich-
ments and the second ofe to incompatible enrichments.

Indeed, for the first set of nodées, if one considers the nodesand; of the fine
mesh, one can write:

Fr = {H} [22]
F\Fs

{7172, 73574} [23]

As can be seen on Figure 4b ( whergzx) ZieNsmg (Ni(z)b1;) = 0in z, and
z; ) the local nature of the singular enrichment involves theaidition [17] is exactly
verified for points of coordinate,, andgj. For instance, one can write for the node
a:
u, +a,H(z) =1/2(u; +ug) +1/2(a; + ag) H(z) [24]

this expression is similar to [18] since the enrichment fiorcis the same on the left
hand side and the right hand side of the equality. As a corsem) one can proceed
in a unique way to the following identification (cf. Equatifir®]).

u, = 1/2(u; +ug) [25]
a, = 1/2(a; +ag) [26]
Concerning the nodes ¢, f andg the same analysis can be done with:

Fr o= Avv2,73,m} [27]
F\F; = {H} [28]
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One can notice that this identification is similar to a prgation step of the dis-
placement field separately on each set of enrichment funcliiothe aim to illustrate
this point, one can consider the one dimensional case of&iguOnly the enrich-
ment functionH is considered here. Enriched nodes are automatically ctibipa
ones since:

Fp={H}=F = F\F;=10 [29]

The displacement field can the be decomposed with a standardnd an enriched
part as follows:
u() = wgq(e) + wp(z) [30]

Consequently, interpolate separately these two compsméitihe displacement field
on a finer mesh allows to prolong the total displacement fiald.o

e RN

up(z) - .
\ 1

« standard node © enriched node

Figure 3. Prolongation process with compatible enrichments. Onlygenrichment
is used here. The numbers below the nodes are the dof values

Concerning the second set of nod®s the analysis is quite different. Indeed,
they are enriched only with th& function, however the displacement field on the
coarse mesh is enriched with and~; functions (see for instance Figure 4b where the
v1(z) ZiGNsi"g (N;(x)by;) function is not zeroed om, ,z., z,, x;). In this respect,
Equation [17]is no more verified, consequently these nodeimaompatible enriched
ones. Degrees of freedom on the fine mesh are no more unigeféhed for identi-
fication. In this case, the adopted strategy consists imgotate separately standard
fields and enriched fields, even if they are not of the same #p@ consequence, the
standard part of the displacementgt z.., z,, z, is interpolated from the standard
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part of the coarse displacement field and in a similar wayteranriched part. For
instance, one obtains the following relations for node b:

Yy = Z u; Ni(zy) [31]
i€{1,2,5,6}
4
a, = | D aNilw)H(zy)+ D> Y biiNi(z,)yi(z,) | /H(z,)[32]
i€{1,6} i€{2,5} j=1

In fact this configuration is rather easy to treat, sincedhisrthe onlyH enriched
function on the fine mesh. Furthermore, this is the only gesiase in practice (with
a topological enrichment and a hierarchical elementsegjyat indeed, an enriched
node withy; functions necessarily brings to the element which conthiesrack tip.
And this node necessarily corresponds to the nodes of theeogesh linked to the
element cut by the front (see Figure 2)et notice that in the case of a geometrical
enrichment strategy and hierarchical elements, one woelét tthe same particular
cases (compatible and incompatible enrichments).

One has to see that this strategy (Equations [31] and [32Pdnces local nu-
merical errors in the interpolatiofsee Section 4.1.1 and Figure 8€Jhis error is
inevitable since the interpolation space of the displacifield is not the same be-
tween the coarse and the fine scales. However, it is impddandtice that this error
is local in space and of the order of the size of an elementisréspect, this corre-
sponds to a high frequency error which will be smoothed withftrst relaxation step
of the multi-grid algorithm.

4. Examples

In this section, one considers a first example in the aim tistitate the good nu-
merical properties of the multi-scale operators previpdsffined in the context of the
extended finite element method. The second example is a wepjistic application
of the method to mixed mode crack growth simulation: indé@ethis case multi-grid
strategy is not essential, however this illustrates thesipdity of the method in the
case of real applications where one have a very complealinitesh which can not be
changed. In this respect, a multi-grid strategy couplett WHFEM can be very use-
ful in the aim to locally define the good spatial scales whibbwato simulate mixed
mode fatigue crack growth with no re-meshing techniques.

The different parameters of the method and their influenad@eonvergence and
the accuracy are studied. On the coarsest scale a direer $slused and a Jacobi
preconditioned conjugate gradient solver is used for eglar steps.
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Figure 4. Function~y, (r,0) = +/r cos(6/2). ~, is independent on the discretization
and depends only on the crack geometry represented withteeddse (a) . The local
nature of the enrichments is due to the teyniz) Zieng (N;(z)by;) as illustrated
on (b) and (c) for the two meshes of Figure 2. All theare set tol

4.1. Case of a tensile plate with a horizontal crack

One considers a plate subjected to a tensile stegss£ 10 A Pa) with a hor-
izontal crack (see Figure 4 for the geometry). One considdirsear elastic homo-
geneous isotropic behaviour with the following Young’s mhg and Poisson'’s ratio:
E = 200 GPa, v = 0.33. The crack tip is defined by the coordinates,y;). In
this case, one chooses the following values:= 3.45 cm andy; = 3.5522 cm. The
crack does not follow the boundary of the finite elements aneksentially solicited
in mode I. The considered meshes are structured hieratdiniear quadrangle finite
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element meshes (see Figure Bhe solution computed with the mesh 3 is plotted on
Figure 7.

Pttt

(s ys) 6cm

6cm

Figure 5. Geometry of the plate

4.1.1. Influence of relaxation steps and multi-scale operators

In this study, one wants to illustrate the contribution affegrid and the iterations
on the solution with the X-FEM multi-grid strategy. In thisspect, the errog is

Mesh 0 : 9 elements Mesh 1 : 36 elements

Figure 6. Some of the meshes used in the multi-grid strategy
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defined as the difference between the exact numerical solut{which is known in
this case) and the current numerical solution

[33]

|2

eE=u-—

Indeed, this quantity is a good error indicator on the qualitthe numerical solution
obtained at each step of the X-FEM multi-grid algorithm.

Figure 8 shows the error field at each step of a two meshes-gridicycle. The
fine mesh is the meshwith 1288 elements. All the views are plotted with the same
amplification factor. The algorithm is initialized with alhuector, so the initial error
is equal to the exact numerical solutior{fFigure 8a).

The effect of the first relaxations is not significant: the Euclidian norm of the
error decreases from, 2.1072 m t0 2,9.10 3 m . The displacement field is here
close to a rigid body move on the upper part of the structuea Aonsequence, it is
clear that the first corrections are essentially linked tovafrequency error, that is to
say linked to the coarse mesh. In this respect, the nextat@neon the coarse grid
is clearly efficient and contributes to decrease the lowifeaqy error of the solution
since the Euclidian norm of the error equal®.10~° m . In the same way, for the
moment, the second relaxation step does not decrease cigtlifi the error (error=
8,8.10~° m). However, one can notice on Figure 8e that the correctiaihercoarse
mesh has introduced a high frequency erfbhis error is present on all the domain
but is more important near the crack tip because of the ineditlp enrichments.
Furthermore, on Figure 8f, it is also clear that relaxatiteps quickly eliminates
these high frequency errors and in particular the secomadatbn step.

4.1.2. Influence of the multi-grid parameters

The two relaxation parameters andv, plus the number of cycleg can have a
great influence on the convergence of the X-FEM multi-grgbaithm. The interest-
ing quantities to compare are the CPU time with the multitgsicles at convergence
N.. Tables 1, 2 and 3 present the results for different sizdssghtoblem. The number
of cycles at convergence is a non integer number. Indeesl dbtained by interpo-
lation between the two last cycles since the convergencéeacthieved before the
last relaxation step. The accuracy is chosen equal+010~2 (cf. [10]). The CPU
time concerns the relaxation steps.., but not the prolongation and restriction steps
tpr. Howevertpg can be non negligible when + v» is small.

One can notice that single V-cycleg & 1) are not very efficient. The number
of operations per cycle with = 1 is lower than withy = 2 or 3, however this not
compensates the high number of necessary cycles. W\tH2, the number of cycles
greatly decreases of the order of 4 or 5 (Table 3). The CPU dis@decreases. Fur-
thermore, the total iteration number + v» is also important. In this particular case,
a small number of relaxation steps is sufficient to convewge-(v> = 3). Decreasing
v; andy, involves a small increasing d¥. however this is highly compensated by
the decreasing of the total number of iterations. Feam- v, = 8tov; + v = 3,
one observes on Table 3 an increasing Adrof 1.3, but a decreasing for the CPU
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Figure 7. Displacement field and colormap of its euclidian normitihof the cracked
tensile plate (a) and zoom on the crack tip (b)

time of 1.7. With the choice = 3, the number of multi-grid cycles still decreases,
however the gain does not compensate the high number ofidgieseper cycle. As a
consequence, it seems that= 2 is an optimal parameter for this example. Further-
more, considering the results for the three different mgsbhee observes that with
v1, Vo and~ fixed, the number of multi-grid cycled’, is almost constant. This re-
mark is very similar to the one obtained by Parsons et HalPargon®t al.,1990a).
They also propose to evaluate the total number of operatiensycle N, ¢ with the
following relation:

N,. = Cy <1+%+(%)2+...+(%)M2>n+Nd5 [34]

wheren is the problem sizeNy, is the number of operations needed for the exact
resolution with the initial coarsest mesh amflthe number of grids. I1fV/ is suffi-
ciently great, then the resolution on the coarsest mesh Yy a@mall numerical cost
(compared to the finest mesh cost) and one can nedjlgctCy is a proportional co-
efficient betweem andN,. — Ny, in the case of a two scale resolutiath, depends
essentially onv; andv,. If one assumes that the arithmetic suit [34] is stabilized,
one can consider thaY,. is proportional ton (N,. is in O(n)). Indeed, from the
assumption that the number of multi-grid cycl¥s is constant V.. is in O(1)), one
deducts that the total number of operations needed to cgegr,; is in O(n) since
O(1).0(n) = O(n). Figure 9 represents the evolution of the CPU timg,, with re-
spect to the size of the problem for different valuegoéindy, with v = 2. One also
represent the linear interpolated curves fortheem multi-grid and a preconditioned
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max error :3,2.103m max error :2,9.10 3m
a) initial error (equal to the b) error aften; =5
solution) iterations

max error :8,9.10°m max error :8,8.10 °m
c) error after correction on d) error at the end of the
the coarse mesh cycle afterv, = 1 iteration

e) zoom on the error after f) zoom on the error at the
the correction step on the end of the cycle after
coarse mesh vy = 1 iteration
0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004
EEEsaes—— 00 e ]

Figure 8. Normalized error scalar field (imn) plotted on the amplified error vector
field at differents steps of the multi-grid algorithm. Aletfigures are plotted with the
same amplification factor. A zero-error field would be repreged on an underformed

shape
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conjugate gradient (i®(n?/?)). These results confirm the previous assumption, that
is to say a convergence of the X-FEM multi-grid algorithntitn).

Table 1. CPU time and number of multi-grid cycle to convergence fosime (1288
dofs). The conjugate gradient method reach convergeng®ats

v1 andyy ~v | cputimeins| N,

v =3,v =2 1 0.21 27.5
vy = 5 , Vg = 3 2 0.11 53
vy = 3 , Vg = 2 2 0.10 6.5
vy = 2 , Vy = 1 2 0.11 8.8
W =3,v =2 3 0.27 7.9
vy = 2 , Vg = 1 3 0.30 7.6

Table 2. CPU time and number of multi-grid cycle to convergence fosimé (4848
dofs). The conjugate gradient method reach convergeng¢2ats

v1 andyy ~v | cputimeins| N,

vy = 5 , Vg = 5 1 0.64 20.0
vy =3 ,v3 = 1 0.63 335
vy = 5 , Vg = 3 2 0.25 5.7
vy = 3 , Vg = 2 2 0.23 6.9
v =2,vp = 2 0.20 7.5
vy = 3 , Vg = 2 3 0.49 7.0
vy = 2 , Vg = 1 3 0.36 6.9

Table 3. CPU time and number of multi-grid cycle to convergence fostmte (18880
dofs). The conjugate gradient method reach convergen2&@ts

v1 andus ~v | cputimeins| N,

vy =5,1,=5 1 4.12 28.5
vy = 5 , Vg = 3 2 1.04 5.8
vy = 3 , Vg = 2 2 0.90 6.9
vy =2,y =1 2 0.61 7.6
vy = 5 , Vg = 3 3 1.46 4.1

4.2. Example of a mixed mode crack growth simulation

In this example, one applies tikeFEM multi-grid strategy in the case of a mixed
mode crack growth simulation (see Figure 10 for the geonsetd/the loading). Fur-
thermore, one assumes a linear elastic homogeneous isolrpaviour. In this re-
spect, the Young’s modulus equal¥) G Pa and the Poisson’s ratio is3.
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Figure 9. Computation time and fit for preconditioned conjugate geadiand multi-
grid method with different values of + v, andy = 2

The different grids are represented on Figure 11. The cnadklee hole are repre-
sented with respectively generalized Heaviside and Higgvisnrichment functions.
The mesh) is very coarse, and meshésand2 are obtained from mesh by sub-
dividing elements in a predefined zone in the aim to accyratescribe the path of
the crack and the stress gradients during its propagatidthreninfluence of the hole
on it. However, it is clear in this example that the differgnitls are not fine enough
to accurately solve the mechanical problem (influence oétress concentration fac-
tor). This is not the aim of this simulation: one only wantsjtealitatively validate
the X-FEM multi-grid algorithm, and in particular noticestfy even if the initial crack
is very small on the coarse mesh (see Figure 11), the crackliseaptured” by the
solver because of its good representation on the fine medéedth the most important
thing is to define the fine mesh accordingly with the spatialcepscales you want
to "capture".One has to notice that the same geometrical support was msedat
level to describe the crack geometry. A complex crack gepnveduld require a lot
of work to get an accurate quadrature on the corsest levelsetier, a such accurate
computation is useless since the only level of interestasfitnest one. Indeed, one
recalls that the coarse level has no mechanical meaningamdyi usefull to increase
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example

the convergence rate of the fine problem. In this respectaesest representation of
the coarse mesh should be sufficient.

Stress intensity factors are calculated with the inteoaciintegral which can be
written as follow (Goszt al.,1998) :

M(I,Q) — /
T

wheren is the unit normal vector of the contolit Superscripts and? are related
respectively to the actual and to an auxilliary state. Inddéige of plane strain assump-
tion, stress intensity factor&; and K;; can be obtained by the use of the auxiliary
fields respectively in mode | and Il :

K;l) = E/2(1- UQ)M(LModeI) (36]
E/2(1 _ U?)M(I,Modell) [37]

2 1
moui _ jeduil gp [35]

(1) .(2)
7 ¢ 5 Bz 4 By | ™

ij “ij

51j—(7

(1
KII)

The presented results on Figure 12 correspond to stresssitytdactors | and
Il and the energy release ratedepending on the crack length. Furthermore, the de-
formed mesh with the Euclidian norm of the displacement feefdotted on Figure 14.
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Figure 12. Stress intensity factor&’;, K7 and energy release raté

Figure 13 represents the convergence results afthem multi-grid algorithm (with

v =2, v, = 5andy, = 3) for different positions of the crack tip during the prop-
agation. One observes a small influence of the crack tipiposin the convergence
rate, in particular close to the hole. However, in a genesaitof view, a good con-
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Figure 13. Convergence of the multi-grid algorithm for different ckdengtha

vergence rate is obtained since for each multi-grid cyateréisidual norm decreases
by one decade.

5. Concluding remarks

A multi-grid extended finite element method was presentadhik respect, spe-
cific multi-scale operators where developed. Even the pigdtion and restriction
steps can generate local errors, it is shown that these saesveothed very effi-
ciently by the relaxation steps. Furthermore, the wellvkn@onvergence rate of the
classical multi-grid finite element method is preservedteied, coupling«-FEmM and
the multi-grid strategy involves a similar convergencer# a general point of view,
this approach can be very useful to automatically take ictmant various adapted
spatial space scales (for cracks, holes, inclusions, kfiegions...) which are not
necessarily described in the initial fixed mesh (coming fesrgineering applications).
An application of thex-FEM multi-grid strategy was proposed for elastic mixed mode
crack growth simulations. However, further studies areleddo the extension of the
method to nonlinear behaviours and tri-dimensional craokvth simulations.
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