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ABSTRACT.The eXtended Finite Element Method (X-FEM) has been applied to a wide range of
applications, in particular for crack growth simulations in structural mechanics. However, for
real applications (engineering simulations,...), even ifone does not need to mesh the crack, it is
necessary to take into account the different spatial scaleslinked to the size of the domain, the
geometry of the boundary, the size of the boundary with prescribed displacement or loading,
the discretized "representation" of the crack,... In this respect, one proposes in this paper to
couple the eXtended Finite Element Method with a multi-gridstrategy. Details are given for
numerical implementation with a hierarchical finite element strategy. Finally, some examples
are given (mixed mode crack growth simulations) to validatethe method.

RÉSUMÉ.La méthode des éléments finis étendus (X-FEM) a été appliquée à de nombreux
domaines de mécanique des structures, en particulier à la simulation de propagation de fis-
sures.Cependant, pour des applications industrielles, même si lafissure ne nécessite pas d’être
maillée explicitement, les différentes échelles spatiales associées à la géométrie de la structure,
à celle de la fissure, aux conditions aux limites, etc., doivent être prises en compte. Pour cela,
nous proposons dans cet article de coupler la méthode des éléments finis étendus à la stratégie
multigrille. L’implémentation numérique dans le cadre d’éléments finis hiérarchiques est préci-
sée. Des exemples de propagation de fissure en mode mixte sontensuite donnés pour valider la
méthode.
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1. Introduction

Literature on the coupling between the finite element methodand different multi-
scale strategies is rapidly expanding, on the one hand due tothe improvement of multi-
grid solvers (Lubrechtet al.,2000, Brandt, 1977, Parsonset al.,1990a, Gravouilet al.,
2003), or on the other hand due to the increasing of knowledgeon the nonlinear be-
haviour of the microstructure (Fishet al., 2004, Stazi, 2003, Feyel, 2003). In this
presentation, our goal is to focus on improving the numerical treatment of engineer-
ing applications in presence of discontinuities. In this respect, the eXtended Finite
Element Method is well suited to describe a discontinuity incompatible with the dis-
cretization of the structure (Moëset al., 1999). In this case, one can consider the
mesh of the structure as a "coarse spatial scale" and the discontinuity as a "fine spatial
scale" (Guidaultet al.,2005). As a consequence, even in the case ofX-FEM, one has
to define the mesh of the structure sufficiently fine to be able to "describe" the geom-
etry of the discontinuity (cf. Figure 1). Furthermore, other fine spatial scales can be
considered to improve the initial fixed mesh: complex geometry of the boundary, the
description of time evolving prescribed displacement or loading, or zone with high
stress gradients (Ribeaucourtet al.,2005, Elguedjet al.,2005). For that purpose, one
proposes to couple theX-FEM with a multi-grid strategy which allows to "capture"
all the spatial scales of the problem.In all this paper, one makes the assumption that
the linear fracture mechanics is valid for every scales. Furthermore, one considers
that a topological enrichment strategy (Béchetet al.,2005) is sufficient to describe the
K-dominated area.

In the first part, one describes the multi-grid strategy in a general point of view. In
the second part, one discusses the development of multi-scale operators in the context
of X-FEM, then one proposes a specific implementation in the case of crack disconti-
nuity. In the last part, validation studies are proposed formixed mode crack growth
simulation.

2. Multi-grid strategy

The principle of multi-grid methods is based on the fact thatiterative solvers are ef-
ficient to capture the high frequency part of the solution, and less efficient to calculate
the low frequency part of the solution (Brandt, 1977, Parsonset al.,1990a, Parsonset
al., 1990b). In this respect, a point of departure is to consider different grids (meshes)
which are able to capture efficiently the different spatial scales of the solution.
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crack initiation

Figure 1. Example of an engineering mesh where a multi-scale approachis needed

2.1. The two grids algorithm

One considers a linear problem discretized on a fine meshm and a coarse meshM . The problem can be written as follow:KmUm = Fm on the fine mesh [1]KMUM = FM on the coarse mesh [2]

where respectively U, K and F are the discretized displacement, stiffness matrix and
external loading for each spatial scale.

The multi-grid algorithm for a linear problem can be described with the 6 following
steps for thekth iteration.

Beginning of cyclek
– First relaxation step

One initializes thekth cycle with the previous approximationUk�1m and one pro-
ceeds to�1 iterations (in practice of the order of 2 to 5). One obtains the new ap-
proximationeUkm. The number�1 is fixed in the aim to decrease sufficiently the high
frequency error defined by: Em = Um � eUkm [3℄
The idea is then to try to reduce the low frequency error only on the coarse mesh. For
that purpose, one define the residual as follow:Rm = Fm �Km eUkm [4℄
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Moreover,Km is a linear operator, one then has:KmEm = Rm [5℄
– Restriction step

The residual is now smooth and it can be well represented on the coarse mesh.
One definesIMm as the restriction operator from the fine scale to the coarse scale. In
this respect, one transfers the residual from the fine mesh tothe coarse mesh:RM = IMm Rm [6℄

– Resolution of the coarse problemKM�UM = RM [7℄
where�UM is the low frequency correction term. BecauseEm is smooth,�UM
should be a good approximation of it.

– Prolongation step

One definesImM as the prolongation operator from the coarse scale to the finescale.
In this respect, one transfers the coarse correction term onthe fine scale:�Um = ImM�UM [8℄

– Correction step�Um is assumed to be a good approximation ofEm. Then, according to [3] :eeUkm = eUkm +�Um [9℄
whereeeUkm is the updated solution. The first term on the right hand side represents the
high frequency contributioneUkm to the solution and the second one the low frequency
contribution.

– Second relaxation step

If needed, a second relaxation step (in practice of the orderof 1 to 3 iterations) is
introduced in order to eliminate any high frequency error resulting from the prolonga-
tion step. The new approximation ofUm at the end of cyclek is nowUkm.

End of cyclek
One obtains the convergence of the algorithm when the following criterion is true:jjRmjj < " [10℄
Furthermore, it can be noticed that the resolution of the coarse problem can be done

either with a direct solver or recursively with a limited number of multi-grid cycles
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of multi-grid methods consist of not only the number of gridsinvolved, but also the
manner in which the transition between scales is achieved. It can be schown that such
approaches can converge inO(n), n is a parameter linked to the size of the discretized
problem (Parsonset al.,1990a), which can be compared to other iterative solvers like
Gauss-Seidel (O(n2)) or conjugate gradient solvers (O(n3=2)).
2.2. Multi-scale operators

One has previously used restriction and prolongation operators IMm andImM . In
practice, these operators transfer nodal fields from the finemesh to the coarse one
and inversely (Dureisseix, n.d.). One can also build these two operators by preserving
the internal work on the different scales. As a consequence,it can be shown that one
obtain the following relation: IMm = ImMT [11℄

Furthermore, it justifies the dual property of the two operators, where the first one
is used to reduce the residual forces, and the second one to prolong the displacement
increment.

A classical way to build the prolongation operator is to use the shape functions to
interpolate the displacement field of the coarse scale to thefine scale. Then, the values
of the shape functions of the coarse mesh is related to the nodes of the fine mesh in a
rectangular matrix.

3. Multi-scale operators and enrichment

3.1. Extended finite element method

The extended finite element method proposes to enrich locally the finite element
discretization (which is a particular case of the so called partition of unity method)
(Melencket al., 1996, Moëset al., 1999). These enrichments have to capture the
displacement discontinuity and its asymptotic behaviour close to the crack tip inde-
pendently of the mesh. For instance, if one considers a fixed spatial scale represented
by a finite element mesh, the displacement fieldu(x) is:u(x) = nXi2N Ni(x)ui+H(x) Xi2Nut Ni(x)ai+ 4Xj=1 j(x)0� Xi2Nsing Ni(x)bji1A [12℄
whereN is the set of nodes of the mesh,Ni(x) the shape function associated with
nodei. ui are the classical degrees of freedom, andai, b1i, b2i, b3i, b4i the additional
degrees of freedom linked to the additional functions of enrichmentH ,1,2,3,4.
It can be noticed that these additional functions are definedindependently of any
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discretization: their local contribution is only represented by their product with the
classical shape functionsNi(x) (cf. Figure 4a for1). In this paper, one chooses a
topological enrichment by the fact thatNut only contains the nodes of the elements
completely cut by the crack, andNsing the nodes of the elements containing the crack
tip. On Figure 2 one illustrates the strategy of local enrichment for a coarse and a
fine mesh.The topological enrichment is here prefered to the geometrical one (Béchet
et al.,2005) because one makes the assumption that at each discretization level, the
singular enriched area is sufficient to well describe the K-dominated area. However,
all the issues encoutered with a geometrical enrichment strategy should be the same
that the one dicussed below and the strategy adopted should be fitable to geometrical
enrichment.

5 4

1

6 j i h g f

edcba

2 3

singular and cut enrichments
on the coarse mesh

coarse mesh element

on the fine mesh

fine mesh element

crack

singular and cut enrichments

Figure 2. Overprinted coarse and fine meshes. Number and letters are respectively
related to the nodes of the coarse and the fine mesh

3.2. Formulation of the interpolation problem between two grids
and their enrichments

We remind that in this paper, all grids are enriched with a topological X-FEM

strategy. The two multi-scale operators are linked by the relation [11], this is why
one only focuses on the definition of the prolongation operator. Its role is to define
kinematics quantitiesuf on the fine meshMf from kinematics quantitiesu on the
coarse meshM. Let us consider a non enriched noden of the fine mesh with the
coordinatesxn. Its degrees of freedomufn are directly determined by the relation:ufn = u(xn) [13℄
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If the noden is an enriched node, one can write in a general point of view:ufn + afnH(xn) + 4Xj=1 bfjnj(xn) = u(xn) [14℄
Degrees of freedomufn, afn, andbfjn are not defined here in a one-to-one way byu(xn). One can then distinguish the two following cases:

– degrees of freedom on the fine mesh can be one-to-one determined from the
degrees of freedom of the coarse mesh. In such a case, one saysthat the enrichments
of the node are compatible with the enrichments of the coarsemesh,

– degrees of freedom on the fine mesh can not be one-to-one determined from the
degrees of freedom of the coarse mesh. In this case, one says that the enrichments of
the node are incompatible with the enrichments on the coarsemesh.

Let us defineF = ffi(x)g, the set of enrichment functions. Recall that these
functions are independent on the discretization (cf. Figure 4a). Let us consider a noden of Mf with coordinatesxn enriched with a subsetFf � F . The displacement of
this node can be written as:uf (xn) = ufn + Xj2Ff ufjnfj(xn) 8F [15℄
whereufn is the vector of standard degrees of freedom linked to the noden andufjn is
the vector of additional degrees of freedom linked to enrichment functionsfj(x).

The displacement on the same coordinatesxn of the coarse mesh can also be writ-
ten as:u(xn) = Xi2N N i (xn)0�ui + Xj2Ff ujifj(xn) + Xj2FnFf ujifj(xn)1A 8F [16℄
whereN i are the shape functions linked to the coarse mesh. It can be shown that the
enrichment is "compatible" if one verifies the following property:Xi2N Ni (xn)0� Xj2FnFf ujifj(xn)1A = 0 [17℄
Indeed, one can then write:uf (xn) = u(xn)ufn + Xj2Ff ufjnfj(xn) = Xi2N Ni (xn)0�ui + Xj2Ff ujifj(xn)1A 8F [18]
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As a consequence, it is possible to identify the degrees of freedom ofMf in a one-to-
one way: 8>>>><>>>>: ufn = Xi2N N i (xn)uiufjn = Xi2N N i (xn)uji 8j [19℄
On the opposite case, (relation [17] is not verified), no identification is possible. En-
richment of noden is not compatible with the coarse mesh.

3.3. Example of compatible and incompatible enrichments with X-FEM

In this section, one considers the configuration defined in Figure 2. Furthermore,
one defines the two sets of nodes onMf :S1 = fa; j; d; e; f; gg [20]S2 = fb; ; h; ig [21]

In this particular case, the first set of nodesS1 corresponds to compatible enrich-
ments and the second oneS2 to incompatible enrichments.

Indeed, for the first set of nodesS1, if one considers the nodesa andj of the fine
mesh, one can write: Ff = fHg [22]F n Ff = f1; 2; 3; 4g [23]

As can be seen on Figure 4b ( where1(x)Pi2Nsing (Ni(x)b1i) = 0 in xa andxj ) the local nature of the singular enrichment involves that condition [17] is exactly
verified for points of coordinatexa andxj . For instance, one can write for the nodea : ua + aaH(x) = 1=2 (u1 + u6) + 1=2 (a1 + a6)H(x) [24℄
this expression is similar to [18] since the enrichment function is the same on the left
hand side and the right hand side of the equality. As a consequence, one can proceed
in a unique way to the following identification (cf. Equation[19]).ua = 1=2 (u1 + u6) [25]aa = 1=2 (a1 + a6) [26]

Concerning the nodesd, e, f andg the same analysis can be done with:Ff = f1; 2; 3; 4g [27]F n Ff = fHg [28]
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One can notice that this identification is similar to a prolongation step of the dis-
placement field separately on each set of enrichment function. In the aim to illustrate
this point, one can consider the one dimensional case of Figure 3. Only the enrich-
ment functionH is considered here. Enriched nodes are automatically compatible
ones since: Ff = fHg = F =) F n Ff = ; [29℄
The displacement field can the be decomposed with a standard part and an enriched
part as follows: u(x) = ustd(x) + uH(x) [30℄
Consequently, interpolate separately these two components of the displacement field
on a finer mesh allows to prolong the total displacement field on it.

uH(x)+ + +
enriched nodestandard node

u(x)
=

ustd(x)
0 0 0 00000

1 1

11

1 1

2 111

Figure 3. Prolongation process with compatible enrichments. Only a cut enrichment
is used here. The numbers below the nodes are the dof values

Concerning the second set of nodesS2, the analysis is quite different. Indeed,
they are enriched only with theH function, however the displacement field on the
coarse mesh is enriched withH andi functions (see for instance Figure 4b where the1(x)Pi2Nsing (Ni(x)b1i) function is not zeroed onxb ,x, xh, xi). In this respect,
Equation [17] is no more verified, consequently these nodes are incompatible enriched
ones. Degrees of freedom on the fine mesh are no more uniquely defined for identi-
fication. In this case, the adopted strategy consists in interpolate separately standard
fields and enriched fields, even if they are not of the same type. As a consequence, the
standard part of the displacement atxb, x, xh, xi is interpolated from the standard
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part of the coarse displacement field and in a similar way for the enriched part. For
instance, one obtains the following relations for node b:ub = Xi2f1;2;5;6guiNi(xb) [31]ab = 0� Xi2f1;6g aiNi(xb)H(xb) + Xi2f2;5g 4Xj=1 bjiNi(xb)j(xb)1A�H(xb)[32]

In fact this configuration is rather easy to treat, since there is the onlyH enriched
function on the fine mesh. Furthermore, this is the only possible case in practice (with
a topological enrichment and a hierarchical elements strategy): indeed, an enriched
node withi functions necessarily brings to the element which containsthe crack tip.
And this node necessarily corresponds to the nodes of the coarse mesh linked to the
element cut by the front (see Figure 2).Let notice that in the case of a geometrical
enrichment strategy and hierarchical elements, one would meet the same particular
cases (compatible and incompatible enrichments).

One has to see that this strategy (Equations [31] and [32]) introduces local nu-
merical errors in the interpolation(see Section 4.1.1 and Figure 8e). This error is
inevitable since the interpolation space of the displacement field is not the same be-
tween the coarse and the fine scales. However, it is importantto notice that this error
is local in space and of the order of the size of an element. In this respect, this corre-
sponds to a high frequency error which will be smoothed with the first relaxation step
of the multi-grid algorithm.

4. Examples

In this section, one considers a first example in the aim to illustrate the good nu-
merical properties of the multi-scale operators previously defined in the context of the
extended finite element method. The second example is a very simplistic application
of the method to mixed mode crack growth simulation: indeed,in this case multi-grid
strategy is not essential, however this illustrates the possibility of the method in the
case of real applications where one have a very complex initial mesh which can not be
changed. In this respect, a multi-grid strategy coupled with X-FEM can be very use-
ful in the aim to locally define the good spatial scales which allow to simulate mixed
mode fatigue crack growth with no re-meshing techniques.

The different parameters of the method and their influence onthe convergence and
the accuracy are studied. On the coarsest scale a direct solver is used and a Jacobi
preconditioned conjugate gradient solver is used for relaxation steps.
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Figure 4. Function1(r; �) = pr os(�=2). 1 is independent on the discretization
and depends only on the crack geometry represented with a dashed line (a) . The local
nature of the enrichments is due to the term1(x)Pi2Nsing (Ni(x)b1i) as illustrated
on (b) and (c) for the two meshes of Figure 2. All theb1i are set to1
4.1. Case of a tensile plate with a horizontal crack

One considers a plate subjected to a tensile stress (�yy = 10 MPa) with a hor-
izontal crack (see Figure 4 for the geometry). One considersa linear elastic homo-
geneous isotropic behaviour with the following Young’s modulus and Poisson’s ratio:E = 200 GPa, � = 0:33. The crack tip is defined by the coordinates(xf ; yf ). In
this case, one chooses the following values:xf = 3:45 m andyf = 3:5522 m. The
crack does not follow the boundary of the finite elements and is essentially solicited
in mode I. The considered meshes are structured hierarchical linear quadrangle finite
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element meshes (see Figure 6).The solution computed with the mesh 3 is plotted on
Figure 7. �yy

(0; 0) exey
6 m

6 m

(xf ; yf)

Figure 5. Geometry of the plate

4.1.1. Influence of relaxation steps and multi-scale operators

In this study, one wants to illustrate the contribution of each grid and the iterations
on the solution with the X-FEM multi-grid strategy. In this respect, the errore is

Mesh 0 : 9 elements Mesh 1 : 36 elements

...

Mesh 5 : 9216 elements

Figure 6. Some of the meshes used in the multi-grid strategy
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defined as the difference between the exact numerical solutionu (which is known in
this case) and the current numerical solution~u:e = u� ~u [33℄
Indeed, this quantity is a good error indicator on the quality of the numerical solution
obtained at each step of the X-FEM multi-grid algorithm.

Figure 8 shows the error field at each step of a two meshes multi-grid cycle. The
fine mesh is the mesh3 with 1288 elements. All the views are plotted with the same
amplification factor. The algorithm is initialized with a null vector, so the initial error
is equal to the exact numerical solutionu (Figure 8a).

The effect of the first relaxations�1 is not significant: the Euclidian norm of the
error decreases from3; 2:10�3 m to 2; 9:10�3 m . The displacement field is here
close to a rigid body move on the upper part of the structure. As a consequence, it is
clear that the first corrections are essentially linked to a low frequency error, that is to
say linked to the coarse mesh. In this respect, the next correction on the coarse grid
is clearly efficient and contributes to decrease the low frequency error of the solution
since the Euclidian norm of the error equals8; 9:10�5 m . In the same way, for the
moment, the second relaxation step does not decrease significantly the error (error=8; 8:10�5 m). However, one can notice on Figure 8e that the correction onthe coarse
mesh has introduced a high frequency error.This error is present on all the domain
but is more important near the crack tip because of the incompatible enrichments.
Furthermore, on Figure 8f, it is also clear that relaxation steps quickly eliminates
these high frequency errors and in particular the second relaxation step.

4.1.2. Influence of the multi-grid parameters

The two relaxation parameters�1 and�2 plus the number of cycles can have a
great influence on the convergence of the X-FEM multi-grid algorithm. The interest-
ing quantities to compare are the CPU time with the multi-grid cycles at convergenceN. Tables 1, 2 and 3 present the results for different sizes of the problem. The number
of cycles at convergence is a non integer number. Indeed, it is obtained by interpo-
lation between the two last cycles since the convergence canbe achieved before the
last relaxation step. The accuracy is chosen equal to" = 10�8 (cf. [10]). The CPU
time concerns the relaxation stepstrelax, but not the prolongation and restriction stepstPR. However,tPR can be non negligible when�1 + �2 is small.

One can notice that single V-cycles ( = 1) are not very efficient. The number
of operations per cycle with = 1 is lower than with = 2 or 3, however this not
compensates the high number of necessary cycles. With = 2, the number of cycles
greatly decreases of the order of 4 or 5 (Table 3). The CPU timealso decreases. Fur-
thermore, the total iteration number�1 + �2 is also important. In this particular case,
a small number of relaxation steps is sufficient to converge (�1+ �2 = 3). Decreasing�1 and�2 involves a small increasing ofN however this is highly compensated by
the decreasing of the total number of iterations. From�1 + �2 = 8 to �1 + �2 = 3,
one observes on Table 3 an increasing forN of 1.3, but a decreasing for the CPU
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a) global deformed mesh
b) zoom on the crack tip
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Figure 7. Displacement field and colormap of its euclidian norm (inm) of the cracked
tensile plate (a) and zoom on the crack tip (b)

time of 1.7. With the choice = 3, the number of multi-grid cycles still decreases,
however the gain does not compensate the high number of iterations per cycle. As a
consequence, it seems that = 2 is an optimal parameter for this example. Further-
more, considering the results for the three different meshes, one observes that with�1, �2 and fixed, the number of multi-grid cyclesN is almost constant. This re-
mark is very similar to the one obtained by Parsons et Hall in (Parsonset al.,1990a).
They also propose to evaluate the total number of operationsper cycleNo with the
following relation:No = CV �1 + 4 + �4�2 + : : :+ �4�M�2�n+Nds [34℄
wheren is the problem size,Nds is the number of operations needed for the exact
resolution with the initial coarsest mesh andM the number of grids. IfM is suffi-
ciently great, then the resolution on the coarsest mesh has avery small numerical cost
(compared to the finest mesh cost) and one can neglectNds. CV is a proportional co-
efficient betweenn andNo �Nds in the case of a two scale resolution.CV depends
essentially on�1 and�2. If one assumes that the arithmetic suit [34] is stabilized,
one can consider thatNo is proportional ton (No is in O(n)). Indeed, from the
assumption that the number of multi-grid cyclesN is constant (N is in O(1)), one
deducts that the total number of operations needed to convergeNtot is in O(n) sinceO(1):O(n) = O(n). Figure 9 represents the evolution of the CPU timetrelax with re-
spect to the size of the problem for different values of�1 and�2 with  = 2. One also
represent the linear interpolated curves for theX-FEM multi-grid and a preconditioned



Multi-grid X-FEM 175

max error :3; 2:10�3m
a) initial error (equal to the

solution)

max error :2; 9:10�3m
b) error after�1 = 5
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max error :8; 9:10�5m
c) error after correction on

the coarse mesh

max error :8; 8:10�5m
d) error at the end of the

cycle after�2 = 1 iteration

e) zoom on the error after
the correction step on the
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f) zoom on the error at the
end of the cycle after�2 = 1 iteration
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Figure 8. Normalized error scalar field (inm) plotted on the amplified error vector
field at differents steps of the multi-grid algorithm. All the figures are plotted with the
same amplification factor. A zero-error field would be represented on an underformed
shape
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conjugate gradient (inO(n3=2)). These results confirm the previous assumption, that
is to say a convergence of the X-FEM multi-grid algorithm inO(n).
Table 1. CPU time and number of multi-grid cycle to convergence for mesh 3 (1288
dofs). The conjugate gradient method reach convergence at0:05 s�1 and�2  cpu time in s N�1 = 3 , �2 = 2 1 0.21 27.5�1 = 5 , �2 = 3 2 0.11 5.3�1 = 3 , �2 = 2 2 0.10 6.5�1 = 2 , �2 = 1 2 0.11 8.8�1 = 3 , �2 = 2 3 0.27 7.9�1 = 2 , �2 = 1 3 0.30 7.6

Table 2. CPU time and number of multi-grid cycle to convergence for mesh 4 (4848
dofs). The conjugate gradient method reach convergence at0:25 s�1 and�2  cpu time in s N�1 = 5 , �2 = 5 1 0.64 20.0�1 = 3 , �2 = 2 1 0.63 33.5�1 = 5 , �2 = 3 2 0.25 5.7�1 = 3 , �2 = 2 2 0.23 6.9�1 = 2 , �2 = 1 2 0.20 7.5�1 = 3 , �2 = 2 3 0.49 7.0�1 = 2 , �2 = 1 3 0.36 6.9

Table 3. CPU time and number of multi-grid cycle to convergence for mesh 5 (18880
dofs). The conjugate gradient method reach convergence at2:40 s�1 and�2  cpu time in s N�1 = 5 , �2 = 5 1 4.12 28.5�1 = 5 , �2 = 3 2 1.04 5.8�1 = 3 , �2 = 2 2 0.90 6.9�1 = 2 , �2 = 1 2 0.61 7.6�1 = 5 , �2 = 3 3 1.46 4.1

4.2. Example of a mixed mode crack growth simulation

In this example, one applies theX-FEM multi-grid strategy in the case of a mixed
mode crack growth simulation (see Figure 10 for the geometryand the loading). Fur-
thermore, one assumes a linear elastic homogeneous isotropic behaviour. In this re-
spect, the Young’s modulus equals200GPa and the Poisson’s ratio is0:3.
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The different grids are represented on Figure 11. The crack and the hole are repre-
sented with respectively generalized Heaviside and Heaviside enrichment functions.
The mesh0 is very coarse, and meshes1 and2 are obtained from mesh0 by sub-
dividing elements in a predefined zone in the aim to accurately describe the path of
the crack and the stress gradients during its propagation and the influence of the hole
on it. However, it is clear in this example that the differentgrids are not fine enough
to accurately solve the mechanical problem (influence of thestress concentration fac-
tor). This is not the aim of this simulation: one only wants toqualitatively validate
the X-FEM multi-grid algorithm, and in particular notice that, even if the initial crack
is very small on the coarse mesh (see Figure 11), the crack is well "captured" by the
solver because of its good representation on the fine mesh. Indeed, the most important
thing is to define the fine mesh accordingly with the spatial space scales you want
to "capture".One has to notice that the same geometrical support was used on each
level to describe the crack geometry. A complex crack geometry would require a lot
of work to get an accurate quadrature on the corsest levels. However, a such accurate
computation is useless since the only level of interest is the finest one. Indeed, one
recalls that the coarse level has no mechanical meaning and is only usefull to increase
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Figure 10. Description of geometry, loading and boundary conditions of the second
example

the convergence rate of the fine problem. In this respect, a coarsest representation of
the coarse mesh should be sufficient.

Stress intensity factors are calculated with the interaction integral which can be
written as follow (Goszet al.,1998) :M (1;2) = Z� ��(1)ij "(2)ij Æ1j � �(1)ij �u2i�x1 � �(2)ij �u1i�x1 �njd� [35℄
wheren is the unit normal vector of the contour�. Superscripts1 and2 are related
respectively to the actual and to an auxilliary state. In thecase of plane strain assump-
tion, stress intensity factorsKI andKII can be obtained by the use of the auxiliary
fields respectively in mode I and II :K(1)I = E=2(1� �2)M (1;ModeI) [36]K(1)II = E=2(1� �2)M (1;ModeII) [37]

The presented results on Figure 12 correspond to stress intensity factors I and
II and the energy release rateG depending on the crack length. Furthermore, the de-
formed mesh with the Euclidian norm of the displacement fieldis plotted on Figure 14.



Multi-grid X-FEM 179

mesh 0 mesh 1 mesh 2

Figure 11. The different meshes used. The initial crack is also represented

 0

 4e+08

 8e+08

 1.2e+09

 0  50  100  150  200  250  300  350  400

 0

 2

 4

 6

 8

K
I a

nd
 K

II 
in

 M
P

a.
m

1/
2  

G
 in

 J
.m

-2

crack length in mm

KI
KII
G

Figure 12. Stress intensity factorsKI , KII and energy release rateG
Figure 13 represents the convergence results of theX-FEM multi-grid algorithm (with = 2, �1 = 5 and�2 = 3) for different positions of the crack tip during the prop-
agation. One observes a small influence of the crack tip position on the convergence
rate, in particular close to the hole. However, in a general point of view, a good con-
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Figure 13. Convergence of the multi-grid algorithm for different crack lengtha
vergence rate is obtained since for each multi-grid cycle the residual norm decreases
by one decade.

5. Concluding remarks

A multi-grid extended finite element method was presented. In this respect, spe-
cific multi-scale operators where developed. Even the prolongation and restriction
steps can generate local errors, it is shown that these ones are smoothed very effi-
ciently by the relaxation steps. Furthermore, the well-known convergence rate of the
classical multi-grid finite element method is preserved: indeed, couplingX-FEM and
the multi-grid strategy involves a similar convergence rate. In a general point of view,
this approach can be very useful to automatically take into account various adapted
spatial space scales (for cracks, holes, inclusions, refined regions...) which are not
necessarily described in the initial fixed mesh (coming fromengineering applications).
An application of theX-FEM multi-grid strategy was proposed for elastic mixed mode
crack growth simulations. However, further studies are needed to the extension of the
method to nonlinear behaviours and tri-dimensional crack growth simulations.
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