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ABSTRACTThis paper presents an application of the eXtended Finigrient Method for nu-

merical modeling of the dynamic cracks propagation. Theemical cracks representation is
adapted to the time-dependent mechanical formulatiomguie Heaviside step function for
completely cutted elements and the cohesive model for tigek In order to find the prop-

agation parameters, a crack evolution model is proposede filmerical implementation is
achieved in new explicit FE module. A numerical exampleap@sed for proving the compu-
tational efficiency of this new module.

RESUME.Cet article présente une application de la méthode des délénfanis étendue a la

simulation numérique de la propagation des fissures dyna@sigLa représentation numérique
des fissures a été adaptée a la dépendance au temps de ladtanuhécanique en utilisant

la fonction Heaviside pour les éléments complétement soepe modéle cohésif pour la téte
de la fissure. Un modele d’évolution de la fissure est égalepmposé. L'implémentation

numeérique a été réalisée dans un nouveau module de calcnkété-finis explicite. Un exemple
numérique est présenté pour démontrer I'efficacité de ceemumodule de calcul.

KEYWORDSpartition of unity, extended finite element method, dynaméck propagation, co-
hesive model.

MOTS-CLES partition de I'unité, méthode des éléments finis étendugagation dynamique de
fissures, modeéle cohésif.

REMN — 16/2007. X-FEM, pages 183 to 198



184 REMN - 16/2007. X-FEM

1. Introduction

The numerical modeling of the discontinuous structuressudgnamic loads is a
major challenge of the last decades. Several techniques dexeloped in order to
predict the behavior of such discontinuities, cracks oasltbands.

One of the earlier technique used for discontinuities regméation is the re-
meshing. Based on the classical FEM, the mesh of the anadysmdures is re-build at
each time step in order to propagate the crack over the elisredges/faces. Because
of simplicity, this technique is implemented in several eoencial FE codes and the
later developments improved its features (the re-mesHomyighm acts only around
the crack tips). However, several drawbacks remain: thénreessitivity on the direc-
tion of the crack propagation or the managing of the outpta dlar the geometrical
points around the cracks. Therefore the application oftddlnique to dynamic crack
propagation remais quite difficult but some later contiidss$ published on this sub-
ject proposed solutions for the instability problems. SéfHeré etal. (Réthoréet
al., 2004) proposed a technique called “balance recovery ndéthhich guarantees
both numerical stability and accuracy for any type of prajtused in dynamic sim-
ulations with varying meshes.

Later, in order to avoid the insertion of supplementary rexdigring the re-meshing
step, the inter-elements methods with cohesive laws apge&o, cohesive segments
are placed along the element interfaces as the crack advaridgs approach was
followed by (Xuet al,, 1994), (Camachet al, 1996; Ortizet al, 1999; Pandolfet
al., 1999) and later by (Remmees al, 2003). The efficiency of this technique has
been proved for the simulation of dynamic crack propagaigrthe advancing direc-
tion is limited to the elements edges, and therefore, Seasd the mesh orientation.
However, the cohesive concept was developed for modelagréck-tip area through
some other methods, as one can see later in this paper.

Another class of fracture analysis techniques concernsitiigedded discontinu-
ity methods, inspired by the work of Ortiz, Leroy and Needéem(Ortizet al, 1987).
The term “embedded discontinuity” was used by Belytschkieh Rnd Engelmann
(Belytschkeet al., 1988). This one considers that the discontinuity is a tstyhin nar-
row band between two weak discontinuity lines at level eletn&he same approach
was used for strong discontinuities by (Dvorkin, 1990) aSdn et al, 1993). An
extensive review of this class of methods is given by (Jka2600).

The dependence of the crack advancing direction with meshtation remained
one of the major drawback of the above mentioned methodsiireg the major part
of the efforts in order to find a solution. The framework of tRartition of Unity
Method (PUM), developed by (Babuskaal,, 1997) offered a solution. It states that
the new function space, combination between regular shapaiébns and enriching
ones, is able to represent the crack kinematics, withomeshing. Using the fea-
tures of PUM, the eXtended Finite Elements Method (XFEM) wasgeloped as a
method based on the enrichment of the standard displacespgnbximation with
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additional functions. Discontinuous partition of unityreliment were firstly used

by (Belytschkoet al, 1999) who used the near-tip field enrichment and re-meshing
technique for the rest of crack. The original term XFEM watsdduced by (Moés

et al,, 1999) who developed the method proposing the introduatfanstep function
enrichment for the elements completely cutted by the crack.

This new approach was constantly improved and applied fiberdnt fracture
problems: (Dawset al., 2000) for branching cracks, (Sukunetral., 2000) for three-
dimensional cracking, (Moést al,, 2002) for cohesive crack growth, (Belytsch&b
al., 2003; Belytschket al., 2004) and (Réthorét al., 2005) for elastodynamics crack
propagation and, recently, (Elgueelj al, 2006) proposed the appropriate extended
functions for modeling the plastic fracture using XFEM.

The objective of this work is to apply the XFEM approach foe §imulation of
the dynamic crack analysis and to implement it in a home-nkdleode. This pa-
per presents the mains steps of this work and is organizedllsvé. The crack
representation fundamentals and the mechanical forroulattcording to the XFEM
time-dependent model are described in Section 2. Next, ardigicrack propagation
criterion based on a cohesive zone concept is proposed. 8sseatial aspects con
cerning the numerical implementation are presented ini@edt of the paper. Some
numerical results for a dynamic crack analysis example agegmted in Section 5
in order to illustrate the capabilities of the new code. Kjnaome conclusions and
prospects are reported in the last Section of this paper.

2. Crack representation in XFEM time-dependent model

As mentioned before, in order to represent the cracks in Xk framework of
PUM was used for the enrichment of the classical displace#inased finite element
approximation. Therefore, the additional degrees of foeedre introduced for the
nodes whose nodal shape function support are cutted bydlk.dn the initial devel-
opment of XFEM (Moét al,, 1999), for quasi-static analysis, two different types of
enrichment are considered: the Heaviside step functiothielements completely
cutted by the crack and the Westergaard asymptotic neéurtiggion for the elements
containing the crack-tip.

The time-dependence of the dynamic analysis problem makes difficult the
implementation of this mixed enrichmentin XFEM, therefanother solution, more
simple, was proposed recently (Belytschgtal., 2003). In this approach the crack-tip
position is restricted to the elements eddes, the crack-tip advances from edge to
edge, avoiding in this way the enrichment of the near-timavéh the Westergaard
asymptotic functions. So, only the Heaviside step funcisonsed for enriching the
classical displacement-based finite element approximafiall elements being cutted
by the crack.
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This is the approach that we also adopted in our work. Theketipcareas have
to be treated by a cohesive model, as presented in the netidi®etthe paper. The
Heaviside step functiorﬂ[()_f) allows to represent the discontinuity in the displace-
ment field cutted by the crack. The Heaviside step functikagahe value +1 above
the crack and -1 below the crack (considering the crack amgrdirection) 1:

—

H()‘c’):{ i (X=X) a0 [1]

—1 otherwise

where X is the sample poin'L?(>>k is the closest point to¥ on the crack ande’,,

is the unit outward normal to the crack at*. The additional degrees of freedom
introduced here are attached to the nodes belonging tadcelttenents. Therefore, the
new discontinuous displacement figlt* for a N nodes mesh, includinyr enriched
nodes, is approximated by:

- — — — —
uM(X) = er(X)ur+ Y er(X)H(X)a; [2]
IeN I€NT
whereu; corresponds to the classical degrees of freedgny the enriched ones and

—

1 (X) are the shape functions of the element.

Iy u

t

Figure 1. Notations for the 2D discontinuous body

Further, the equations of elastodynamics are recalled h&reracked homoge-
neous domaifi in the current configuration is considered (as shown in FEdyr A
crack is represented by the cug, a tractiont is applied on the Neumann boundary
I'; anda is the applied displacement on the Dirichlet boundggy I', U T, = T,

', NIy = 0. The strong form of mechanical equations, in terms of thecBGau
stresses, for the current configuration, can be written kais:

6aij

8xj

+ pbi — p Ui=0in Q [3]
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nioi; = fz on Ft
+ _
i =T1on T [4]
u; = u; on I'y

njajl- =n;o

wherep is the current density is the body force per unit mass,is the cohesive
traction across the crack andis the Cauchy stress tensofhe weak form of the
momentum equation is then:

Q Q .

Iy

_/ 8(6ui)0ijdﬂ
O\T, Oz

wherew; is the trial displacement field (see [2})y; is the test displacement field
and by||du; || is denoted the displacement jump across the crack. Thiglesitity is
depends only on the magnitude of the enriched degrees afdne€see [19]).

The equilibrium discrete equations for dynamic analysihFEM are obtained
from Equation [5] using the standard Bubnov-Galerkin pchoe, substituting trial
and test displacement fields and its derivatives:

My Mg ] iy { Fip } { it }
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M = / plorH) (o, H)dS [11]

where in the global mass matrix the mixed and enriched temmprsented denoted
by indexua, au andaa, respectively. For the numerical integration the consiste
mass matrix will be used since the terms linked to the enraftrdegrees of freedom
obstruct its lumping. A discution about this choice is wetea here. Several au-
thors treating dynamic crack propagation met this problesing the consistent mass
matrix or the lumped one in case of the presence of enrichgdedse of freedom.
(Belytschkoet al., 2003) retained the terms linked to the enriched degreagefibm
from consistent mass matrix because that was unable tondietan effective diag-
onal mass matrix for these ones. (Bagsal, 2006) considering that lumping a such
mass matrix leads to the lost of the essential informatiothertoupling of the regular
and enriched degrees of freedom. For the numerical reptiesemof cohesive-zone
models this fact gives rise to the spurious transmissiornress waves through cohe-
sive surfaces. Recently, (Menouillagtial, 2006) introduced a lumped mass matrix
for enriched elements. The stability of this technique ®ved showing that the criti-
cal time step of an explicit integration scheme does notteazéro if the crack reaches
the elements boundaries. Nevertheless, in the particatesg of Heaviside step func-
tion, the coupling terms are not taken into account with klsping technique. Our
choice, to use the consistent mass matrix are reasoned lpygbence of a cohesive
model and acceptable in terms of computational cost fotivelamall number of total
degrees of freedom. For avoiding the diminution of the caitistep time, we ignored
the cracked elements in the numerical algorithm for seachs value (as presented
in Section 4).

3. Dynamic crack propagation model

For a complete analyse of a cracked structure using XFEM eedsa dynamic
crack propagation model, aside the discrete equationsmsygiven by [6]. This one
must supply the answers to three essential questions: wieearack advances, in
which direction and how fast?

Concerning the first question, in our development of XFEMdgnamic analy-
sis, the choice of the crack propagation model is influengethb enrichment type
adopted. We use the cohesive area concept for modeling dlek& tip and therefore
the crack propagation model is based on this one. This approas already used
by (Camachet al., 1996) for a lagrangian finite element method, (Megal, 2002)
for quasi-static crack growth with XFEM and (Belytsch&bal.,, 2003) for dynamic
analysis with XFEM.

We called this model “cohesive damage model” and the maia isldo assume
a cohesive zone located in front of the crack tip, in the elation zone of crack
(Figure 2a) between the mathematical crack tip. (the point where crack opening
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displacement vanishes) and the physical crack.gpthe point of complete separation
of crack lips).

Gk

Gmax

Zone cohésive

ﬂ

(a) cohesive zone description (b) linear cohesive law

iy

Beie

Figure 2. Cohesive model description

A cohesive law is considered along this zone. This one idgrimkwo parameters
of the model: the critical opening displacement corresroméb physical crack tip
for a complete separation, notéd;;, and the maximal value of cohesive stress at the
mathematical crack-tip, noted,..... The magnitude of the cohesive stress decreases
as the crack opening displacement increases along theiceltmse and the rela-
tionship between these two parameters, widely acceptetkmture is the linear one
(Figure 2b), the area under this curve matching the fracnergy:

GF _ o'mamz(scrit [12]

As one can see, considering this shape of the cohesive lawgahesive crack
model is completely defined by the fracture enetgy, the maximal cohesive traction
values ofo..;; and the cohesive zone length, given as material properties. The
crack will propagate if the crack opening displacement edsghe critical value,.,.;:,
inside of cohesive zone. In the next Section, the numenigdliation of this parameter
is detailed. This one gives the answer to the first questionab

The propagation direction is determined using the maximmoumferential stress
criterion. The numerical searching algorithm used is pre=gtin the next Section.

The particular approach adopted for this implementatiokEEEM, restricting the
position of the crack tip to the element edges, provides thekcpropagation speed
automatically since the crack tip is allowed to advance dement at a time.
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4. Numerical implementation

Numerical implementation of XFEM for dynamic analysis wakiaved using the
framework of theDynELA explicit finite element code (Pantalé, 2002). This FEM
code is entirely programmed in C++ within an Object-Oriehfrogramming (OOP)
approach. This feature presents a very well defined meamafiois modular design
and re-use of code. In our case, this allows the developnfehemew moduldy-
naCrack intended for XFEM, without the need of re-implementing thajon part the
code. New classes have been created for the support of XFEMudarities and other
have been specialized by the use of inheritance flpmELAclasses. Further, we
only present here some of the the particularly charactesist this XFEM numerical
implementation. A complete descriptionD@fnaCrack is available in (Nistor, 2005).
Currently, this module performs the elastodynamics anslysing the XFEM for bi-
dimensional models presenting a single crack without brange Only a 4-node full
integrated quadrilateral element is implemented. Seusmptovements are planned
in the next future, especially the extension to the propagaif dynamic cracks in
plastic materials.

The first important challenge for the numerical implemdotaof XFEM is to
achieve the numerical integration of the discrete equabiegr the domains of the
cutted elements. The widely accepted solution in this catfeepartitioning of these
elements instead aB-meshing since the re-meshing concept has some drawbacks
as presented in the first Section of this paper. The partitgppprocedure in XFEM is
achieved for numerical integration purpose only, and natewchl degrees of freedom
are introduced into the discrete space. For 2-D models, #ngtipning of cutted
elements into a set of triangles was proposed by many au{Moéset al,, 1999;
Sukumatet al., 2003; Dolbowet al., 2004), and several numerical integration options
were presented also. Special (higher-order) quadraties have to be used on the
elements that are partitioned in this way (M@ésl., 1999) like the use of a six-point
integration rule.

o)
L
o)
9
o)
9

v
1

A
1

1
i
R
|

v
'
1
1
\
i

1
1

! -
T

I

i

)

Pa)
g

Pa)
w
Pa)
g

D
g

(a) opposite edges (b) adjacent edges

Figure 3. Partition of the cutted elements
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The solution that we adopted in our approach is to subdivideéwo sub-domains
separated by the crack for the cutted elements into subrilgtedals, as illustrated in
Figure 3. The main reason for this partitioning solutiondkted to the numerical in-
tegration accuracy. The numerical computation of the retpeequantities as stiffness
matrix on the sub-quadrilaterals is done using the samgriation points as for an
entire element of the mesh. In the same time, bilinear shapatibns, used to support
the quantities to integrate, are more appropriated to thissS integration rule than to
a three or six-point integration rule on triangular domains

Another important consequence of the used of XFEM desonptioncerns the
management of the “enriched” elements contribution to glabatrices and vectors.
We call enriched elements, the ones containing at leastmehed node. So, as one
can see for the example in Figure 4, an XFEM mesh containsypestof enriched
elements (beside the normal ones): completely cutted elenraving all nodes en-
riched (in dark grey) and partially enriched elements sufipg from one to three
enriched nodes (in light grey).

Figure 4. XFEM enriched mesh with a crack

The size of the elementary matrices for these enriched elenage different de-
pending on the number of degrees of freedom (classical anched) supported by
the nodes. This makes the assembling procedure of the ghosigices or vectors
more difficult, taking into account the evolution of the ekmts status, too. As the
crack advances through the mesh, some “normal” elementbeeame “enriched”
ones. In order to achieve the assembling of the global nestsnd vectors, the local
and global positions of each degree of freedom in the linggahaaic system must
be known at every time step. So, bynaCrack a special procedure was developed
allowing a dynamic bi-directional mapping between locaifion of a degree of free-
dom and the global one. Up-dated at each integration tinye $ités procedure is
useful for post-processing too.

For the numerical integration of the mechanical discreteuadigns, a
displacements-based formulation was chosen. On behdieocXEEM approach, for

the enriched nodes, the displacements are composed of iz oo (t) and an
—
enrichedu (¢) contribution that takes into account the sign of the Hedeisinction:
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T (t) = u () + uf (t) [13]

An explicit processor similar to the one used BynELAFEM code (Pantalé,
2005) was implemented using the Chung-Hulbert (Hulle¢ral, 1996) integration
scheme:

. M- (Fﬁ“ - F;;lt) —an Un
Un+1= [14]
1— QN
Ups1="Un +Aty11 [(1 — ) Un +y 7n+1:| [15]
[ ] 1 o0 [ 1]
Upi1 = Up + Atpyr U +Ati+1 Kg - 5) Uy +0 7n+1} [16]

The main feature of this explicit integration algorithm ketpresence of some
numerical dissipation defined by the values of the charstieparametersy,,,
and~. The values of these parameters are given by the followilagioas:

T =5 o [17]
L+ (1+p6)* (2= p») 2

wherep, € [0,1], the spectral radius, defines the dissipation of the integraal-
gorithm: p, = 1 leads to a conservative algorithm, since the lower valuddd¢a a
damping one. In the applications presented here, the oeatser algorithm is con-
sidered. When the crack advances#gr; the new enriched degrees of freedom are
added to the model and initialized to zero. This scheme foomiing the state vec-
tors size, simillary to the one introduced by Réthoréle{Réthoréet al, 2005), has
proved its stability.

For computing the time-stefdt two approches were studied: the first one related
to the maximal modal frequency of the structure and the stcme related to the
length of the smallest element of the domain and to elastipgaties of the material.

A lower computational cost was obtained with the secondtgriland finally the
following relation was used:
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le
A= [18]

wheref is a factor taker).82, [, is the caracteristic length of the smallest element of
the domain and, is the dilatational speed of the material. Note that the ratigm
research fof, not take into account the elements cutted by the crack inr¢od®/oid

the diminution of the time step when the crack passes cldsegnriched nodes.

Specific numerical algorithms were developed for implernmgnthe cohesive-
damage crack propagation modellynaCrack The evaluation of the advancing
criteria, illustrated in Figure 5a, is a quite easy task sitite discontinuity; in the
new-introduced “numerical crack-tig’,, is evaluated for the last cutted elemeft, (
in the figure), by:

4
6i:2ZQpJ(Cn)aJ [19]
J=1

wherea ; are the enriched degrees of freedom.

N N Omax n
4 o, 3
Cf C: Cm
(B5rit) (8, (8=0)
Ey, E,
N Ny
(a) COD evaluation scheme (b) crack direction searching algorithm

Figure 5. Cohesive model implementation

If the discontinuity jump given by [19], which represente ttrack opening dis-
placement value at the numerical crack tip, exceeds thiearitalued,.;;, the crack
is propagated over the next element. As the numerical cipdk always located on
an element edge, the displacement is fixed, therefore,tieertieeded fof; > d.,i;
determines the advancing speed.
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The crack advancing direction is given by the searchingrétyn shown in Figure
5b. The maximum circumferential stress criterion sets ¢hatack should propagate
from its tip in the directiorf,. of maximal circumferential stresg)y. The evaluation
of ggg is performed on a half-circle centered on the crack tip. tirrerack paths
due to the use of this criterion were reported (Belytscbkal., 2003) proved by our
numerical simulations too. With the use of an appropriatee/dor the searching
radius, validated for fracture pure modes, combined withuke of an average value
for o9 in several elements ahead of crack, we obtained quite gsudtse

5. Numerical application

Several benchmarks were used for testing and validatinguheerical implemen-
tation of XFEM in DynaCrack As an illustration of the capabilities of the code, in
this paper, we present the numerical simulation of a fracitwpact test experimented
in our laboratory (Nistor, 2005).

10
PN
L
l 2
45"
¥
]
10
50
(a) impact test scheme (b) real fractured specimen after impact

Figure 6. Design of the impact test used for numerical validation

As shown in Figure 6a, a double-notched specimen is impdnteal cylindrical
projectile using a gas-gun device. The shifted angle of tieminduces the crack ini-
tiation. The crack propagates during the impact. The prapag direction and final
crack length depend on the projectile impact speed. Figush6ws a picture of a real
specimen impacted &7 m/s. The material specimen is an aluminium alloy, A-U4G1
T3, with the mass density = 2780 kg/m?, Young modulust = 73.1 GPa and
Poisson coefficient = 0.33. The cohesive damage crack propagation model parame-
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ters were identified using a combined Monte-Carlo+Levegitddarquardt procedure
(Nistoret al,, 2003) ass.,;; = 19.72 - 10~%m ando,,,q, = 240 M Pa.

The DynaCrack model of this test takes into account its géacaé symmetry
and the boundary conditions of the experimental set-upslaogvn in Figure 7a. For
modeling the impact conditions, the projectile mass watsidiged over the impacted
face nodes and the impact speed was introduced as initiatlspe the same nodes.

The mesh accoun®&0 elements and a finer meshing was performed for the expected
crack zone.

1.111E+08

b <%
ke <k
2 <&
- 3716E+08
——
- 7.578E+08
-B8.544E408 Stress component 12 (Pal
time:5.04E-07 s
(a) initial mesh (b) initiation of the crack
5.806E+07 1.182E+08
~1.04ZE+08 -2.535E+08
-5.910E+08 «' -1.363E+08
N
Ay
~1.402E+09 Stress component 12 (Pa) 32286409 Stress component 12 (Pa)
time:1.50E-06 s time:2.50E-06 s
(c) propagation of the crack (d) end of computation

Figure 7. Numerical results for the fracture test model
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Numerical results performed with the XFEM analysis, for esimental corre-
sponding impact speeds which ranges frébrto 77 m/s, reported a final advancing
of the crack fron1.35 to 4.7 mm closely by the experimental ones§ to 4.45 mm).
The crack propagation angles ranges froifor higher impact speed, a2’ for
lower ones. The observed angles of experimental crack peadjmm paths are about
23° for higher impact speeds but that are strongly influencethbyexperimental set-
up conditions. The evolution of the shearing field during dnalysis for the impact
speed of i$7 m/s is illustrated in Figure 7b, c and d. The numerical crack ades
over9 elements, corresponding to a final lengtt8af mm (the corresponding exper-
imental value is3.45 mm). The crack path is marked by the red line.

6. Conclusions

In the present paper, the numerical propagation of a craa&higved using an ex-
plicit XFEM home-made code indented for dynamic analyskse main challenges of
this work concerns the dynamically node enrichment withitiolthl degrees of free-
dom for the representation of the crack propagation actesslements, the numerical
evaluation of the mass and stiffness matrices over thecceteaments, the managing
of a variable size for the global degree of freedom vectopfust-processing purpose
and the implementation of a crack evolution model adaptealitcspecific crack-tip
enrichment. Several algorithms were implemented anddeasterder to set-up the
DynaCrackmodule implemented on behalf of tbyynELAexplicit FEM code for per-
forming XFEM dynamic analysis. A numerical simulation of iampact fracture has
been presented and the comparison of numerical and expeahresults proves the
robustness and the accuracy of the implemented algorithms.
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