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ABSTRACT. The introduction of the eXtended Finite Element Method (X-FEM) into a commercial
Finite Element (FE) software was achieved through a substructuring method. For fracture
mechanics problems, the domain is decomposed into cracked and safe subdomains which are
solved by the XFE-code and the FE-software, respectively. The interface problem is solved
using a FETI solver. The new approach is compared with a classical FE-approach in the case
of a planar crack in a compressor drum of a turbofan engine.

RÉSUMÉ. La méthode des éléments finis étendus (notée X-FEM) a été introduite dans un code
Eléments Finis (EF) commercial par une méthode de sous-structuration. L’approche consiste à
diviser la géométrie en sous-domaines sains et fissurés, traités respectivement par un logiciel
EF commercial et par un code basé sur la formulation X-FEM. Le problème d’interface entre
les sous-domaines est résolu par la méthode FETI. Cette contribution compare les méthodes
éléments finis classiques et étendus appliquées au cas d’une pièce de moteur d’avion fissurée.
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1. Introduction

In the last decade the eXtended Finite Element Method (X-FEM) (Moës et al.,
1999) has been developed in order to solve singularity and/or discontinuity problems
without the need of building conforming mesh.

The X-FEM is particularly suited for Fracture Mechanics problems as it leads to a
satisfactory evaluation of the stress intensity factors and provides realistic crack paths
with no or minimal remeshing. The method is thus expected to be widely used in
the near future by some of the major players of the aeronautics sector interested for
instance in the numerical prediction of the total fatigue life of complex geometries.

However, the method involves several specific features (formulation, use of level
sets...) and its implementation could require important modifications of the kernel of
the most common General Purpose Finite Element Software used by the industrial
majors. Therefore, several strategies have been proposed which allow for the use of
the X-FEM in commercial FE-software through available connections such as user-
defined elements, super-elements (Bordas et al., 2006; Wyart et al., 2006)...

Recently a Substructured Finite Element/eXtended Finite Element method (S-
FE/XFE) (Wyart et al., 2006) has been proposed. The method consists in decompos-
ing the domain into a FE-domain and a XFE-domain. The interface problem between
the two subdomains is solved using the Finite Element Tearing and Interconnecting
(FETI) method.

In this contribution, the S-FE/XFE method is applied to an industrial application
of a cracked section of the compressor drum of an airplane engine submitted to cen-
trifugal forces. Results obtained with the S-FE/XFE method and with a conforming
Finite Element Method (FEM) are compared in terms of:

– accuracy of the stress intensity factors,

– mesh convergence,

– user’s operations,

– total computational and user time.

Section 2 provides the basis of the X-FEM and the level set method. The S-FE/XFE
is explained in Section 3. Finally, the application is presented and commented in
Section 4.

2. Theoretical background

2.1. Extended Finite Element Method (X-FEM)

The eXtended Finite Element Method (X-FEM) (Moës et al., 1999) is based on the
partition of unity method (Melenk et al., 1996). The X-FEM allows for introducing
an a priori knowledge of the solution in a local region into the FE-formulation. As
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a consequence of the partition of unity method, conforming meshes are not required.
Considering fracture mechanics problems, the approximation of the displacement field
in the XFEM can be written as

u
h(x) =

∑

i∈I

uiφi(x) +
∑

j∈J

bjφj(x)H(x) +
∑

k∈K

φk(x)
4

∑

l=1

c
l
kF

l(x) [1]

where

– φi is the shape function associated to node i,

– I is the set of all nodes of the domain,

– J is the set of nodes whose shape functions support is cut by a crack,

– K is the set of nodes whose shape functions support contains the crack front,

– ui are the classical degrees of freedom (i.e. displacement) for node i,

– bj account for the jump in the displacement field across the crack at node j. If
the crack is aligned with the mesh, bj represents the opening of the crack,

– H(x) is the Heaviside function,

– c
l
k are the additional degrees of freedom associated with the crack tip enrichment

functions F l,

– F l is an enrichment which corresponds to the four asymptotic functions in
the development expansion of the crack tip displacement field in a linear elastic
solid (Moës et al., 1999).

2.2. Level set method

As proposed in (Stolarska et al., 2001), the level set method (Sethian, 1996) is used
for modelling cracks. A crack is described by two level sets (see Figure 1):

(i) a normal level set, ψn(x), i.e. the signed distance to the crack surface,

(ii) a tangent level set ψt(x), i.e. the signed distance to the plane including the crack
tip and perpendicular to the crack surface.

The level sets are used for two different purposes:

– determining which nodes must be enriched,

– defining the domain decomposition.
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Figure 1. Representation of a crack by two level sets (ψn(x) and ψt(x))

3. Substructured FE/XFE method (S-FE/XFE)

3.1. Introduction

Coupling the X-FEM with a FE-code by means of a substructuring method was
first proposed by (Bordas et al., 2006). In this method, the FE-domain is treated as a
super-element. The degrees of freedom and the right hand side of the FE-domain are
reduced on the boundary of the XFE-domain.

Recently (Wyart et al., 2006) introduced the Finite Element Tearing and Intercon-
necting method (Farhat et al., 1991) for solving the interface problem between XFE-
and FE-domains for 3D problems. This approach is referred here to as the substruc-
tured FE/XFE method (S-FE/XFE).

The global algorithm is presented next. Details about the domain decomposition
and the FETI method are given in Subsections 3.3 and 3.4.

3.2. Global algorithm

In a S-FE/XFE problem, the whole domain is divided into two subdomains:

– the FE-domain (treated by the FE-software1.),

– the XFE-domain (treated be the XFE-code).

For each element of a subdomain, the elementary stiffness matrix and the local-
ization of the degrees of freedom in the global stiffness matrix (called “locel”) are

1. In our case SAMCEFTM (SAMCEF, 2006).
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computed and written in a binary file. These information are read by the FETI-code2

which assembles the local stiffness matrices and solves the global interface system.
Finally, the solution is transfered back to the S-FE/XFE library that computes the
stress intensity factors by the equivalent domain integral method (EDI) (Moran et
al., 1987). The equivalent domain integral method is based on the interaction integral
method (Yau et al., 1980).

The global resolution algorithm is shown in Figure 2.

Figure 2. Communications between the FETI solver, the host FE-code and the S-
FE/XFE library for a boundary value problem (BVP)

3.3. Domain decomposition

The decomposition is based on the level set value. The size of the XFE-domain is
such that the EDI belongs to the XFE-domain. The interface of the subdomain cannot
include enriched degrees of freedom in order to ensure the compatibility between the
FE- and the XFE-domains as the FE-software can not deal with enriched degrees fo
freedom. This kind of decomposition minimizes the computation time of the matrix
generation on the XFE-domain which is sequential. Consequently, the computational
load is not properly balanced between the processor dealing with the FE-domain and
the processor attributed to the XFE-domain.

2. The FETI-code has been developped by François-Xavier Roux from the ONERA. It is used
in the frame of a collaboration with SAMTECH.
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3.4. FETI

In this subsection, we recall briefly the basic mathematical concepts of the FETI
method.

The FETI method has been developed to handle and solve large scale prob-
lems. FETI allows both parallel and sequential computation schemes. According
to (Lesoinne et al., 1998), computational time and memory requirements are respec-
tively one to two orders of magnitude lower than those of a direct solver. The whole
domain is divided into several substructures. The problem is reduced to an interface
problem.

Let us consider a domain Ω. The condition of static equilibrium is written as

Ku = f [2]

where K is the stiffness matrix (symmetric semi-definite positive) on the domain Ω, u
is the nodal displacement vector and f is the force vector. The domain Ω is divided into
Ns non-overlapping subdomains Ωs. The FETI method consist in replacing Equation
[2] by

K
(s)

u
(s) = f

(s) −B
(s)T

λ with s = 1, · · · , Ns; [3]

∆ =

Ns
∑

s=1

B
(s)

u
(s) = 0, [4]

where K
(s) and f

(s) are the contributions from the subdomain Ω(s) respectively to K

and f , λ is a vector of Lagrange multipliers and B
(s) is a signed boolean matrix that

accounts for the localization of the degrees of freedom on the interface.

Lagrange multipliers are introduced to enforce continuity of the displacements
on the boundary Γ(s) of the subdomain (i.e. ∆ = 0 on Γ(s)). Generally, a mesh
partition can contain Nf ≤ Ns floating substructures (i.e. substructures with an in-
sufficient number of essential boundary conditions to avoid kinematic modes in the
matrix K

(s)).

The general solution for a floating subdomain is given by

u
(s) = K

(s)+(f (s)
−B

(s)T
λ) + R

(s)
α

(s) [5]

where K
(s)+ is a generalized inverse of K

(s), R(s) = Ker(K(s)) is the kernel of K
(s)

(rigid body modes) and α is a vector containing a maximum of six constants which
account for the six possible kinematic modes. Equation [3] admits a solution if and
only if its right hand side is orthogonal to Ker(K(s)). This statement means that the
forces cannot excite the rigid modes of the subdomain. These considerations lead to
the interface problem:

[

FI −GI

−GI
T

0

][

λ

α

]

=

[

d

−e

]

[6]
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where
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[7]

The global interface problem is solved by a Projected Conjugate Gradient method
(PCG) (Saad, 2000). For more details, see again (Farhat et al., 1994).

4. Numerical application

The S-FE/XFE method is applied to a crack analysis in a section of a compres-
sor drum of a turbofan engine. The results obtained with the S-FE/XFE method are
compared with those obtained with a standard FE computation. The standard FE prob-
lem is solved using the FETI method with the same decomposition as the S-FE/XFE
problem in order to assess the influence of the X-FEM on the solver behaviour. The in-
fluence of mesh refinement at the crack tip is studied. The initial mesh is chosen so as
to ensure convergence of the strain energy for the non-cracked standard FE problem.

4.1. Description

Most modern airliners are equipped with turbofan engines. Generally, these consist
from upstream to downstream direction, of an air intake, a fan, a low-pressure com-
pressor, a high-pressure compressor, a combustion chamber, a high-pressure turbine,
a low-pressure turbine, a mixing duct and a nozzle. Axial compressors and turbines
are divided into several stages, each one being made of a rotor, or bladed disc, and a
stator or bladed shroud. When assembled together, the bladed discs of a compressor
or of a turbine form what is referred to as a drum.

The particular structure which is studied in this paper is a drum of a low pressure
compressor. It is schematically depicted in Figure 3, showing three distinct flanges.
The flange located far upstream is meant to be bolted with the fan disc while the two
other flanges accommodate circular plates sealing up the air duct.

To limit the problem to a reasonable computational size, the drum is arbitrarily cut
in the transverse direction, before the first compressor stage.

The part of the drum simulated in this application is shown in Figure 4. Only an
angular section of this part is used for the computation owing to axial symmetry.
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Figure 3. Schematic view of the compressor drum

Figure 4. Section of the drum studied in this work

4.2. Loading and boundary conditions

The drum is submitted to centrifugal forces fc given per unit volume by

fc = −ρ(ω × (ω × r)) [8]

where ω is the rotation speed vector and r is the position vector related to the rotation
axis.
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Periodic boundary conditions are imposed in order to represent the rotational sym-
metry of the drum. The axial displacement is fixed on the upper exterior holes.

4.3. Computation sequences

The computation sequences for the standard FE and the Substructured FE/XFE
crack problems are explained hereafter.

4.3.1. Crack definition

A through-thickness crack is inserted into the model at the center hole of the struc-
ture. The direction of the crack is radial. The crack is shown in Figure 5.

Figure 5. Crack representation (in white) in the drum

There are two different methods for introducing the crack depending on the method
used:

– standard FEM: the crack is introduced into the CAD by inserting a closed surface
leading to a renumbering of all the geometrical entities of the CAD3. The related data
(materials, boundary conditions...) must be updated due to the modification of the
CAD;

– S-FE/XFE method: the crack is introduced by means of its level sets. The CAD
is not modified and the previous dataset can be used without any changes.

3. It depends on the software used for generating the CAD model and the mesh.
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4.3.2. Mesh generation

In the standard FEM case, the mesh generation is decomposed in two steps:

– the mesh is generated on the whole domain and the crack surface is also meshed,

– the nodes on the crack surface are duplicated and the mesh is splitted.

For the S-FE/XFE method, the mesh is arbitrarily generated on the whole domain.

The mesh has been refined at the crack tip in both cases in order to improve the
accuracy of the solution at the crack tip. Mesh adaptation during the computation has
not been considered in this work.

4.3.3. Elementary stiffness generation

The elementary stiffness generation for the S-FE/XFE method is made by both
the FE-software and the XFE-code (see Figure 2)4. The time spent during this step
depends on the size of the XFE-domain. For the standard FE problem, the elementary
stiffness matrices are only created by the FE-software.

The different steps are summarized in the Table 1 for both standard FE and S-
FE/XFE methods.

Table 1. Computation sequences for FE and S-FE/XFE methods
Step Standard FE substructured FE/XFE
CAD Introduction of the crack sur-

face
Nothing to do

Meshing Duplicate nodes and split the
mesh on the crack face and
mesh refinement at crack tip
(optional)

Mesh refinement at crack tip
(optional)

Computing Elementary stiffnesses gener-
ation by the FE-software and
calling of the FETI solver

Mesh decomposition in two
subdomains (FE-domain and
XFE-domain) and generation
of the elementary stiffnesses
by the FE-software, the XFE-
code and calling the FETI
solver

SIF Result recovery and computa-
tion of the stress intensity fac-
tor by the EDI method

Result recovery and computa-
tion of the stress intensity fac-
tor by the EDI method

4. Currently, this step is sequential.
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4.4. Results

Figure 6 shows the variation of the mode I stress intensity factors KI as a function
of the number of degrees of freedom. These values are obtained for various level
of mesh discretisation at the crack tip. The accuracy of the stress intensity factors is
obviously improved when increasing the number of degrees of freedom. The first point
corresponds to the original mesh size. With the original mesh, the error calculated
from the difference to the converged solution (i.e. number of degrees of freedom
> 1.8 · 105) is equal to only 1.7% with the S-FE/XFE while it is equal to 4.8% with
the standard FE method.

A S-FE/XFE computation without the crack tip enrichment functions has been
performed on the original mesh in order to demonstrate the influence of the crack tip
enrichment on the results accuracy. In this case, the error on the SIF estimation is
equal to 6.3%. This result shows the important effect of introducing the linear elastic
fracture mechanics solution into the shape function space at the crack tip.

Figure 6. Comparison of the mode I stress intensity factor for both the FE and S-
FE/XFE method

4.5. Discussion

The FE and FE/XFE results are compared in terms of:

– mesh convergence,

– influence of the X-FEM on Projected Conjugate Gradient algorithm conver-
gence,
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– user’s operations,

– total computational and user time.

4.5.1. Mesh convergence

The first interesting result concerning the S-FE/XFE method with crack tip enrich-
ment functions is the relatively good approximation of the stress intensity factor using
the initial mesh5. As expected, the two methods converge to the same values after
some degree of refinement at the crack tip.

4.5.2. Influence of the method on the resolution of the local and the global problems

As the crack is not close to the interface, the number of iteration of the PCG
algorithm is essentially governed by the size of the interface. The number of iterations
is not influenced by the presence of enriched degrees of freedom. Because the XFE-
domain is smaller than the FE-domain, as shown Figure 7, the time associated to the
FETI solver depends on the FE-domain size. Decomposing the FE-domain itself into
several safe subdomains will lead to a decrease of the global computational time which
might then become essentially dependent of the XFE-domain size.

Figure 7. Mesh decomposition of the drum, in dark grey the XFE-domain in light grey
the FE-domain

4.5.3. User’s operations

Compared to the S-FE/XFE method, the FE method requires more user’s inter-
ventions. First the original CAD must be modified by inserting a crack surface. The
main consequence is the renumbering of the geometrical entities. Hence, all the data
must be modified in order to apply the boundary conditions and the material charac-
teristics at the proper location. This operation can take a lot of time depending on the

5. This result must be taken in its context. A convergence study or an estimation of the error
must always be done in order to verify the validity of the result.
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complexity of the geometry, the quality of the original CAD, the experience of the
user.

4.5.4. General discussion on the total computational time

In order to reduce the design and analysis cost, mechanical engineers and software
designers:

– tend to develop tools which avoid time-consuming user related operations,

– continuously improve the computational efficiency of existing tools.

As explained here above, the S-FE/XFE approach limits the number of interven-
tions of the user and significantly simplifies the “mesh generation” task. This is of the
utmost importance in today’s industrial design and analysis process. Indeed, follow-
ing (Hughes, 2004), “mesh generation” is attributed to taking over 80% of all analysis
time in major engineering industries such as shipbuilding, aerospace and automotive.
It has become the major bottleneck in engineering analysis.

However, for what concerns the remaining computational time (CAD operations
and mesh generation excluded), the S-FE/XFE method is, for the same mesh refine-
ment level, globally slightly slower due to the time spent on mesh decomposition and
matrix generation on the XFE-domain.

5. Conclusions and prospects

The Substructured Finite Element/eXtended Finite Element method has been ap-
plied to an industrial structure and proved to be competitive with a conformly meshed
crack solved by the Finite Element Method. The two methods converge to the same
mode I stress intensity factors. The user time, which is critical for the industry, is
clearly reduced due to the fact that:

– the “Computer Aided Design” does not need to be changed,

– the mesh generation is significantly simplified.

Nevertheless, the computational time is slightly increased by the mesh decomposition
and the elementary stiffness generation.

The interface between the FE-domain and the XFE-domain can not include en-
riched degrees of freedom as these are obviously not handled by the FE-software.
While the introduction of the enrichment functions modifies the conditioning of the
XFE-domain stiffness matrix, it does not influence the convergence of the Projected
Conjugate Gradient solving the condensated problem at the interface (where the un-
knowns are the lagrange multipliers).

The Substructured Finite Element/eXtended Finite Element method with crack tip
enrichment functions has shown to give a good approximation of the mode I stress
intensity factor for the coarser mesh where the Finite Element Method leads to much
cruder approximation.
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The Substructured Finite Element/eXtended Finite Element method is currently be-
ing extended to the coupling of Finite Element-shell and eXtended Finite Element-3D
formulations. This extension opens new areas of investigation such as the delamina-
tion of composite materials.

6. References

Bordas S., Moran B., « Enriched Finite Elements and Level Sets for Damage Tolerance Assess-
ment of Complex Structures », Engineering Fracture Mechanics, 2006. in press.

Farhat C., Roux F. X., « A Method of Finite Element Tearing and Interconnecting and its Parallel
Solution Algorithm », International Journal for Numerical Methods in Engineering, vol.
32, p. 1205-1227, 1991.

Farhat C., Roux F. X., « Implicit Parallel Processing in Structural Mechanics », Computational
Mechanical Advance, vol. 2, n◦ 1, p. 1-124, 1994. North-Holland.

Hughes T., « Consider a Spherical Cow- Conservation of Geometry in Analysis: Implications
for Computational Methods in Engineering », IMA Workshop: Compatible Spatial Dis-
cretizations for Partial Differential Equations, 2004.

Lesoinne M., Pierson K., « An efficient FETI implementation on distributed shared memory
machine with independent numbers of subdomains and processors », Contemporary Math-
ematics, 1998.

Melenk J. M., Babuška I., « The Partition of Unity Finite Element Method: Basic Theory
and Applications », Computer Methods in Applied Mechanics and Engineering, vol. 139,
p. 289-314, 1996.

Moës N., Dolbow J., Belytschko T., « A finite element method for crack growth without remesh-
ing », International Journal for Numerical Methods in Engineering, vol. 46, p. 131-150,
1999.

Moran B., Shih C. F., « Crack Tip and Associated Domain Integrals from Momentum and
Energy Balance », Engineering Fracture Mechanics, vol. 27, n◦ 6, p. 615-641, 1987.

Saad Y., Iterative methods for sparse linear systems, 2nd edn, SIAM, 2000.

SAMCEF, General purpose finite element analysis package, Technical report,
http://www.samcef.com, 2006.

Sethian J. A., Level Set Methods and Fast Marching Methods: Evolving Interfaces in Compu-
tational Geometry, Fluid Mechanics, Computer Vision, and Material Science, Cambridge
University Press, Cambridge, 1996.

Stolarska M., Chopp D. L., Moës N., Belytschko T., « Modelling Crack Growth by Level Sets
in the Extended Finite Element Method », International Journal for Numerical Methods in
Engineering, vol. 51, p. 943-960, 2001.

Wyart E., Duflot M., Coulon D., Martiny P., Pardoen T., Remacle J.-F., Lani F., « Substructuring
FE-XFE approaches applied to three dimensional crack propagation », Submitted to the
Journal of Computational and Theoretical Applied Mathematics, 2006.

Yau J. F., Wang S. S., Corten H. T., « A Mixed-Mode Crack Analysis of Isotropic Solids Using
Conservation Laws of Elasticity », Journal of Applied Mechanics, vol. 47, p. 335-341, 1980.




