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ABSTRACTWe explore the tradeoffs of using an internal mesher xram code. We show that
it allows an efficient enrichement detection scheme, wiilaiming the ability to have well-
adapted meshes. We provide benchmarks highlighting theidemable gains which can be
expected from a well designed architecture. The efficiehtiyeoproposed algorithm is shown
by solving fracture mechanics problems of densely micasiad bodies including adaptive
mesh refinement.

RESUME. Nous explorons les colts et gains tenant a I'inclusion d'aileur au sein d’'un code
XFEM. Cette architecture permet de rendre efficace la déterrunade I'enrichissement, en
conservant la possibilité de disposer de maillages bienptta Des évaluations mettent en
évidence les gains considérables en temps de calcul quepeétre atteints.
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1. Introduction

The extended finite element method is a numerical method fadetng dis-
continuities and singularities within a standard finitenadat framework (Moé®t
al., 1999; Babuskat al, 1997; Melenlet al, 1996). ThexFEM has been successfully
applied to numerous solid mechanics problems (Sukwehat., 2003). ThexrFem
has also been used to model computational phenomena insargaas fluid mechan-
ics, phase transformations (Chess$al., 2002), material science and biofilm growth
(Bordas, 2003; Bordast al, 2005a), among others. Thx&EeM can be implemented
within a finite element code with relatively small modificats: variable number of
degrees of freedonDOFS) per node; mesh-geometry interaction; enriched stiffness
matrices; numerical integration and derivation, lineat aan-linear solvers. The high
degree of reflexivity and dynamism required by the #Hgaand XxFEM methods are
best served by an object oriented approach, such as thathbesby (Zimmermann
et al, 1992; Borda®t al, n.d.c). However, compared EEM, XFEM entails a higher
degree of intricacy between the various components of the,cohich necessitates
a well-designed architecture, allowing for a high degreeefiexivity. A typical us-
age would be adding cracks to a standard elastic problentkéeet al., 2005). The
solving of such a problem would be done the usual way: (1) ntestproblem, (2)
assemble the discretized form into a system of linear egusiti(3) apply boundary
conditions, (4) solve the system. k®eM, only (2) is modified. The additional steps
are:

1) find the elements affected by the cracks,
2) modify their elementary matrices accordingly.

The second step has been described extensively (Belytsthdo 1999; Areias
et al, 2005; Stroubouligt al,, 2000), but the first much less. In fact, for a very com-
plex problem, it can be quite computationally costly to filidize elements affected
by a crack by simply iterating on all the elements. It is alselégant, and difficult
to extend to a more rich and varied enrichment schemes. UWkagformational-
readyavailable internally to the mesher, the element-finding si@n be performed
in O(elog(n)), wheree is the number of enrichment items, andthe number of
elements.

In this paper, we will cover the specifics of computationabmgetry, meshing
schemes and enrichment in the optic of highlighting the isgctural and computa-
tional advantages of using an integrated approach, as eggosa more traditional
toolbox-type setup. We will first explore the specifics of getrical representations,
then describe the meshing algorithm we have developed anxbtinputational facili-
ties it provides with respect to computing geometricaliatgions. We will then show
how this allows for considerable computing gains in operatiof thexFEM method.
Finally, we will present a few examples of setups made easinalate with such an
architecture as well as crack growth in.2Recent papers (Budyn, 2004) describing
multiple enrichment features go no higher than a few tens.sMggest an architec-
ture which scales up to thousands easily — the limiting faloting the large amount
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of degrees of freedom then required for the modelisation.eXégcise the proposed
algorithm through micro-cracking examples with hundrefisracks, which, to the
authors’ knowledge, is a unique result in computationaltmeds, be it approached
with the standaré¢Eemor thexFeEmMm.

2. Architecture overview

We hae built a setup in which the assembiler is strongly calolehe rest of the
program, yielding various advantages in term of perforneaarad code maintainabil-
ity. Our setup comprises:

1) a problem descriptor,
2) a mesher,

3) an assembler,

4) a solver.

Those items are not individually optimized to the point whigrey could be, as our
interests lies mostly in the interaction between parts attgy a functionning sys-
tem. Which means, as we study higly geometrically heteregesmaterials a system
allowing for high-level, statistical description ofcdassof problems, the generation
of a statistical sample of special cases and their subsémpsaiution.

This in turn imposes the availability of a fully automatic sher. Our fully auto-
matic mesher yields unstructured meshes solely from rahdordered input poinEs
We found that the algorithms used to find point-trianglesriattion used could be
extended to any geometry-triangle interactions.

In turn, we found it was extremely useful to have a meshetfeiitegration step
of enriched elements. We also found that whith sufficientraloton, the integration
step by subtriangulation could be correctly performed paaelently of the function
integrated.

2.1. Problem descriptor
The so-calledoroblem descriptomallows the user to input the geometry, the be-
haviour laws and the precision desired.

It is based on objects such 8smple, Inclusion, Pore, Crack, etc. In turn,
those have a membeehaviour, such ag.inearElastic. An exemple setup would
be:

1. Randomly ordering the input points yields optimal perfance of the mesher.
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FeatureTree F(new Sample(/*dims*/)) ;
F.addFeature(new Pore(/*dims*/)) ;

Inclusion * inclusion = new Inclusion(/*dims*/) ;
inclusion->setBehaviour (new Stiffness()) ;
F.addFeature(inclusion) ;

Listing 1: Simple setup with a sigle pore and inclusion

The problem descriptor is responsible for the generatiothefsampling points
that are input in the mesher. They are selected in such a veayhth mesh obtained
be conformant.

2.2. Mesher

The inner workings of the mesher are described in more detdliler below. The
mesher is a simple Delaunay tesselator using an internedlilee structure allow-
ing point insertion inO(log(n)). The same structure, derived from geometrical con-
siderations, make it possible to also find triangles oveilag a given geometry in
O(mlog(n)) with m the number of triangles covered by the geometry. This isulsef
in:

1) localized refinement,

2) mesh-geometry interaction finding,

3) geometry-geometry interaction finding,

4) sub-triangulation for non-polynomial function intetioa.

2.3. Assembler and solver

The assembler and solver are of a classical type. Howewesdiver could be
linked to the mesher so as to yield an adaptative mesh.

3. Finding geometrical interactions

Computational geometry is a well studied field, whose apgibns in fields as
diverse as ray tracing (Various, n.d.), games (Magnehat, 2000) and physics en-
gines (Magnenat, 2000) are well explored. It has yieldediefit algorithms for the
detection and localization of various geometrical intéoars.
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3.1. Representation

Before finding interactions, geometrical objects must lpgggented. They can be
separated into two categories:

1) simple objects described as analytic functions,
2) general shapes.

A computational geometry module should attempt to providestof the usual
objects (spheres, circles, lines, points...) and thearadtions. If one wanted to be
general, some assumptions on the shape of the generaloowjegtd still be needed,
and a general representation in the form of Bézier patchesimes (Chiyokuraet
al., 1983), or more generallyursd is chosen. All those objects can be abstracted
to a purely virtual interface, which would, io++, look something like this:

class Geometry{ protected:
GeometryType geometryType ;

public :
Geometry () ;
virtual “Geometry() ;
GeometryType getGeometryType() const ;
virtual bool in(const Point *) const;
virtual bool on(const Point *) const;
bool intersects(const Geometry #*) const ;

Listing 2: General geometry interface, for an abstract descriptionsath di-
verse things as triangles and Bézier patches. You can netprisence of a field
GeometryType: it serves as a very fast geometry type identifier for all @piens
(such as intersections) that depend on the specific pragsecfi the geometries

Of course, implementindntersects for all possible combinations is tedious,
and becomes increasingly cumbersome as the object librawsg To overcome this
limitation, one could for example decide to express all slsags Bézier patches or
NURBS. It is interesting to notice that such an implementation esako assumption
on the dimensionality of the described objects. It therefoikes it uniquely suited
to represent such concepts as level sets (Sethian, 1999).

Enrichment features are well represented as deriving fremeal geometries, and
providing a means to enrich the elements they affect. On tigehand it is possible
to attach to them objects representing physical laws, amdther hand they can be
considered as purely geometrical objects when it is effi¢ciedo so.

2. Non Uniform Rational B-Spline.
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class EnrichmentFeature : public Geometry{
//like a geometry
EnrichmentType getEnrichmentType() const ;
virtual void enrich(ElementSet *) const ;

}

Listing 3: An example interface for enrichment features, which therdcbe imple-
mented in features like cracks, inclusions. ..

Using this structure, thenrich member would then look something like that:

void EnrichmentFeature::enrich(ElementSet *s) const{
std::vector<Element *> elements = s->conflicts(this) ;
for(std::vector<Element *>::iterator i = elements.begin() ;
i != elements.end() ;
++i ) {
this->enrichElement (*i) ;

Listing 4: Implementation of the enrichment loop

From the listing§13 andl 4 we start seeing the intricacy: teeneht set is respon-
sible for finding the subset of conflicting elements. This idesign choice, as the
EnrichmentFeature could have done it itself. Simply, if the elements are stoneal
clever way, the element set can find the targets much moréeetliz. Figurdl shows
a possible inheritance tree for such a setup.

This shows the need for a mesh database more than for a méislsehowever
already appearing that a lot of the code in the mesher is bsefside as well.

3.2. Information pertinence

Computational geometry provides the information pertainio the relative po-
sition of a point and a given geometrical entity. It can alsovjgle the location of
intersections. Both those pieces of information are neéde@cide whether an ele-
ment is a target for enrichment or not. Unfortunately, alifiowe can easily check
whether a given elemeid a target for enrichment, it is on the other hand much more
difficult to have a complete and exhaustive listadifthe targets. This is because the
information given is attached to a geometrical entity, aodtains no topological in-
formation. In aFEM program, the mesh contains such information, in the form of a
connectivity table. But again, although this is sufficiemtécreate a table of neigh-
bours it is inefficient to do so. Not only because it is compatelly expensive, but
also becausthe information was already computed and has been discarded
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Geometry
SegmentedLine Rectangle Circle o000
Inclujion Saimple
EnrichmentFeature |- Feaj.lre

Figure 1. Multiple inheritance showing a possible scheme separgiingly geomet-
rical constructs from physical entities, insuring a higkééof code reuse as well as
abstraction

3.3. Special case for the elements

The elements are typically also geometrical entities, Wwineans that they also
implement the interactions. This is necessary for enrigttmgut higher order ele-
ments are in fact general, simply connex polygons, whicludéed potentially com-
putationally expensive checks. If the mesh is well-adaptethe geometry of the
problem, that is, it does not rely overly on the additionajrees of freedom provided
by the higher-order elements to insure an acceptable ajppation of the boundaries,
the elements can generally be treated as their low-ordertequarts, thus making the
process of finding the enriched nodes much faster. This leeals interesting consid-
eration: the process of finding the enriched elements igthér things being equal,
dominated by the efficiency of this () method. This method would be most efficient
if elements were circles or spheres, with only three mudtitlons and a floating point
comparison.

bool Sphere::in(Point *p) const{
double dist = computeSquaredDistance(this->center, p) ;
return dist < this->r_squared ;

}

Listing 5: Efficientimplementation of théxn () function for a sphere or circle

This is exactly what is possible if the mesh has been gertelgtdelaunay tri-
angulation. This comes from the fact that a Delaunay tridatn is defined by the
following property:No four points are within any of the meshes triangles’ circirm
cles Other meshing schemes, which are not based on circles erespteractions
can still be stored in a efficient tree-like structure, bt éixact implementation of the



244 REMN - 16/2007. X-FEM

in condition is going to be either less flexible in the case of @lyuegular rectangu-
lar mesh, or more costly.

4. Description of the meshing scheme used

Two kinds of meshing schemes dominate, the advancing frahtteen-Tree fam-
ily. They both have advantages and disadvantages whendewedistrictly from the
meshing point of view, but we will try to show that for our poges, the advancing
front family is not well-suited. Of course various hybrid theds are used, for exam-
ple to determine refinement zones. Typically the input cgingif only the analytical
description of the geometry, and it is up to the mesher to dastimpling. Alterna-
tively, the sampling is given, and the mesher then outp@tgtbéments corresponding
to the given sampling points, constrained by the boundafitee geometrical entities
to mesh.

4.1. ntree

Trees are an efficient mean of organizing and retrieving @atderickson, 1991).
In particular, for space-dividing schemes, a parent-ciiidelationship ordered by
the spatial position allows the building of such trees orfihas the meshing goes. A
very simple example of such meshing is a quad-tree.

But a tree is also a possible representation of the curratd sf a Delaunay type
triangulation. Points are pre-generated and then fed rahdmto a triangulation
algorithm. Each new insertion determines the eliminatifoa get of triangles, and the
creation of new ones (Devillert al, 1992). The new triangles are the children of
the old with which they share the same conflict condition. Taeflict condition in
the case of Delaunay triangulation is the one describedeiiting[@, with the used
circle being the circum circle of the triangle. The Listldge@lapted from (Devillers
et al, 1992), describes a simple version of such an algorithm.

The algorithm works thus:

1) if we already checked this element, return,

2) if this element is not conflicting with the point, return,
3) add self to return,

4) attempt insertion in all children, insert result,

5) attempt insertion in all neighbours, insert result,

6) return.
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std: :vector<Treeltem *> * Treeltem::conflicts(const Point #*p){
std::vector<Treeltem *> * ret = new std::vector<Treeltem *>() ;
std: :vector<Treeltem *> * temp ;

this->visited = true ; // mark as checked

if (*inCircumCircle(p)) // essential conflict 7
return ret ;

if (this->isAlive()) //else, if "alive"
ret->push_back(this) ; //put it in list.

//check the children -- note the recursion

for (size_t i =0 ; i < child.size() ; i++) {

if ( !child[i]->visited )
ret->insert (ret->end (),
son[i]->conflicts(p)->begin(),
son[i] ->conflicts(p)->end ()
)
}
//check the neighbours -- note the recursion
for (size_t i = 0 ; i < neighbour.size() ; i++) {
if ( !'neighbour[i]->visited )
ret->insert (ret->end (),
neighbour [i]->conflicts(p) ->begin(),
neighbour [i]->conflicts (p) ->end ()
)
}

return ret ; // return the list of conflicting triangle

Listing 6: Recursive building of the list of affected elements. The
inCircumCircle () method is used instead of a more classi¢al’). This is the
advantage of Delaunay triangulation: it only uses cheapckldor its formation

Once a list of affected triangles has been obtained, onelgidgtetes them and
replaces them with new triangles defined by the boundaryeo$ét of affected trian-
gles, and the inserted point. The combination of the congletcking algorithm and
the point insertion scheme generates a set of triangles)ged in a tree whose leaves
form the actual triangulation which will be used.

4.2. Mesher efficiency

The mesher we coded is fairly efficient. Compared to gmeslgetéhe following
numbers:

Gmsh is three times as fast, but the order of the algorithrtiteeisame. We con-
clude that our mesher good enoughthough it could certainly be optimised. The
tradeof is offset by having full control over thee1 and the additional usage we get
from the mesher, using its readily available data strucures
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Table 1. Time taken for a mesh witkk 50 000 points. This finally yields 200000
degrees of freedom

gmsh own mesher
5s 15s

This is further reinforced by the fact that the meshing stemifact a relatively
low-time-consuming one, as is highlighted in the Fiddre 2.

time fraction taken by various steps of the problem discretisation
(values renormalised by the number of elements in the mesh)

1000 T T T

T

meshing time —&—
refinement time

assembly time ——<—

time (s)

1

I I i I I
0 100 200 300 400 500 600
number of cracks

Figure 2. Localised refinement and matrix assembly are much costtieration than
the meshing itself. The renormalisation highlights thenastptic behaviour of the
various algorithms involved

4.3. Mesh quality

The quality of the initial mesh depends a lot on the choicesdretization points,
this independently of the meshing algorithm chosen. To eoddhe quality of the
mesh, two options are available: (1) refinement, (2) relonabased on some quality
criterion. Relocation is equally feasible independenflyhe meshing algorithm ini-
tially chosen, but refinement is not, necessitating theriitgeof pointsin the already
meshed domain, and thus requiring an algorithm capabléofThis limitation can be
overcome by using an hybrid meshing technique allowing fithimodes. A simple
hybrid mesher could generate the original mesh using tharegivg front technique,
and also provide a quad-tree like refinement algorithm.
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5. Comparison with a mesh database
5.1. Similarities and limitations

A mesh database, such as AOMD (Rematlal,, 2000), would provide the same
accessors and iterators as the mesher, thus from the pouiewfof efficiency of
the mesh-geometry interaction detection step, it is edgitaHowever, the database
would need to be rebuilt each time the mesh is rebuilt, leatbnunnecessary over-
head. The algorithmic advantages are however the sameatir steshes. But the
overall algorithmic efficiency can never be better tlian), wheren is the number
of elements, as each element is to be entered at least once.

5.2. Exported informationvs. internal representation

Once a mesh has been generated, it is fully defined by (1) thelicates of the
nodes, (2) the list of elements defined by a list of nodes. ypecal FEM code, only
this information is exported and loaded in the assemblkeesoThis is theexternal
representatiorof the mesh. However, as we have just seen, much more infamrmat
is used in the mesher. This information is typically diseatth the toolbox approach
case, as it is useless: separate programs provide sepamngtes and communicate
through data files containing only the minimum necessarywéier, one can build
all sorts of element-finding routines on the model oftbeflicts (Point *). This
only requires the programmer to provide a function checkingieometrical conflict.

6. Finding elements affected by enrichment schemes

Enrichment schemes are determined on a geometrical bas&snehts in and
around enrichment features are selected, and additiogateée of freedom are added
to their nodes, based on the nature of the feature. Thisaljpimeans that a given
feature should be located in terms of elements. This is eaheicase of a so-called
structured meshvhere the spatial position of nodes determines their nuimdpent
is however much harder in the case of unstructured meshébpss typically pro-
duced by the meshing scheme described above, used in pradiith only a list of
elements, the only way to find those within a given geomdtliitét is to run through
the list, and check every element. This is dramaticallyfioieint. The slightly better
case involves having also a list of neighbours for each eféniéen, one needs only
to find a single affected element and proceed through thénheigrs. This is faster,
butis still asymptotically the same order of computatimtause the first element still
needs to be found, and this@n) for randomly listed elements. Indeed, on average
one will still have to check for half the elements before firglone that matches the
condition and, in effect, only the constant part of the itierais reduced.
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Figure 3. Detecting a geometry in a complex case. the bold line intergavith the
elements, in bold, the elements found to be interacting

Finally if the elements are arranged in a tree, the orderetthmputation is dra-
matically reduced fron©(en) wheree is the number of features andthe order of
elements, t@ (e log(n)).

6.1. Using the information provided by the mesher

A mesh produced by a traditional, separate mesher only gesithe list of nodes
in each elements and the coordinates of the nodes. This rtiegtrthe data provided
are very inadequate for the purpose of enrichment. What anedo is rebuild the
list of neighbours before the enrichment target finding stEipis is done simply by
counting the common nodes for each elements. It is howevarssible to re-create a
tree structure from the simple connectivity data, excepeitiain trivial cases. Rather,
it is possible, but only by discarding the element informatnd regenerating a mesh
from the sampling points. If a mesher is integrated with tE®/ XFEM program,
it becomes possible to enrich a mesh with a large amount ¢firesy because the
mesher provides all the information. It is also possibleetiig complex experiments
using various geometry generators (see for example Figa)te 4
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(a) complex microstructure (b) local mesh refinement

Figure 4. Detail of a mesh autogenerated with a random arrangemema#tisions
and pores (a) and deformed mesh around a crack tip with loeghmefinement (b)

6.2. Fracture mechanics andx posteriori error applications

Modern fracture mechanics applications and schemes requiange of geomet-
rical routines which are very easily provided using the #edture suggested. It is
necessary to evaluate domain integrals for the computafistress intensity factors.
This requires finding elements within a ball of given radmrs alternatively, elements
cut by a sphere. This is trivially accomplished here. Bunewmre interesting is that
when using special shape functions, the integration stepvies generating a sub-
mesh on the elements, and summing the sub-integrals. Ttyigitally more precise
than simply using a very large amount of Gaul3 points. In amdithe idea of “fixed
area enrichment” (Labordet al., 2004) rests on enriching sets of elements within a
given surface area, a ball centered on the crack tip. Usie@liove general geom-
etry description, the implementation and integration afhsa scheme becomes very
easy.A posteriorierror estimations such as ZZ-type error estimates typicatjuire
knowledge about nodes’ neighbouring elements, in ordeptwstruct the enhanced
stress and strain fields on the computational mesh. Other e@stimators (Bordast
al., n.d.d) also require identifying nodes within a ball ceateon the computational
point where the smoothed field or derivative is desired. Agie mesher integration
is the easy answer to the program architecture challenge.

7. Usage considerations

From a usage point of view, one can find many advantages imfpavi integrated
mesher. It allows for greater abstraction. It allows foragee extensibility. It per-
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mits the easy implementation of various optimization téghea which require a link
between the solver and the mesh and allows for very compléstenent schemes.

7.1. Auto-meshing

One of the most important features allowed by the integnatibthe mesher in
the core of thexFEM code is the possibility to have an auto-mesher. Althougb-aut
meshing cannot be certain to give good results, it is exthepractical to test various
configurations, which might be generated based on a setes.rior example, one
might seek the effects on the apparent mechanical propeafia sample, of a given
distribution of inclusions or/and cracks. With an auto-hegsit is simply a matter
of generating the geometry of the features, then the progearmesh, assemble and
solve at once.

7.2. Auto-refinement

Criteria exist to evaluate both the general quality of thsimand the local quality
of each element. Based on those criteria, the mesh can bedeafinsmoothed au-
tomatically. A tree-like structure in the mesher allows hat only adding sampling
points, but also removing them when they are no longer needéd permits the
limitation of the total number of sampling points in an effict way. Of course, as il-
lustrated in FigurEl4b, simpke priori refinement can easily be added. More involved
error-based refinement are seamlessly introduced in thpopeal architecture.

Very powerful also is the possibility of error-based reniegliBordast al., n.d.d).
For time-dependent calculations, a once well-adapted mégit becomes inadequate
and yields faulty results. This leads on one hand to a negessaeshing, and on the
other to the recomputation of the mesh-geometry interastid’his cannot be done
efficiently by using a mesh database, as it would have to beiltetith the new,
modified mesh, an operation which is needlessly costly.

7.3. Enrichment

Enrichment is a relatively new method, and though new sckeshenrichment
are regularly published (Legraet al, 2005), the question of the performance of the
actual enrichment step is rarely mentioned in the liteeattiowever, if one imagines
a case where thousands of enrichment features are needede-rd&ro-fissuration,
complex micro-structures, cavitation and bubble/fluiérattion — the cost of finding
the enriched node becomes prohibitive. The trivial mettsoih ithe order ofz x e
where,n is the number of elements, andhe number of enrichment items. This leads
to catastrophic computing times, especially if interatsibetweerenrichment items
need also be calculated — crack junction, crack-boundagydntion, crack-material
interface interaction. .. Indeed, we believe, itrigpossible without a mesh database,
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to efficiently perform such computations. The downside afapproach, however, is
an increased memory consumption.

8. Architectural considerations
8.1. Integration

When following an object-oriented design approach (Maekex000), the facil-
ities used by each object to perform its task are availabl¢hi® others to use. The
following data is needed for a calculation:

1) the geometrical setup of the problem,

2) the neighbourhood relationships between elements,

3) the geometrical information for the elements,

4) the assembled matrices of the problem,

5) the boundary conditions, per node, or per geometricanhitiefn.

This data is provided by different objects, or entities. De®metrical data and
boundary conditions are provided by the user through thexfeate of the program
itself. The mesher provides the geometry of the elemenid,tlam neighbourhood
relationships. The assembled matrices are the respatysilfian assembler, and then
passed to a solver. Figuk& 5 illustrates the interactionsdata flows between the
different elements of the program.

Problem enrichmen @

Problem geometr Mesher Mesh geometry
User
Boundary Conds Assemble Mesh topology

Assembled Matricess
L

S’ ®
Solution vector - - -

Figure 5. The additional data paths made possible by the integratfah@® mesher:
1, for adaptive meshing, artland2’ for computationally efficient enrichment

8.2. Functionality provided by the API

The API or application programming interface is the collaetof functions and
data-structures available for the programmer’s use. Thobiness and design make the



252 REMN -16/2007. X-FEM

difference between some extensibility or no extensib{litynmermanret al,, 1992).

The API of the integrated mesher must be able to provide tipained services. How-
ever, for architectural reasons, it needs only know algeatmetry and not specifi-
cally about elements or physics. The most important seqwiogided is getting the

list of elements affected by a geometrical feature. An itdnthe tree must there-
fore implement aconflicts(Geometry *) method, which will be implemented
following the template of theonflicts(Point *) already present. The condi-
tion inCircumCircle () is replaced by a more generic condition, as described in the
Listing[@. This is all that is necessary to get computatilynefficient enrichment
strategies.

bool DelaunayTreeltem::isAffected(Geometry *g){
for(size_t i = 0 ; i < this->boundingPoint.size() ; i++) {
if (g->in(boundingPoint [i]))
return true ;
}
return false ;

}

Listing 7: Generic checking of whether an item of the triangulationfie@ed by a
given geometry

9. Numerical examples
9.1. Densely micro-cracked body and high number of enrichmenaferes

The suggested architectures allows for the simulation okely micro-cracked
materials, as presented in Figlile 6, but also more clagsiodlems can be solved
conveniently.

The advantage of the method lies in the fact that it allowsévy large number of
enrichment features, and therefore the simulation of cemgétups. The feature size
has an important impact on the computing time, as each eletmemrich has to be
tested. In this benchmark, the discovery step is in two phg4é find a possible sub-
set of the elements, using thenflict method and (2) an exhaustive search in this
subset. This is of course much less efficient than using tighbeurhood relation-
ships, but only by a linear factor, as the original elemerioisid inO(n). XFEM is
extremely efficient in itself to model very complex setupheTneshing of a complex
geometry can be a daunting task, if a very-well adapted nsesdguired. Using area
enrichment, one can dispense with moving refinement of thehnadong the crack
tip, thanks to asymptotic enrichmBntHowever, the mesh-geometry detection step
remains, as all elements within a ball centered on the cipchust be asymptotically
enriched. This step is made very simple with the proposdutacture.

3. Inlinear elastic fracture mechanics, enrichment withWestergaard solution.
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Figure 6. One of the principal stresses, computed around approxiratd00 cracks.
The mesh-geometry computation step took less than a seGanth. a case uses ap-
proximatively 200 000 degrees of freedom. In this case, ig@atements are set on
the left and right of the sample, symetrically, with the toy d&ottom frontiers left
free. The behaviour is purely linear-elastic. In this cabe, longest step is the solving
of the linear system itself, taking 30 min. on a desktop caenplihe assembly step
takes 20% longer, than an equivalently sized assembly wimnichment

T T
mesh generation o
trivial algorithm
improved trivial algorithm —e—
optimal algorithm ---o---

100 |-

10 |

time to compute

0.1

L L L L L L
0 2000 4000 6000 8000 10000 12000 14000
points in the mesh

Figure 7. Time taken respectively for the mesh-generation step amethichment
step, using various searching algorithm. There are 100@ksawith a kink (each
crack having a length of approximately 12% of the sample ati@ristic length). The
nlog(n) behavior of meshing algorithm is highlighted. Tinigial algorithmuses no
mesher provided information, it is @(en) algorithm. Thamproved naive algorthim
is a naive approach using the mesher provided facilitiese-sarch method, but not
the neighbourhood relationships; thdog(n) behavior is already an improvement
over the “obvious” method. Theptimal algorithmshows the pureljog(n) behavior
of a search algorithm using all the facilities
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In references (Nguyen, 2004; Bordeatsal., 2005b; Bordast al., n.d.c), we present
2d crack growth results and parameter studies ok#em. State-of-the-art 3d crack
growth simulation in complex three-dimensional composent presented in other
papers (Bordast al, n.d.b; Borda%t al, n.d.a). We assume plane strain conditions
and linear elements. Domain interaction integrals are tssedmpute the stress inten-
sity factors (Shitet al,, 1986; Nikishkowet al, 1987; Moraret al., 1987). Quasi-static
crack growth is governed by the maximum hoop stress critgdnd the crack growth
increment is chosen in advance and remains constant.

9.2. Double cantilever beam

In Figurd®a, & x 2 double cantilever beam (DCB) is illustrated. The initiadck
with length ofa = 2.05 is placed slightly above the mid-plane of the beam. The
material properties ar® = 100, andv = 0.3, andP = 1. In Figure[8b, for a growth
incrementAa = 0.15, a typical crack path is shown. The mesh Had00 elements.
The SIFs are computed with domain size taken to be;of 2-5hlocalﬂ- The result
agrees with other published works (Belytsclgtal., 1999).

s

(@) (b)

Figure 8. Geometry-loads of a double cantilever beam and crack patasisien

Parameters which affect the accuracy of the simulated goatk are (1) mesh
refinement; (2) the domain sizg@ = rrh;.qi; @and (3) the crack growth increment
Aa. A series of computations were performed to study thesetsffeThe numeri-
cal results are illustrated in Figurk 9. In Figlife 9a, crackgh paths obtained with
four different crack growth increments are presented (1g2@ments, tip element size
hioear = 0.1). It is observed that a converged crack path is obtainedrmkcincre-
ments betweer,cq;/2 and3 x hjoeqi/2. Accuracy is improved by using smaller
Aa’s. However, if the crack increment is too small comparedhi® ¢lement size,

4. hiocar being the square root of the area of the element holding phe ti
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multiple changes in the direction of the crack path may oedgthin an element. In
addition, the element partitioning for numerical integratalso becomes time con-
suming. Also, theJ integral is not path-independent for curved cracks. Theesf
the domain size; also affects the simulated crack path. This effect is shawn i
Figure[®b. Although the effect of the domain size is smak, dldoption of appropri-
ate path-independent integrals for curved cracks woulthicedy improve the crack
growth capabilities of thexcFEM. Results on mesh refinement are shown in Fiflire 9
and show that, for a sufficiently refined mesh, the crack patiot mesh-sensitive.
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Figure 9. Parametric study of simulated crack paths in double camtitdbeam spec-
imen: (a) influence of crack growth incremefit: (1200 elements;, = 2.5); (b)
influence of domain radius (1200 elements; = 0.15); and (c) influence of mesh
refinementi, = 2.5, Aa = 0.15)
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10. Conclusion

Using object oriented approaches to design and implemete élement code al-
lows us to have both the advantages of integration and mogul&@he exposure of
functionality and data through complete API designed to @oenthan simply make
the transfer of the minimal amount of data possible bear thenjse of very large
efficiency gains, more than offsetting the use of higheelgvogramming paradigms.
The complete design of the preset®eM code shall be presented in subsequent pa-
pers. The prospect of solving for the growth of hundreds atks is an exciting
outcome of the present work, which shall be presented intadoming paper.

Some phenomena, such as the Alkali-Aggregate-Reactiope{P@003; Lar-
ive, 1998) in concrete are coupled problems: cracks anatiait through a chemical
process and are propagated by a mixed chemical diffusitigufaprocess. The inter-
action between the various zones is easily computed thrthegmtegrated meshing
facilities, and allows the user to concentrate on the molieate issues of modelling.

Moreover, we are working on extending our codebase to altmextremely com-
plex problems, with thousands of inclusions, voids andtinaes propagating in visco-
elastic mediaxFeM should also allow us to integrate external effects, sucthamé
cal (Alkali-Silica Reaction) and thermal effects easily.
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