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ABSTRACT.We explore the tradeoffs of using an internal mesher in aXFEM code. We show that
it allows an efficient enrichement detection scheme, while retaining the ability to have well-
adapted meshes. We provide benchmarks highlighting the considerable gains which can be
expected from a well designed architecture. The efficiency of the proposed algorithm is shown
by solving fracture mechanics problems of densely micro-cracked bodies including adaptive
mesh refinement.

RÉSUMÉ. Nous explorons les coûts et gains tenant à l’inclusion d’un mailleur au sein d’un code
XFEM. Cette architecture permet de rendre efficace la détermination de l’enrichissement, en
conservant la possibilité de disposer de maillages bien adaptés. Des évaluations mettent en
évidence les gains considérables en temps de calcul qui peuvent être atteints.
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1. Introduction

The extended finite element method is a numerical method for modeling dis-
continuities and singularities within a standard finite element framework (Moëset
al., 1999; Babuškaet al., 1997; Melenket al., 1996). TheXFEM has been successfully
applied to numerous solid mechanics problems (Sukumaret al., 2003). TheXFEM

has also been used to model computational phenomena in areassuch as fluid mechan-
ics, phase transformations (Chessaet al., 2002), material science and biofilm growth
(Bordas, 2003; Bordaset al., 2005a), among others. TheXFEM can be implemented
within a finite element code with relatively small modifications: variable number of
degrees of freedom (DOFS) per node; mesh-geometry interaction; enriched stiffness
matrices; numerical integration and derivation, linear and non-linear solvers. The high
degree of reflexivity and dynamism required by the theFEMandXFEM methods are
best served by an object oriented approach, such as that described by (Zimmermann
et al., 1992; Bordaset al., n.d.c). However, compared toFEM, XFEM entails a higher
degree of intricacy between the various components of the code, which necessitates
a well-designed architecture, allowing for a high degree ofreflexivity. A typical us-
age would be adding cracks to a standard elastic problem (Venturaet al., 2005). The
solving of such a problem would be done the usual way: (1) meshthe problem, (2)
assemble the discretized form into a system of linear equations, (3) apply boundary
conditions, (4) solve the system. InXFEM, only (2) is modified. The additional steps
are:

1) find the elements affected by the cracks,

2) modify their elementary matrices accordingly.

The second step has been described extensively (Belytschkoet al., 1999; Areias
et al., 2005; Stroubouliset al., 2000), but the first much less. In fact, for a very com-
plex problem, it can be quite computationally costly to find all the elements affected
by a crack by simply iterating on all the elements. It is also inelegant, and difficult
to extend to a more rich and varied enrichment schemes. Usingthe informational-
readyavailable internally to the mesher, the element-finding step can be performed
in O(e log(n)), wheree is the number of enrichment items, andn the number of
elements.

In this paper, we will cover the specifics of computational geometry, meshing
schemes and enrichment in the optic of highlighting the architectural and computa-
tional advantages of using an integrated approach, as opposed to a more traditional
toolbox-type setup. We will first explore the specifics of geometrical representations,
then describe the meshing algorithm we have developed and the computational facili-
ties it provides with respect to computing geometrical interactions. We will then show
how this allows for considerable computing gains in operations of theXFEM method.
Finally, we will present a few examples of setups made easy tosimulate with such an
architecture as well as crack growth in 2D. Recent papers (Budyn, 2004) describing
multiple enrichment features go no higher than a few tens. Wesuggest an architec-
ture which scales up to thousands easily – the limiting factor being the large amount
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of degrees of freedom then required for the modelisation. Weexercise the proposed
algorithm through micro-cracking examples with hundreds of cracks, which, to the
authors’ knowledge, is a unique result in computational mechanics, be it approached
with the standardFEMor theXFEM.

2. Architecture overview

We hae built a setup in which the assembler is strongly coupled to the rest of the
program, yielding various advantages in term of performance and code maintainabil-
ity. Our setup comprises:

1) a problem descriptor,

2) a mesher,

3) an assembler,

4) a solver.

Those items are not individually optimized to the point where they could be, as our
interests lies mostly in the interaction between parts and getting a functionning sys-
tem. Which means, as we study higly geometrically heterogeneous materials a system
allowing for high-level, statistical description of aclassof problems, the generation
of a statistical sample of special cases and their subsequent resolution.

This in turn imposes the availability of a fully automatic mesher. Our fully auto-
matic mesher yields unstructured meshes solely from randomly ordered input points1.
We found that the algorithms used to find point-triangles interaction used could be
extended to any geometry-triangle interactions.

In turn, we found it was extremely useful to have a mesher for the integration step
of enriched elements. We also found that whith sufficient abstraction, the integration
step by subtriangulation could be correctly performed independently of the function
integrated.

2.1. Problem descriptor

The so-calledproblem descriptorallows the user to input the geometry, the be-
haviour laws and the precision desired.

It is based on objects such asSample, Inlusion, Pore, Crak, etc. In turn,
those have a memberbehaviour, such asLinearElasti. An exemple setup would
be:

1. Randomly ordering the input points yields optimal performance of the mesher.



240 REMN – 16/2007. X-FEMFeatureTree F(new Sample(/*dims*/)) ;F.addFeature(new Pore(/*dims*/)) ;Inlusion * inlusion = new Inlusion(/*dims*/) ;inlusion->setBehaviour(new Stiffness()) ;F.addFeature(inlusion) ;
Listing 1: Simple setup with a sigle pore and inclusion

The problem descriptor is responsible for the generation ofthe sampling points
that are input in the mesher. They are selected in such a way that the mesh obtained
be conformant.

2.2. Mesher

The inner workings of the mesher are described in more detailfurther below. The
mesher is a simple Delaunay tesselator using an internal tree-like structure allow-
ing point insertion inO(log(n)). The same structure, derived from geometrical con-
siderations, make it possible to also find triangles overlapping a given geometry in
O(m log(n)) with m the number of triangles covered by the geometry. This is useful
in:

1) localized refinement,

2) mesh-geometry interaction finding,

3) geometry-geometry interaction finding,

4) sub-triangulation for non-polynomial function integration.

2.3. Assembler and solver

The assembler and solver are of a classical type. However, the solver could be
linked to the mesher so as to yield an adaptative mesh.

3. Finding geometrical interactions

Computational geometry is a well studied field, whose applications in fields as
diverse as ray tracing (Various, n.d.), games (Magnenatet al., 2000) and physics en-
gines (Magnenat, 2000) are well explored. It has yielded efficient algorithms for the
detection and localization of various geometrical interactions.
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3.1. Representation

Before finding interactions, geometrical objects must be represented. They can be
separated into two categories:

1) simple objects described as analytic functions,

2) general shapes.

A computational geometry module should attempt to provide most of the usual
objects (spheres, circles, lines, points. . . ) and their interactions. If one wanted to be
general, some assumptions on the shape of the general objects would still be needed,
and a general representation in the form of Bézier patches orcurves (Chiyokuraet
al., 1983), or more generallyNURBS2 is chosen. All those objects can be abstracted
to a purely virtual interface, which would, inC++, look something like this:lass Geometry{ proteted:GeometryType geometryType ;publi :Geometry() ;virtual ~Geometry() ;GeometryType getGeometryType() onst ;virtual bool in(onst Point *) onst;virtual bool on(onst Point *) onst;bool intersets(onst Geometry *) onst ;}
Listing 2: General geometry interface, for an abstract description ofsuch di-
verse things as triangles and Bézier patches. You can note the presence of a fieldGeometryType: it serves as a very fast geometry type identifier for all operations
(such as intersections) that depend on the specific properties of the geometries

Of course, implementingintersets for all possible combinations is tedious,
and becomes increasingly cumbersome as the object library grows. To overcome this
limitation, one could for example decide to express all shapes as Bézier patches or
NURBS. It is interesting to notice that such an implementation makes no assumption
on the dimensionality of the described objects. It therefore makes it uniquely suited
to represent such concepts as level sets (Sethian, 1999).

Enrichment features are well represented as deriving from general geometries, and
providing a means to enrich the elements they affect. On the one hand it is possible
to attach to them objects representing physical laws, and the other hand they can be
considered as purely geometrical objects when it is efficient to do so.

2. Non Uniform Rational B-Spline.



242 REMN – 16/2007. X-FEMlass EnrihmentFeature : publi Geometry{//like a geometryEnrihmentType getEnrihmentType() onst ;virtual void enrih(ElementSet *) onst ;}
Listing 3: An example interface for enrichment features, which then could be imple-
mented in features like cracks, inclusions. . .

Using this structure, theenrih member would then look something like that:void EnrihmentFeature::enrih(ElementSet *s) onst{std::vetor<Element *> elements = s->onflits(this) ;for(std::vetor<Element *>::iterator i = elements.begin() ;i != elements.end() ;++i ) {this->enrihElement(*i) ;}}
Listing 4: Implementation of the enrichment loop

From the listings 3 and 4 we start seeing the intricacy: the element set is respon-
sible for finding the subset of conflicting elements. This is adesign choice, as theEnrihmentFeature could have done it itself. Simply, if the elements are storedin a
clever way, the element set can find the targets much more efficiently. Figure 1 shows
a possible inheritance tree for such a setup.

This shows the need for a mesh database more than for a mesher.It is however
already appearing that a lot of the code in the mesher is useful outside as well.

3.2. Information pertinence

Computational geometry provides the information pertaining to the relative po-
sition of a point and a given geometrical entity. It can also provide the location of
intersections. Both those pieces of information are neededto decide whether an ele-
ment is a target for enrichment or not. Unfortunately, although we can easily check
whether a given elementis a target for enrichment, it is on the other hand much more
difficult to have a complete and exhaustive list ofall the targets. This is because the
information given is attached to a geometrical entity, and contains no topological in-
formation. In aFEM program, the mesh contains such information, in the form of a
connectivity table. But again, although this is sufficient to recreate a table of neigh-
bours it is inefficient to do so. Not only because it is computationally expensive, but
also becausethe information was already computed and has been discarded.
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CircleRectangle

Geometry

Inclusion Sample

SegmentedLine

FeatureEnrichmentFeature

Figure 1. Multiple inheritance showing a possible scheme separatingpurely geomet-
rical constructs from physical entities, insuring a high level of code reuse as well as
abstraction

3.3. Special case for the elements

The elements are typically also geometrical entities, which means that they also
implement the interactions. This is necessary for enrichment, but higher order ele-
ments are in fact general, simply connex polygons, which induces potentially com-
putationally expensive checks. If the mesh is well-adaptedto the geometry of the
problem, that is, it does not rely overly on the additional degrees of freedom provided
by the higher-order elements to insure an acceptable approximation of the boundaries,
the elements can generally be treated as their low-order counterparts, thus making the
process of finding the enriched nodes much faster. This leadsto an interesting consid-
eration: the process of finding the enriched elements is, allother things being equal,
dominated by the efficiency of thein() method. This method would be most efficient
if elements were circles or spheres, with only three multiplications and a floating point
comparison.bool Sphere::in(Point *p) onst{double dist = omputeSquaredDistane(this->enter, p) ;return dist < this->r_squared ;}
Listing 5: Efficient implementation of thein() function for a sphere or circle

This is exactly what is possible if the mesh has been generated by Delaunay tri-
angulation. This comes from the fact that a Delaunay triangulation is defined by the
following property:No four points are within any of the meshes triangles’ circumcir-
cles. Other meshing schemes, which are not based on circles or spheres interactions
can still be stored in a efficient tree-like structure, but the exact implementation of the
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lar mesh, or more costly.

4. Description of the meshing scheme used

Two kinds of meshing schemes dominate, the advancing front and then-Tree fam-
ily. They both have advantages and disadvantages when considered strictly from the
meshing point of view, but we will try to show that for our purposes, the advancing
front family is not well-suited. Of course various hybrid methods are used, for exam-
ple to determine refinement zones. Typically the input consists of only the analytical
description of the geometry, and it is up to the mesher to do the sampling. Alterna-
tively, the sampling is given, and the mesher then outputs the elements corresponding
to the given sampling points, constrained by the boundariesof the geometrical entities
to mesh.

4.1. n-tree

Trees are an efficient mean of organizing and retrieving data(Frederickson, 1991).
In particular, for space-dividing schemes, a parent-children relationship ordered by
the spatial position allows the building of such trees on thefly as the meshing goes. A
very simple example of such meshing is a quad-tree.

But a tree is also a possible representation of the current state of a Delaunay type
triangulation. Points are pre-generated and then fed randomly into a triangulation
algorithm. Each new insertion determines the elimination of a set of triangles, and the
creation of new ones (Devillerset al., 1992). The new triangles are the children of
the old with which they share the same conflict condition. Theconflict condition in
the case of Delaunay triangulation is the one described in the Listing 5, with the used
circle being the circum circle of the triangle. The Listing 6, adapted from (Devillers
et al., 1992), describes a simple version of such an algorithm.

The algorithm works thus:

1) if we already checked this element, return,

2) if this element is not conflicting with the point, return,

3) add self to return,

4) attempt insertion in all children, insert result,

5) attempt insertion in all neighbours, insert result,

6) return.



XFEM code architecture 245std::vetor<TreeItem *> * TreeItem::onflits(onst Point *p){std::vetor<TreeItem *> * ret = new std::vetor<TreeItem *>() ;std::vetor<TreeItem *> * temp ;this->visited = true ; // mark as hekedif(!inCirumCirle(p)) // essential onflit ?return ret ;if(this->isAlive()) //else, if "alive"ret->push_bak(this) ; //put it in list.//hek the hildren -- note the reursionfor (size_t i = 0 ; i < hild.size() ; i++) {if( !hild[i℄->visited )ret->insert(ret->end(),son[i℄->onflits(p)->begin(),son[i℄->onflits(p)->end()) ;}//hek the neighbours -- note the reursionfor (size_t i = 0 ; i < neighbour.size() ; i++) {if( !neighbour[i℄->visited )ret->insert(ret->end(),neighbour[i℄->onflits(p)->begin(),neighbour[i℄->onflits(p)->end()) ;}return ret ; // return the list of onfliting triangle}
Listing 6: Recursive building of the list of affected elements. TheinCirumCirle() method is used instead of a more classicalin(). This is the
advantage of Delaunay triangulation: it only uses cheap checks for its formation

Once a list of affected triangles has been obtained, one simply deletes them and
replaces them with new triangles defined by the boundary of the set of affected trian-
gles, and the inserted point. The combination of the conflict-checking algorithm and
the point insertion scheme generates a set of triangles, arranged in a tree whose leaves
form the actual triangulation which will be used.

4.2. Mesher efficiency

The mesher we coded is fairly efficient. Compared to gmesh, weget the following
numbers:

Gmsh is three times as fast, but the order of the algorithms isthe same. We con-
clude that our mesher isgood enough, though it could certainly be optimised. The
tradeof is offset by having full control over theAPI and the additional usage we get
from the mesher, using its readily available data strucures.
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Table 1. Time taken for a mesh with≈ 50 000 points. This finally yields 200000
degrees of freedom

gmsh own mesher
5 s 15 s

This is further reinforced by the fact that the meshing step is in fact a relatively
low-time-consuming one, as is highlighted in the Figure 2.

Figure 2. Localised refinement and matrix assembly are much costlier operation than
the meshing itself. The renormalisation highlights the asymptotic behaviour of the
various algorithms involved

4.3. Mesh quality

The quality of the initial mesh depends a lot on the choice of discretization points,
this independently of the meshing algorithm chosen. To enhance the quality of the
mesh, two options are available: (1) refinement, (2) relocation, based on some quality
criterion. Relocation is equally feasible independently of the meshing algorithm ini-
tially chosen, but refinement is not, necessitating the insertion of pointsin the already
meshed domain, and thus requiring an algorithm capable of this. This limitation can be
overcome by using an hybrid meshing technique allowing for both modes. A simple
hybrid mesher could generate the original mesh using the advancing front technique,
and also provide a quad-tree like refinement algorithm.
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5. Comparison with a mesh database

5.1. Similarities and limitations

A mesh database, such as AOMD (Remacleet al., 2000), would provide the same
accessors and iterators as the mesher, thus from the point ofview of efficiency of
the mesh-geometry interaction detection step, it is equivalent. However, the database
would need to be rebuilt each time the mesh is rebuilt, leading to unnecessary over-
head. The algorithmic advantages are however the same for static meshes. But the
overall algorithmic efficiency can never be better thanO(n), wheren is the number
of elements, as each element is to be entered at least once.

5.2. Exported informationvs. internal representation

Once a mesh has been generated, it is fully defined by (1) the coordinates of the
nodes, (2) the list of elements defined by a list of nodes. In a typical FEM code, only
this information is exported and loaded in the assembler-solver. This is theexternal
representationof the mesh. However, as we have just seen, much more information
is used in the mesher. This information is typically discarded in the toolbox approach
case, as it is useless: separate programs provide separate services and communicate
through data files containing only the minimum necessary. However, one can build
all sorts of element-finding routines on the model of theonflits(Point *). This
only requires the programmer to provide a function checkingfor geometrical conflict.

6. Finding elements affected by enrichment schemes

Enrichment schemes are determined on a geometrical basis. Elements in and
around enrichment features are selected, and additional degrees of freedom are added
to their nodes, based on the nature of the feature. This typically means that a given
feature should be located in terms of elements. This is easy in the case of a so-called
structured meshwhere the spatial position of nodes determines their numbering. It
is however much harder in the case of unstructured meshes, asthose typically pro-
duced by the meshing scheme described above, used in practice. With only a list of
elements, the only way to find those within a given geometrical limit is to run through
the list, and check every element. This is dramatically inefficient. The slightly better
case involves having also a list of neighbours for each element. Then, one needs only
to find a single affected element and proceed through the neighbours. This is faster,
but is still asymptotically the same order of computationbecause the first element still
needs to be found, and this isO(n) for randomly listed elements. Indeed, on average
one will still have to check for half the elements before finding one that matches the
condition and, in effect, only the constant part of the iteration is reduced.
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Figure 3. Detecting a geometry in a complex case. the bold line interacting with the
elements, in bold, the elements found to be interacting

Finally if the elements are arranged in a tree, the order of the computation is dra-
matically reduced fromO(en) wheree is the number of features andn the order of
elements, toO(e log(n)).

6.1. Using the information provided by the mesher

A mesh produced by a traditional, separate mesher only provides the list of nodes
in each elements and the coordinates of the nodes. This meansthat the data provided
are very inadequate for the purpose of enrichment. What one can do is rebuild the
list of neighbours before the enrichment target finding step. This is done simply by
counting the common nodes for each elements. It is however impossible to re-create a
tree structure from the simple connectivity data, except incertain trivial cases. Rather,
it is possible, but only by discarding the element information and regenerating a mesh
from the sampling points. If a mesher is integrated with theFEM/ XFEM program,
it becomes possible to enrich a mesh with a large amount of features, because the
mesher provides all the information. It is also possible to setup complex experiments
using various geometry generators (see for example Figure 4a).
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(a) complex microstructure (b) local mesh refinement

Figure 4. Detail of a mesh autogenerated with a random arrangement of inclusions
and pores (a) and deformed mesh around a crack tip with local mesh refinement (b)

6.2. Fracture mechanics anda posteriori error applications

Modern fracture mechanics applications and schemes require a range of geomet-
rical routines which are very easily provided using the architecture suggested. It is
necessary to evaluate domain integrals for the computationof stress intensity factors.
This requires finding elements within a ball of given radius,or, alternatively, elements
cut by a sphere. This is trivially accomplished here. But even more interesting is that
when using special shape functions, the integration step involves generating a sub-
mesh on the elements, and summing the sub-integrals. This istypically more precise
than simply using a very large amount of Gauß points. In addition, the idea of “fixed
area enrichment” (Labordeet al., 2004) rests on enriching sets of elements within a
given surface area, a ball centered on the crack tip. Using the above general geom-
etry description, the implementation and integration of such a scheme becomes very
easy.A posteriorierror estimations such as ZZ-type error estimates typically require
knowledge about nodes’ neighbouring elements, in order to construct the enhanced
stress and strain fields on the computational mesh. Other error estimators (Bordaset
al., n.d.d) also require identifying nodes within a ball centered on the computational
point where the smoothed field or derivative is desired. Again, the mesher integration
is the easy answer to the program architecture challenge.

7. Usage considerations

From a usage point of view, one can find many advantages in having an integrated
mesher. It allows for greater abstraction. It allows for greater extensibility. It per-
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mits the easy implementation of various optimization technique which require a link
between the solver and the mesh and allows for very complex enrichment schemes.

7.1. Auto-meshing

One of the most important features allowed by the integration of the mesher in
the core of theXFEM code is the possibility to have an auto-mesher. Although auto-
meshing cannot be certain to give good results, it is extremely practical to test various
configurations, which might be generated based on a set of rules. For example, one
might seek the effects on the apparent mechanical properties of a sample, of a given
distribution of inclusions or/and cracks. With an auto-mesher, it is simply a matter
of generating the geometry of the features, then the programcan mesh, assemble and
solve at once.

7.2. Auto-refinement

Criteria exist to evaluate both the general quality of the mesh, and the local quality
of each element. Based on those criteria, the mesh can be refined or smoothed au-
tomatically. A tree-like structure in the mesher allows fornot only adding sampling
points, but also removing them when they are no longer needed. This permits the
limitation of the total number of sampling points in an efficient way. Of course, as il-
lustrated in Figure 4b, simplea priori refinement can easily be added. More involved
error-based refinement are seamlessly introduced in the proposed architecture.

Very powerful also is the possibility of error-based remeshing (Bordaset al., n.d.d).
For time-dependent calculations, a once well-adapted meshmight becomes inadequate
and yields faulty results. This leads on one hand to a necessary remeshing, and on the
other to the recomputation of the mesh-geometry interactions. This cannot be done
efficiently by using a mesh database, as it would have to be rebuilt with the new,
modified mesh, an operation which is needlessly costly.

7.3. Enrichment

Enrichment is a relatively new method, and though new schemes of enrichment
are regularly published (Legrainet al., 2005), the question of the performance of the
actual enrichment step is rarely mentioned in the literature. However, if one imagines
a case where thousands of enrichment features are needed – dense micro-fissuration,
complex micro-structures, cavitation and bubble/fluid interaction – the cost of finding
the enriched node becomes prohibitive. The trivial method is in the order ofn × e
where,n is the number of elements, ande the number of enrichment items. This leads
to catastrophic computing times, especially if interactionsbetweenenrichment items
need also be calculated – crack junction, crack-boundary interaction, crack-material
interface interaction. . . Indeed, we believe, it isimpossible, without a mesh database,
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to efficiently perform such computations. The downside of our approach, however, is
an increased memory consumption.

8. Architectural considerations

8.1. Integration

When following an object-oriented design approach (Mackerle, 2000), the facil-
ities used by each object to perform its task are available for the others to use. The
following data is needed for a calculation:

1) the geometrical setup of the problem,

2) the neighbourhood relationships between elements,

3) the geometrical information for the elements,

4) the assembled matrices of the problem,

5) the boundary conditions, per node, or per geometrical definition.

This data is provided by different objects, or entities. Thegeometrical data and
boundary conditions are provided by the user through the interface of the program
itself. The mesher provides the geometry of the elements, and the neighbourhood
relationships. The assembled matrices are the responsibility of an assembler, and then
passed to a solver. Figure 5 illustrates the interactions and data flows between the
different elements of the program.

User

Problem geometry Mesher Mesh geometry

Mesh topologyBoundary Conds

Solver

Assembled Matrices

Solution vector
1

2’

2
Problem enrichment

Assembler

Figure 5. The additional data paths made possible by the integration of the mesher:
1, for adaptive meshing, and2 and2′ for computationally efficient enrichment

8.2. Functionality provided by the API

The API or application programming interface is the collection of functions and
data-structures available for the programmer’s use. Theirrichness and design make the
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difference between some extensibility or no extensibility(Zimmermannet al., 1992).
The API of the integrated mesher must be able to provide the required services. How-
ever, for architectural reasons, it needs only know aboutgeometry, and not specifi-
cally about elements or physics. The most important serviceprovided is getting the
list of elements affected by a geometrical feature. An item of the tree must there-
fore implement aonflits(Geometry *) method, which will be implemented
following the template of theonflits(Point *) already present. The condi-
tion inCirumCirle() is replaced by a more generic condition, as described in the
Listing 7. This is all that is necessary to get computationally efficient enrichment
strategies.bool DelaunayTreeItem::isAffeted(Geometry *g){for(size_t i = 0 ; i < this->boundingPoint.size() ; i++) {if(g->in(boundingPoint[i℄))return true ;}return false ;}
Listing 7: Generic checking of whether an item of the triangulation is affected by a
given geometry

9. Numerical examples

9.1. Densely micro-cracked body and high number of enrichment features

The suggested architectures allows for the simulation of densely micro-cracked
materials, as presented in Figure 6, but also more classicalproblems can be solved
conveniently.

The advantage of the method lies in the fact that it allows forvery large number of
enrichment features, and therefore the simulation of complex setups. The feature size
has an important impact on the computing time, as each element to enrich has to be
tested. In this benchmark, the discovery step is in two phases: (1) find a possible sub-
set of the elements, using theonflit method and (2) an exhaustive search in this
subset. This is of course much less efficient than using the neighbourhood relation-
ships, but only by a linear factor, as the original element isfound inO(n). XFEM is
extremely efficient in itself to model very complex setups. The meshing of a complex
geometry can be a daunting task, if a very-well adapted mesh is required. Using area
enrichment, one can dispense with moving refinement of the mesh along the crack
tip, thanks to asymptotic enrichment3. However, the mesh-geometry detection step
remains, as all elements within a ball centered on the crack tip must be asymptotically
enriched. This step is made very simple with the proposed architecture.

3. In linear elastic fracture mechanics, enrichment with theWestergaard solution.
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Figure 6. One of the principal stresses, computed around approximatively 400 cracks.
The mesh-geometry computation step took less than a second.Such a case uses ap-
proximatively 200 000 degrees of freedom. In this case, the displacements are set on
the left and right of the sample, symetrically, with the top and bottom frontiers left
free. The behaviour is purely linear-elastic. In this case,the longest step is the solving
of the linear system itself, taking 30 min. on a desktop computer. The assembly step
takes 20% longer, than an equivalently sized assembly with no enrichment
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Figure 7. Time taken respectively for the mesh-generation step and the enrichment
step, using various searching algorithm. There are 1000 cracks with a kink (each
crack having a length of approximately 12% of the sample characteristic length). The
n log(n) behavior of meshing algorithm is highlighted. Thetrivial algorithmuses no
mesher provided information, it is anO(en) algorithm. Theimproved naive algorthim
is a naive approach using the mesher provided facilities – the search method, but not
the neighbourhood relationships; thee log(n) behavior is already an improvement
over the “obvious” method. Theoptimal algorithmshows the purelylog(n) behavior
of a search algorithm using all the facilities
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In references (Nguyen, 2004; Bordaset al., 2005b; Bordaset al., n.d.c), we present
2d crack growth results and parameter studies of theXFEM. State-of-the-art 3d crack
growth simulation in complex three-dimensional components are presented in other
papers (Bordaset al., n.d.b; Bordaset al., n.d.a). We assume plane strain conditions
and linear elements. Domain interaction integrals are usedto compute the stress inten-
sity factors (Shihet al., 1986; Nikishkovet al., 1987; Moranet al., 1987). Quasi-static
crack growth is governed by the maximum hoop stress criterion, and the crack growth
increment is chosen in advance and remains constant.

9.2. Double cantilever beam

In Figure 8a, a6× 2 double cantilever beam (DCB) is illustrated. The initial crack
with length ofa = 2.05 is placed slightly above the mid-plane of the beam. The
material properties areE = 100, andν = 0.3, andP = 1. In Figure 8b, for a growth
increment∆a = 0.15, a typical crack path is shown. The mesh had1, 200 elements.
The SIFs are computed with domain size taken to be ofrd = 2.5hlocal

4. The result
agrees with other published works (Belytschkoet al., 1999).

(a) (b)

Figure 8. Geometry-loads of a double cantilever beam and crack paths specimen

Parameters which affect the accuracy of the simulated crackpath are (1) mesh
refinement; (2) the domain sizerd = rkhlocal; and (3) the crack growth increment
∆a. A series of computations were performed to study these effects. The numeri-
cal results are illustrated in Figure 9. In Figure 9a, crack growth paths obtained with
four different crack growth increments are presented (1,200 elements, tip element size
hlocal = 0.1). It is observed that a converged crack path is obtained for crack incre-
ments betweenhlocal/2 and3 × hlocal/2. Accuracy is improved by using smaller
∆a’s. However, if the crack increment is too small compared to the element size,

4. hlocal being the square root of the area of the element holding the tip.
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multiple changes in the direction of the crack path may occurwithin an element. In
addition, the element partitioning for numerical integration also becomes time con-
suming. Also, theJ integral is not path-independent for curved cracks. Therefore,
the domain sizerd also affects the simulated crack path. This effect is shown in
Figure 9b. Although the effect of the domain size is small, the adoption of appropri-
ate path-independent integrals for curved cracks would certainly improve the crack
growth capabilities of theXFEM. Results on mesh refinement are shown in Figure 9
and show that, for a sufficiently refined mesh, the crack path is not mesh-sensitive.
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Figure 9. Parametric study of simulated crack paths in double cantilever beam spec-
imen: (a) influence of crack growth increment∆a (1200 elements,rk = 2.5); (b)
influence of domain radius (1200 elements,∆a = 0.15); and (c) influence of mesh
refinement (rk = 2.5, ∆a = 0.15)
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10. Conclusion

Using object oriented approaches to design and implement finite element code al-
lows us to have both the advantages of integration and modularity. The exposure of
functionality and data through complete API designed to do more than simply make
the transfer of the minimal amount of data possible bear the promise of very large
efficiency gains, more than offsetting the use of higher-level programming paradigms.
The complete design of the presentXFEM code shall be presented in subsequent pa-
pers. The prospect of solving for the growth of hundreds of cracks is an exciting
outcome of the present work, which shall be presented in a forthcoming paper.

Some phenomena, such as the Alkali-Aggregate-Reaction (Poyet, 2003; Lar-
ive, 1998) in concrete are coupled problems: cracks are initiated through a chemical
process and are propagated by a mixed chemical diffusion-fatigue process. The inter-
action between the various zones is easily computed throughthe integrated meshing
facilities, and allows the user to concentrate on the more delicate issues of modelling.

Moreover, we are working on extending our codebase to allow for extremely com-
plex problems, with thousands of inclusions, voids and fractures propagating in visco-
elastic media.XFEM should also allow us to integrate external effects, such as chemi-
cal (Alkali-Silica Reaction) and thermal effects easily.
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