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ABSTRACT. This paper presents a 3D non-locking contact approach, within the eXtended Finite 
Element Method (X-FEM) framework. X-FEM allows one to introduce interface 
independently of the mesh. The contact problem on the interface leads to an Augmented 
Lagrangian formulation derived from the discretization of its continuous formulation. It is 
shown that a simple choice of the Lagrange multiplier space is not suitable and leads to 
contact pressure oscillations. An algorithm for the restriction of the Lagrange multiplier 
approximation space is proposed to stabilize the formulation. The stability of the mixed 
displacement-contact pressure formulation is discussed in terms of convergence of the energy 
error. Numerical examples performed with the Finite Element software Code_Aster illustrate 
this approach while solving three-dimensional problems with contact. 
RÉSUMÉ. Cet article présente une formulation stabilisée pour les problèmes de contact en 3D, 
dans le cadre de la méthode des éléments finis étendue (X-FEM), méthode qui autorise des 
interfaces indépendantes du maillage. Pour la formulation du problème de contact sur 
l’interface, nous utilisons un Lagrangien Augmenté, qui dérive de la discrétisation du 
problème de contact écrit sous sa forme continue. Nous montrons qu’un choix simple de 
l’espace des multiplicateurs de Lagrange n’est pas satisfaisant car cela conduit à des 
oscillations des pressions de contact. Un algorithme de restriction de l’espace 
d’approximation des multiplicateurs de Lagrange est proposé afin de stabiliser la 
formulation. La stabilité de la formulation mixte (déplacement-pression de contact) est 
démontrée à l’aide des taux de convergence des erreurs. Des exemples numériques réalisés 
avec le logiciel éléments finis Code_Aster illustrent cette approche pour la résolution de 
problèmes tridimensionnels avec contact.  
KEYWORDS: X-FEM, adhesive contact, 3D. 
MOTS-CLÉS : X-FEM, contact adhérent, 3D. 
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1. Introduction 

The eXtented Finite Element (Moës et al., 1999) approach allows meshes not to 
respect the crack geometry. This method has managed to combine performances and 
robustness, considering non-meshed cracks in a finite element framework. X-FEM 
uses the Partition of Unity and enriches the classical basis of shape functions with 
discontinuous functions. The discontinuity of the displacement field across the crack 
surface is then introduced by a generalised Heaviside function, and adding 
asymptotic fields at the front crack gives good precision in linear elastic fracture 
mechanics. The main advantage of X-FEM in comparison to mesh-less methods is 
its easy implementation in a general finite element software, and its capacities to be 
applied to various fields: large transformations (Legrain et al., 2005), plasticity 
(Elguedj et al., 2006)… One can say that X-FEM extends the possibilities of the 
FEM, keeping all its advantages. A useful amelioration has been proposed by 
(Sukumar et al., 2001) with the introduction of level set functions to represent 
discontinuities (cracks, voids…). This approach is extremely handy in 3D to treat 
crack propagation (Gravouil et al., 2002). 

In this paper, we propose an X-FEM approach with contact on the interface. 
Adhesion, obtained from a frictional law, is used in order to validate our analysis, 
restricted so far to contact and adhesive contact, with respect to analytical results. 
Only few works have been published on that subject, and all of them are addressed 
to 2D problems. In (Dolbow et al., 2001), a 2D crack problem with frictional contact 
is treated, with a formulation close to the Augmented Lagrangian Method (Alart et 
al., 1991). Following the work of Dolbow et al., Ribeaucourt et al. study rolling 
fatigue and takes into account frictional contact on the surfaces of a 2D fatigue crack 
(Ribeaucourt et al., 2005). Not directly related to contact problems, two papers 
concern the difficulty to impose conditions on an interface with X-FEM. In (Ji et al., 
2004) the authors observe oscillations of the Lagrange multipliers used to impose 
interfacial conditions. In (Moës et al., 2005), an algorithm is proposed to reduce 
oscillations of the Lagrange multipliers in 2D. This algorithm, based on geometric 
considerations, build a Lagrange multiplier space compatible with the displacement 
approximation space. 

In our extension to 3D contact problem with X-FEM, we present an amelioration 
of the previous algorithm which leads to a non-locking contact formulation. We 
have chosen a framework close to the Augmented Lagrangian Method, derived form 
a continuum mechanics formulation of contact proposed by (Ben Dhia et al., 2000). 
Whereas discrete approaches consider the contact problem as a direct modification 
of nodal forces, the equations are discretized within the finite element method 
framework leading to an assembly of elementary contributions. For these 
“continuous” methods, developed also by (Laursen et al., 1993; Curnier et al., 
1995), the contact conditions are seen as an interface law and not as boundary 
conditions. With the discretization, the notion of contact element appears and the 
non-differentiable contact law can be treated via an hybrid element (Ben Dhia et al., 
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2002) including contact efforts in the problem unknowns. In the method proposed 
by Ben Dhia, the non-differentiability of the contact is treated by an algorithm of 
active constraints (Dumont, 1995), and the non-differentiability due to the friction is 
solved using a fixed point method on the friction threshold (see Zarroug, 2002, for 
more details). 

With X-FEM, the two sides of the interface are viewed as a single surface which 
may cut a finite element. The integration of the contact terms on that non-meshed 
surface calls upon quantities related to the nodes belonging to the elements that are 
cut by the interface. Besides, one of the main features of contact with X-FEM is that 
under small displacement assumptions, no contact-nodes searching algorithm is 
needed, because a geometrical point on the surface can be seen as two physical 
points, one on each side of the surface. The displacement jump is therefore just 
expressed in terms of the enriched degrees of freedom introduced by X-FEM. 

This paper is composed of 5 sections. After this brief introduction, in Section 2, 
the 3D frictional contact problem with adhesion is introduced. The general 
equations, the contact and the friction laws are recalled. Section 3 presents the 
mixed displacement-contact pressure variational formulation associated. In 
Section 4, the discretization of the displacement and the contact pressure fields is 
described leading to an hybrid extended finite element. Section 5 studies the stability 
of the mixed formulation, illustrated on numerical examples. 

2. Presentation of the frictional contact problem with adhesion 

This part briefly recalls the non-linear equations of the frictional contact 
problem. We consider the quasi-static response of a cracked body Ω ⊂ ℜ3, under 
prescribed body forces f and prescribed tractions t on Γt. The structure is clamped on 
Γu. The outward unit normal of ∂Ω is denoted by next. Considering a smooth 
extension of the crack ΓC, we separate Ω in two bodies Ωi, i = 1, 2 and we designate 
ni the outward unit normals of each crack surface Γi, and ri the effort densities due to 
potentially frictional contact interactions between the two surfaces. 

 

Figure 1. Notation for the frictional contact problem 
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In the framework of small displacements, the constitutive law for the elastic 
linear material is given by: 

in= Ωσ Cε  [1] 

where C is the Hooke tensor and ε the symmetrical part of the gradient of u. Using 
the former notations, the equilibrium equations and the boundary conditions are: 

in
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Let p be a point of Γc. We denote p1 and p2 the points initially coinciding on Γ1 
and Γ2 respectively, and [[x]] the displacement jump across the interface. The non-
interpenetration condition between p1 and p2 is written following the direction of the 
outward normal to Γ1 n = n1: 

( ) ( )( )1 2[[ ]] 0nd p p= ⋅ = − ⋅ ≤x n x x n  [3] 

Figure 2 shows how the frictional contact effort density r is decomposed in a 
normal contribution λ which corresponds to the normal contact pressure, and a 
tangential one rτ. The frictional contact effort density can be written as follows: 

λ= = − = +1 2
τr r r n r  [4] 

 

Figure 2. Definitions of the gap and the contact reaction 

With these notations, contact law (Signorini’s laws) yields to: 

0≤nd , 0≤λ , 0=ndλ  [5] 
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Inequations governing unilateral contact, are not well-suited for a weak 
formulation. This is the reason why [5] is rewritten under an equivalent implicit 
equation (Ben Dhia et al., 1999): 

0)( =− nn ggχλ  [6] 

In this equation, which characterises the contact law, gn is the Augmented 
contact multiplier (Alart et al. 1991) defined by: 

nnn dg ρλ −=  [7] 

where ρn is a strictly positive constant. The Equation [6] is said implicit because it 
involves χ, the indicative function of ℜ−. The function χ(x) is equal to 1 if x < 0 and 
is equal to 0 if x ≥ 0. 

For frictional effects, we use the classical Coulomb’s law, which is a non-
differentiable and non-associative law: 
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where µ is the Coulomb’s frictional coefficient and vτ the relative tangential 
velocity. In the following applications, used to validate our contact formulation, µ is 
taken high enough to ensure adhesion. 

An equivalent procedure to the one used for the contact law is carried out, in 
order to obtain an equivalent Equation of [8]. We will define by Equation [9a] a 
semi-multiplier of friction Λ, which modulus lies between 0 and 1 (strictly lower 
than 1 in our adhesive case). Λ corresponds to the sliding direction for sliding points 
when its modulus is equal to one, and Λ corresponds to the adhesion direction when 
its modulus is strictly lower than one. We introduce then the Augmented semi-
multiplier of friction gτ in the Equation [9b]. The Equation [9a-c] is equivalent to the 
Coulomb’s friction law, where PB(0,1) is the projection on the unit ball and ρτ is a 
strictly positive parameter (Ben Dhia, 1990): 
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3. Mixed continuous variational formulation 

In this section, we recall the weak frictional contact formulation of (Ben Dhia, 
2002) used in this work. Displacement fields are chosen in V0 = {v∈H1, v 
discontinuous across Γc, v = 0 on Γu} the space of the smooth enough kinematically 
admissible displacement fields. Let H be the contact pressure space. 
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where the stress tensor σ is given by the constitutive law [1], and gn and gτ are 
respectively defined by [7] and [9b]. 

4. Discretizations 

We define V0
h, Hh and Hh, the finite dimension sub-spaces of the continuous 

spaces V0, H and H, which allow one to approximate the fields u, λ and Λ. 

4.1. Displacements approximation with X-FEM 

The main idea is to enrich the basis of interpolation with the partition of unity 
(Melenk et al., 1996). The classical finite element approximation is recalled: 

∑
∈
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where ai are the displacement degrees of freedom at node i and φi the shape function 
associated to node i. Nn(x) is the set of nodes whose support contains the point x. 

To represent the displacement jump across Γc, we introduce the generalised 
Heaviside function (Moës et al., 1999): H(x) is equal to −1 if the point x is “below” 
the crack surface and is equal to 1 if the point x is “above” the crack surface. Near 
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the crack front, a special enrichment is added with functions based on the asymptotic 
developments of displacement fields in linear elastic fracture mechanics. But we will 
focus in this paper on elements completely cut by the crack (case of interface). The 
X-FEM displacement approximation is then: 

( )( ) ( ) ( )i j
i j

Hφ φ= +∑ ∑h
i ju x a x b x x  [11] 

where bj are the enriched degrees of freedom. Nodes j are the nodes whose cover is 
completely cut by the crack. 

A level set representation of the interface is used within the X-FEM framework 
(Sukumar et al., 2001). The level set ψ is a signed distance function to the interface. 
Its sign is arbitrary chosen: ψ(x) < 0 for x ∈ Ω1 and ψ(x) > 0 for x ∈ Ω2. 

With this approximation, the displacement jump across the interace surface is 
directly expressed in terms of the degrees of freedom enriched by X-FEM. The 
expression of the displacement jump contains the discontinuous terms of the 
displacement approximation [11] and is written as follows: 

[[ ]] 2 j j
j

φ= −∑hv b  

4.2. Contact unknowns approximation 

The surface of the cut intersecting an element can be approximated firstly with a 
polygon (which can have a complex shape, such as non-planar hexagon). To define 
a FE approximation on that surface, we have decided to cut this polygon in sub-
triangles in order to use the classical linear shape functions of the triangle φi: 

3 3

1 1

( ) ( ) , ( ) ( )h h
i i i i
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= =∑ ∑x x Λ x Λ x  [12] 

A similar approximation has been used by (Ji et al., 2004) for problems where 
interfacial conditions are enforced in a two-phase body. The vertices of the sub-
triangles are the intersections between the interface and the edges of the elements. 
These vertices can be either a point on an edge, or a node. Therefore, the frictional 
contact unknowns (the contact pressures λi and the semi-multipliers of friction Λi at 
the vertices of the sub-triangles) are not always real nodal unknowns since the 
vertices of the sub-triangles are not necessarily included in the mesh. However, in 
Code_Aster, the finite element software developed by EDF for solving general 
problems in mechanics, unknowns must be nodal ones, as in many finite element 
softwares. For implementation purpose, if a vertex of a sub-triangle is a point 
located on an edge (not a node) then the contact unknowns of that point are 
associated to the middle node of the edge (see Figure 3). 
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Figure 3. Example of contact sub-triangles and associated unknowns location 

To sum up, the contact element we propose is based on a quadratic element. 
Classical and enriched displacement degrees of freedom (dof) are on the summit 
nodes as for classical linear elements. Then, the element has initially contact dof at 
every summit and middle nodes as for classical quadratic elements. Depending on 
the position of the interface, some of these contact dof are contact unknowns (they 
take part of the discretized equations), while the others are inactive and imposed to 
zero (they do not take part in the discretized equations). 

5. Stability of the mixed displacement-contact pressure formulation 

One of the features of mixed formulations is that not all combinations of 
discretizations are stable and only a judicious choice of the finite element spaces 
will lead to optimal convergence. To assure that, the ellipticity and the inf-sup (or 
LBB) conditions must be satisfied (Bathe, 2001). Unfortunately, our mixed 
formulation is not LBB-stable. Indeed, imposing contact conditions on the interface 
and imposing Dirichlet boundary conditions is quite similar. In (Moës et al., 2005), 
the question of how imposing essential boundary conditions on an interface with X-
FEM is discussed. Dirichlet conditions are imposed via Lagrange multipliers on an 
interface which crosses triangular elements and the mixed formulation shows 
instabilities. Lagrange multiplier space is too rich and oscillations of the multipliers 
occur. 

The same phenomenon is observed with our formulation of contact with X-FEM. 
We consider a 3D elastic plate Ω under non-uniform compression. The inferior face 
is clamped and a parabolic pressure p(y) is applied on the superior face. Pmax is taken 
equal to 1 Pa. An interface Γ crosses completely the plate at z = 0.5 m. Frictional 
contact conditions are applied on the interface, and the Coulomb coefficient is taken 
high enough to have adherence. 
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Figure 4. On the left, the geometry of the 3D plate. On the right, the two meshes 

Two types of regular meshes are studied: one with hexahedrons and one with 
pentahedrons (prisms), with an odd number of elements in the z direction, so that the 
interface cuts the elements (see Figure 4). On Figure 5, we compare the contact 
pressure along the y-axis for both meshes. The size of the elements is denoted by h, 
so that 1/h represents the number of elements in the directions y and z (for 
pentahedrons, the number of elements is in fact 2/h in the y-direction). The reference 
is the analytical solution for contact pressure, which is equal to the prescribed 
pressure p(y). With hexahedrons in our mesh configuration, the Lagrange multiplier 
space on the interface is similar to the space obtained by considering an interface 
coinciding with the edges of the hexahedrons. In this case, the combination of the 
displacement and multiplier approximation spaces does not lead to locking and the 
resulting contact pressure is parabolic as expected (Figure 5). However, with 
pentahedrons, more multipliers are introduced. Those on the diagonal edges make 
the system over-constrained, and oscillations of the contact pressure occur, as it can 
be seen on Figure 5. (Ji et al., 2004) also obtained similar oscillations. In (Moës et 
al., 2005), an algorithm is proposed to reduce the Lagrange multiplier space. The 
superfluous multipliers are linked to the other multipliers, imposing equality or 
linear relations between the Lagrange multipliers. For more details, see (Moës et al., 
2005). This algorithm tends to impose more equality relations than linear relations, 
so the linear approximation of the multipliers (Equation [12]) is degraded. We have 
improved this algorithm to make it more efficient and reverse this trend by imposing 
more linear relations in order to satisfy most of the time Equation [12]. We note that 
the relations imposed between contact multipliers are also imposed between semi-
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multipliers of friction in the adhesive case since oscillations also occur on the semi-
multipliers of friction. Up to now, in the frictional case where sliding occurs, this 
choice does not seem to be convenient due to the relation between the tangential and 
normal pressures, so that further investigations are needed. 

 

Figure 5. Contact pressure oscillations 

Let E and N be respectively the sets of all the edges and all the nodes of the 
mesh. The two vertices of an edge e ∈ E are denoted by (v1(e),v2(e)) ∈ N2. We 
define: 

( )( ) ( )( ){ }1 2e , 0eS E v e v eψ ψ= ∈ ⋅ <  

the set of edges that are strictly cut by the interface. The interface being represented 
by a level set function ψ, an edge e ∈ E is strictly cut by the interface if 
ψ(v1(e)).ψ(v2(e)) < 0. Note that if the interface coincides with node v1(e) or node 
v2(e), the edge e is not in Se. Let Ne be the set of nodes connected by the elements of 
Se. We split Ne in two parts: the nodes “below” and “above” the interface, depending 
on the sign of ψ: 
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The algorithm searches for Sve, a minimal sub-set of Se which permits to connect 
nodes in Ne

+ to nodes in Ne
−. This set is not necessarily unique. If there is a choice 

between two edges, we keep the shortest one, aiming to minimize the P0 (constant) 
approximation area. Edges in Sve are called “vital edges”, because if one of these 
edges is missing, at least one node in Ne will be isolated on one side. It is important 
to notice that Sve is composed by some disconnected edges and some connected 
edges. Those groups of connected vital edges are extracted from Sve. Note that in 
such a group, all the edges are connected by a unique node (See Figure 6). Let Gcve

i 
be the group of vital edges connected by node i. Gcve

i is defined by: 

( ) ( ){ }1 2, ori
cve veG e S i v e i v e= ∈ = =  

Now, we impose the relations between the multipliers. All the multipliers linked 
to edges within a group are imposed to be equal. No relation is imposed on the 
Lagrange multipliers linked to single vital edges. These multipliers are free The 
other multipliers are on non-vital edges. They are not essential for the contact 
pressure approximation. Therefore we impose them to be a linear combination of 
multipliers on vital edges. These linear combinations are determined by the 
following procedure. Let λe, e ∈ Se\Sve be the Lagrange multiplier which lies on a 
non-vital edge e. For each vertex of the edge e, we search the closer (in terms of 
physical distance, not middle node distance) λk lying on an edge connected to e: 
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λ λ λ
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+ +
 

The main difference between the algorithm in (Moës et al., 2005) denoted as 
algo1, and algorithm presented in this paper (algo2) resides in the choice of a 
representative geometrical feature. In algo1, the geometrical entities which will 
influence the building of the approximation spaces are nodes, denoted as “winner 
nodes” in (Moës et al., 2005). We have thought that contact pressure is directly 
related to the edges, that is why in algo2, the geometrical entities which will 
influence the building of the approximation spaces are edges, called “vital edges”. 

To illustrate this algorithm, let us examine the 2D example of Figure 6. The vital 
edges are in plain line, and the non-vital edges are in dotted line. It can be noticed 
that edge {2-10} or edge {3-10} can be chosen as vital edges. But as we said before, 
we privilege the shortest edge to be a vital edge, so {2-10} ∈ Sve and not {3-10}. 
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Figure 6. Example of edges cut by an interface. Dotted edges are non-vital. Groups 
of connected vital edges are circled. The final multiplier approximation (P0 or P1) 
is plotted on the interface for both algorithms 

Two groups of connected vital edges can be extracted (Figure 6). In each group, 
the multipliers are imposed to be equal. The three non-vital edges are {2-8}, {3-10} 
and {7-12}. For each one, a linear relation between the multipliers is imposed: 
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If we apply the algorithm of (Moës et al., 2005), 5 winner nodes (nodes 8, 2, 3, 
12, 7) will be found, represented by a dot on Figure 6. For both algorithms, the 
length of the Lagrange multiplier space is equal to 5. But if we compare the degrees 
of the approximation (P0 or P1) we notice that the P1 region is larger for algo2. This 
difference comes from a different choice of relations to be applied on λE: with algo1, 
λE is imposed to be equal to λF whereas with algo2 λE is a linear combination of λD 
and λF. 

The above illustration shows a 2D example, but it is worth noticing that this 
algorithm is described indifferently in 2D/3D, and works in 2D or 3D without any 
modifications. Now we apply this algorithm to the case shown on Figure 4. We 
study the contact pressure on the interface as the mesh gets finer i.e. when the 
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number of elements 1/h increases. Figure 7 shows that when this algorithm is used, 
the reduction of the contact pressure oscillations is quite effective. The convergence 
towards the analytical solution is observed. A comparison of both algorithms is 
given on Figure 8 for two different mesh densities. It seems that results obtained 
with algo2 are more accurate than the ones obtained with algo1. Several other tests 
have been carried out, and lead to conclude that algo1 tends to impose more equality 
relations whereas algo2 tends to impose more linear relations. 

 

 
Figure 7. Reduction of the contact pressure oscillations as the mesh gets finer 

 
Figure 8. Comparison of the contact pressure for both algorithms on half-length of 
the structure 
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As the LBB condition ensures optimal convergence, we verify the error 
convergence so as to check that the condition is respected. The error energy is 
defined by: 
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 Ω 

∫
∫

h ref h ref
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Let n be the unit normal of the interface, a L2 norm error on the contact pressure 
is also defined by: 
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We compare on Figure 9 the energy error convergence for FEM and X-FEM. 
With FEM, the mesh follows the interface. As expected, the hexahedron mesh with 
X-FEM gives the same convergence rate as the classical FEM with a conforming 
mesh. The slopes of the log-log curves are equal to -1. When considering a 
pentahedron mesh with both algorithms, the errors are higher for algo1 and algo2 
but the same convergence rates are obtained. 

A difference between the two algorithms is presented on Figure 10 where the L2 
error norm on the contact pressure is plotted. From the slopes of log-log curves, it is 
clear than the second algorithm gives slightly more accurate results. When no 
algorithm is used, the slope cannot be determined because the error on the contact 
pressure does not converge. 

 

Figure 9. Energy error convergence 
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Figure 10. L2 norm error norm on the contact pressure convergence 

6. Conclusions 

This paper has presented an original method to take into account contact aspects 
for the interface in the 3D X-FEM framework. This method is based on a mixed 
displacement-contact pressure variational formulation of the frictional contact 
problem derived from a continuous approach. We have focused on an 
implementation in a general finite element software. A study of different algorithms 
has been carried out to eliminate oscillations of the normal and tangential contact 
pressures in the case of adhesion linked to the satisfaction of the LBB condition. 

Next steps will be dealing with frictional contact when sliding occurs and its 
extension to crack problems. Therefore, in addition to sliding, we are now 
investigating the contact aspects near the crack front, in the area where singular 
functions are added to the classical shape functions to take into account the 
singularity of the solution. This point is essential to perform realistic simulations of 
cracks in fatigue under cyclic loadings. 
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