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ABSTRACT. Brake Squeal is a friction induced instability phenomenoowkn to be one of the

most annoying noise for drivers. This paper focuses on théentoupling aspect of brake

squeal by means of a multi parametric analysis. The studgsed on a Finite Element model
of the whole brake corner. A complex eigenvalue analysisderttaken, with a modal projection

technique, to detect the stable and unstable modes. Faltpthis process, the brake stability
is assessed as a function of the friction coefficient. Thaltekighlight accurately the mode-
coupling phenomenon also referred to as coalescence. Theremphasis is put on the disc
Young modulus variability by launching a numerical desigmexperiment. Finally, the brake

robustness is displayed as functions of the friction caefftand of the disc Young modulus.

RESUME. Le crissement de frein est un phénomeéne d'instabilité tdmeinduit par le frotte-
ment, connu comme 'un des bruits les plus génants pour Idummeur. Cet article se foca-
lise, grace a une analyse multiparametrique, sur la coaase de modes lors du crissement.
L'étude se base sur un modele éléments finis du systememgBaiomplet. Une analyse aux
valeurs propres complexes est réalisée, avec une techd&pejection modale, afin de déter-
miner quels sont les modes stables et instables. Une étudmptique permet de déterminer
la stabilité du systéeme en fonction de la valeur du coeffialenfrottement. Les résultats dé-
crivent avec précision le phénomeéne de coalescence. Enfplan d’expérience est lancé afin
d’évaluer l'influence du frottement et du module d’Young idigige sur la stabilité du systeme.

KEYWORDSbrake squeal, complex eigenvalue analysis, stabilitgtim, finite element method.
MOTS-CLES crissement de frein, valeurs propres complexes, stalifitééement, éléments finis.
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1. Introduction

Disc brake noise is a very important and complex problemlilgbted by the in-
crease of customer requirements. One of the most commomennyiag brake noise
is called brake squeal. It belongs to the class of fricticluted instability phenomena.
This field of mechanical engineering has been studied farsy@dills, 1938; Jarviet
al., 1993; Earle®t al,, 1976; Earle®t al, 1987; Millner, 1978; North, 1972; Ouyang
et al, 2001; Ouyanget al, 1999; Ouyanget al, 1998; Kobayashi, 1990; Hul-
ten, 1993; Nakatet al, 2001; Chunget al, 2001; Chunget al, 2003b; Chunget
al., 2003a; Moirotet al, 2000a; Blaschkest al, 2000; Bailletet al, 2005; Bail-
let et al, 2006). Researchers works (lbrahim, 1994a; lbrahim, 19@%blla et
al., 1991; Oderet al,, 1985; Tolstoi, 1967; Rabinowicz, 1965; Sinclairal,, 1955)
yield to the identification of four different mechanismséfion induced instabilities:
stick slip (Antoniouet al, 1976; Moirotet al., 2000b; Oueslatet al, 2003; Moirot
et al, 2003), negative damping (Gaet al, 1994; Barnejee, 1968), sprag slip
(Spurr, 1961) and mode coupling. The trend in brake squedysis is to figure out the
phenomenon in terms of mode coupling (Jaetisl, 1993; Earle®t al, 1976; Ear-
leset al, 1987; Millner, 1978; North, 1972; Moiragt al, 2000a). The first stud-
ies were based on lumped models with few degrees of freedaiits(i¥938; Jarvis
et al, 1993; Earleset al, 1976; Earleset al, 1987; Millner, 1978; North, 1972).
More recently, the rise in computer capabilities has magmdésible to assess the
brake stability on a whole brake finite element model (Kinkei al, 2003; Nakata
et al, 2001; Chunget al,, 2001; Chunget al,, 2003b; Chunget al,, 2003a; Moirotet
al., 2000a; Blaschket al, 2000; Loranget al., 2006).

In both cases, the method consists in computing the comjidexealues of the
system. Hence, its stability is inferred from the eigenealveal parts signs. This
kind of computation helps car and brake manufacturers toargthe NVH (Noise,
Vibration and Harshness) performances of brakes. Neueghén spite of the large
amount of work done, brake squeal remains a difficult issueadkle. It might be
because the main feature of brake squeal is its sensitiveenadindeed, experiments
show that brake squeal is severely environment dependastefore, the aim is not
only to design a quiet brake in nominal conditions but alserteure it is quiet in the
overall operation condition range.

This paper presents a parametric study of brake squeal ontaal &ront brake.
First of all, the finite element model is described. Then,@mglex eigenvalue analysis
is carried out on this model. The stable and unstable zorteg@gpect to the friction
coefficient and the detection of the associated unstableramsundertaken. Finally,
the brake squeal sensitivity with respect to the disc Younguius has been studied
and synthesized.
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2. Finite element model
2.1. Model description

This study aims at building up a model to assess the squdadingvior of a com-
mercial front disc brake. The scope of the study involveswhele brake corner
including disc, anchor bracket, caliper, pads, hub and kleucEach part has been
meshed and filled in terms of material properties. Partsiaked together by normal
contact stiffnesses, as it will be explained in the follogvsection. Once assembled,
the whole Nastran model illustrated in Figure 1 has a totalx® 000 degrees of free-
dom(DOF).

Figure 1. Finite element model

So far, this model is a basic finite elem¢RE) model which equation of motion is
Mi+Ku=0 [1]

whereM, K andu are respectively the mass matrix, the stiffness matrix ed t
displacement vector. Dot denotes derivative with respettrte.

2.2. Contact definition

As mentioned in previous works (Matsat al, 1992; Dihuaet al, 1998; Park
et al, 2001; Nakateet al, 2001; Chunget al, 2001; Chunget al., 2003b; Chung
et al, 2003a), the most convenient way to introduce contact inakébFE model
consists in adding contact stiffnesses between disc argl ptbse springs account
for the normal contact forch. In order to consider the tangential for€einduced by
friction, the Coulomb law is adopted:

T = sign(v)uN [2]
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The tangential and normal forces are linked together byribgdn coefficientu
that is assumed to be constant and positive. The sigh dépends on the sign of
the sliding velocityv between disc and pads, which has been defined as positve in the
forward direction. This law is sufficient for this study sinthe relevant mechanism
to explain squeal is based on flutter instability (Sirmdwal., 2004; Sinotet al., 2003)
(i.e. coupling between a stable and an unstable mode) and theamseiwative effect
of the Coulomb law.

Once the friction introduced, the equation of motion beceme
Mii + Ku = Fy (3]

whereF¢ denotes the disc-pad friction force. This vector is a spaesgor which
non-zero terms correspond to the tangential DOFs of thepdisls interface. Those
non-zero terms arg T;. i is the node index on the disc-pads interface. Thanks to the
friction law, those terms can be rewritten as a function ef ¢brresponding normal
forceN;. SincelN; deals with a force between two nodes that are linked by agprin
it depends explicitly on the displacements of those two sodénally, Equation [3]
becomes

Mii + (K 4 Keq)u =0 (4]

whereKq is the friction induced asymmetrical stiffness matrix. Ttom-zero terms
of this sparse matrix are uk, wherek is the contact stiffness value.

In order to reduce the problem size, Equation [4] is tramefmt to the modal and
frequency domain:

(s’ T+ Q2 + . Ae)T =0 [5]
wherel is the identity matrix22 is given by

02 = diag(wi - - - w?) [6]
with w1, - - - , wy, the non-friction system frequencieg.A¢ is the projection ofKeq

on the modal basis: denotes the Laplace parameter &hithe eigenvector coordinates
in the non-friction modal basis.

Equation [5] features two main advantages. First, it depeaxgplicitly on the
friction coefficient. Second, the three matrices involvad be inferred from a basic
normal mode extraction on the non-friction system.

2.3. Complex eigenvalue analysis

Since the equivalent stiffness matrix is asymmetrical bseaf friction, a com-
plex eigenvalue analys{€EA)is required. Equation [5] can be written as a general
eigenvalue problem

AX=)X [7]
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where is the eigenvalue anX the eigenvector. Both are complex valuated. Espe-
cially, the eigenvalue may be written

A=a+ib (8]

The real part: and the imaginary paftof the eigenvalue account respectively for the
stability and the frequency of the corresponding mode. éddbe system is stable if
its eigenvalue real parts are negative and unstable otberwi

3. Sensitivity analysis with respect to the friction coeffient

As instabilities are induced by friction, the first study tary out concerns the
effect of the friction coefficient on the system eigenvalugss variability is assessed
by solving the eigenvalue problem (Equation [7]). As memid previously, the com-
putation of A requires the knowledge of the friction coefficient value afthe first
m normal modes of the non-friction FE model. The modal truilecethosen in this
study includes the first5 modes of the braking system. The problem, which size is
(75 x 75), has been solved in Matlab for each friction coefficientreal

Figure 2 displays all the computed eigenvalues in the coxgdine. It highlights
the six unstable modes of the system. The values have besralimed with respect
to the frequency of the mode that shows the largest real fpais mode which nor-
malized coordinates are (1,1) in the complex plane has Heesea for the following
as a reference.
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Figure 2. Eigenvalues in the complex plane



16 Revue européenne de mécanique numérique. Volume 16 20671/

The complex plot graph is an interesting means to sum up tietstability. How-
ever, it does not put the emphasis on the eigenvalues vitgiatith the friction coef-
ficient. Figures 3 and 4 focus on that point by showing in défe ways the frequency
and the real part of the eigenvalues with respect to friatimefficient.
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As shown in Figures 3 and 4, the brake features initially {ie & 0) two modes
apart in frequency and stable since its real parts are zeencé] the frequencies
tend to get closer as the friction coefficient increases. @@mnsas the two modes
have reached the same frequency, the system behaviourply @¢tered. Indeed, the
system has reached the bifurcation point referred to asdhéescence pointNote
that the friction coefficient values have been normalizeth wespect to that point.
Then, the frequencies remain equal and the real parts leagegssively the abscissa
axis as the friction coefficient increases. One of the two esoi@atures a positive
real part whereas the other features the opposite one. Aaned in the previous
section, it means that the first one is stable and the otheisamestable. Note that on
Figure 3, dots are for stable modes and crosses for unstabte o

In an actual brake system, the friction coefficient value lbarassessed by mea-
surements. Nevertheless the study of the eigenvaluedildyiavith respect to the
friction coefficient leads to the root cause of the phenomelmaeed it makes it
possible to identify the non-friction modes responsibletfee mode coupling. The
non-friction modes here referred to && and M5 have respectively a normalized fre-
quency of 0.992 and 1.007. The deformed shapes of those twlesrae illustrated
in Figures 5 and 6, respectively/; is a real mode involving most of the brake com-
ponents. The knuckle mounts vibrate out of phase in the disodrection and drive
the anchor bracket, which undergoes a complicated twistinde. The disc features
a 3 nodal diameter bending mode and the inner pad slides g&lebndy along the
disc surface. The first bending of the caliper is the domirfieature of M. This
mode involves also the first bending of the inner pad and cession of the outer
pad. LikeM;, M, features a 3 nodal diameter disc bending mode.VAsand M,
are real modes, they are very useful. Indeed, they are fardadigure out than the
complex modes at stake as soon as the system is unstablesEorde, the complex
deformed shape at = 2.5 is displayed Figure 7 with a phase of 0 degree.

Figure 5. Deformed shape d¥/; - normalized frequency: 0.992
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Figure 7. Complex deformed Shape= 2.5, ¢ = 0° - normalized frequency: 1.0

This complex mode shares the same 3 nodal diameter discrigewith A/, and
M. The inner pad slides along the disc surface and bends Bkérét free-free
bending mode. The outer pad rotates with respect to its cefitgravity in the
direction of the disc axis. The anchor bracket vibrates iamthsymetric way and the
caliper undergoes a mix of bending and twisting mode.

Since the mode is complex, the displacements are not in ffhiasach DOF. That
point can be observed by animating the deformed shape. &r twdheck the results,
the mode that shows the largest real parts (Figure 2) hasdoeepared with the main
experimental squealing mode. The correlation turns ouétedsy good both in terms
of frequency and deformed shape.
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All the curves displayed until now described the forwardediion behaviour of
the brake. To go further, the forward and backward behawbtise brake have been
plotted on the same graph in figure 8 as a functiorigh(v)u. As mentioned pre-
viously, sign(v) has been defined as positive in the forward direction. Thnes|eft
part of the figure {ign(v)p < 0) represents the backward modes whereas the right
part (sign(v)u > 0) is for the forward direction.
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4. Sensitivity analysis with respect to the disc Young moduk

So far, we have studied the behaviour variability of the breystem with respect
to the parameter which is the root cause of instabilities:ftittion coefficient. Nev-
ertheless, whep is set to a non-zero value, the brake stability depends anatal
behaviour. That is to say that it depends on each FE modeinetea Since unstable
modes are often driven by a disc contribution, its Young nhasl(7) has been chosen
as the parameter of variability analysis.

A full factorial design of experimentOE), that features 101 values @f (50
forward, 50 backward) and 21 df, has been planed. The Young modulus values,
which have been normalized, range frénd to 1.0. This range has been chosen
symmetric with respect to the nominal valie5, used in the previous section. The
DOE results will be used in the next sections to try to figure oetphenomena at
stake and to synthesize the robustness of the brake behaviou
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4.1. Behaviour variability

In order to have a first idea on the system eigenvalues vétyahith respect
to the disc Young modulus, Figure 9 shows, in the vicinity led squealing mode
frequency, all the DOE eigenvalues in the complex plane. dtftained pattern is
quite complex a¥’ andp are varying simultaneously. However this graph indicates
that the variability may be either smooth (in the lower partthe frequency range
[0.97 — 1.01]) or rough (in the upper part of the graph for the frequencgedh.01 —
1.05]). The system seems to shift from a kind of behaviour to anmoffeego further,
the eigenvalues variablities with respectt@nd E have to be analyzed deeper. Ten
plots have been gathered in Figures 10, 11, 12, 13 and 14 taiexpe relationship
betweernu, F and coalescences.

These figures focuse on the evolution of four modes refeoesfif;, My, Ms
and M, respectively, by increansing frequency. The sfate= 0, E = 0.5) has been
chosen as areference to describe the deformed shapes@ftbdss, since it depends
on both parameters. The deformed shapesiofand M had been displayed in the
previous section, Figures 5 and 6. The deformed shapé&and M, are shown in
Figures 15 and 16.
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Figure 10. Variability A = f(u, E), Ea=0.00

M3 features a normalized frequency of 1.039 and its deformagesis the fol-
lowing. The knuckle mounts vibrate in phase in the disc akisotion and drive the
anchor bracket in a symetric mode. The caliper undergoestayiisting mode. The
inner pad slides as a rigid body along the disc surface anduter pad rotates with
respect to its center of gravity in the direction of the disisaThe disc vibrates, with
a low magnitude, like a mix of an umbrella mode and a 2 nodahdier mode. The
deformed shape af/,, which normalized frequency is 1.060, looks like thi one.
Nevertheless)/, is out of phase with respect ff3 and the magnitude of the caliper
displacements is larger.

The eight first graphs (Figures 10, 11, 12 and 13) show theiénecy and real part
variability versus the friction coefficient respectivelgr ffour disc Young modulus
values referred to aBa = 0.00, Eb = 0.75, Ec = 0.85 and Ed = 1.00. For the
first value,EFa = 0.00, the two lower frequency modes get couplediat 0.6. For
Eb = 0.75 this two modes become also unstable, but the coalescenteipshifted
toward the higher values @f. Another point to mention on this graph is the trend of
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Figure 11. Variability A = f(u, E), Eb=0.75

the two higher frequency modes to get closer in the vicinity 6= 2.1. This trend is
confirmed on thé/c = 0.85 graph since these two modes are unstable on the friction
coefficient rangd1.9 — 2.4]. On this range, the real part magnitudes increases and
then decreases versus the friction coefficient. This phem@mis noticeable as circle
shaped patterns on Figure 9. Meanwhile, the two lower frequenodes coalescence
point is once again shifted toward the higher values.dfter this coalescence point,
the frequencies of the two coupled modes seem to be infludnctt nearest upper
mode as its deflection becomes sharper. This leads t&'¢he 1.00 situation. The
two higher frequency modes get couplediat 1.4. Then a third mode makes its
paths diverge at: = 2.6. One of the two released modes get immediately coupled
with the third mode. Thatis the reason why the curves intérgith a vertical tangent.
Then the forth mode cross the two coupled oneg at 4.5. As the tangent is not
vertical, it can be inferred that this intersection doesaltgr the coupling pattern.
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Figure 12. Variability A = f(u, E), Ec=0.85

The eigenvalues variability as a functioni6fis now investigated. Figure 14 shows
the frequencies and real parts sensitivity with respedtf tor 4 = 2.1. This value
of the friction coefficient will be referred to agn in the following. In order to link
the sensitivity graphs with respect 0 and toyu, vertical dashed lines have been
superimposed. One line marks: = 2.1 on each variability with friction graph and
four lines mark respectivelyfa = 0.00, Eb = 0.75, Ec = 0.85, Ed = 1.00 on the
um = 2.1 variability with E graphs. The noteworthy point is that séwuiies with
w and with E features the same topology. Indeed, data may be interpiretedms
of coalescence and of mode coupling. Figure 14 shows thatyfo= 2.1 the two
higher frequency modes are stable until they coupleHor 0.85. The two lower
frequency modes are coupled on the rafig@0 — 0.75] of F and separate further.
Nevertheless, the key difference betwgemand £ as variability parameters is that
increasingu generally strengthens the mode coupling, whereas suciné diees not
exist for E.
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Figure 13. Variability A = f(u, E), Ed=1.00

4.2. Stability areas

The previous section shows that brake squeal is a very sensitlti parametric
phenomenon. Nevertheless, according to the driver poiMieaf, no matter how
complex it may be the brake must be quiet in each operatiamalition. This tackles
the concept of robustness. In order to assess the brakemebasn terms of squealing
behaviour, a new kind of plot has been developed to synthéki large amount of
DOE data available. The number of unstable modes has beatecband displayed
as a colormap in the — E plane. Figures 17 and 18 show six graphs respectively for
the frequency ranges referred to as A, B, C, D, E and F. Thesponding normalized
frequencies are gathered in Table 1.

Note that both forward and backward behaviours are disglake lightest colour
marks the stable area whereas the two darker ones représenaasingly unstable
conditions: respectively one and two instabilities. Atdsetor the lower frequency
ranges, the areas are quite smooth and well defined. That tengrove that the
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Table 1. Normalized frequency ranges

0.00-0.35
0.35-0.70

0.70-1.05

1.05-1.40
1.40-1.75

1.75-2.10

Name | Normalized frequency rangg
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Figure 16. Deformed shape af/, - normalized frequency: 1.060

sampling of Young modulus is sufficient. In the frequencygaw (O — 0.35), the
stable-unstable border is almost a straight line. WhattheiYoung modulus value,
the brake squeals for the same friction coefficient valuethinfrequency range B
(0.35 —0.70), the situation is quite different. The brake is stable fardvand unstable
backward. The backward unstable area reaches a maximumcdskbg: 0.15. In this
situation, the brake stability might be improved by chogsime £’ value which max-
imize the stable area = 0.00. In that case, the brake begins to squeal backwards
atu = 2.5. Nevertheless, this state is not robust. Indeed, sincedh#ebslopes are
large, a small variation i will worsen drastically the brake behaviour. Here. &5

shift of the Young modulus value makes the critical frictiomp frompu = 2.5 to

¢ = 0.1. If the solutionE = 0.8 had been chosen the brake would have been less
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performant but more robust. In the frequency rang8.@X— 1.05), the pattern is a bit
more complicated. Forward, the brake is the most unstablg& fe 0.2 and the most
stable forE = 0.8. In the vicinity of that local maximum, a decoupling phenomoe
can be observed as a stable area surrounded on the unstihl&lse second border,
which marks the second coalescence appearance, feataréscal maxima and one
local minimum respectivehy = 0.10, £ = 0.60 and E = 0.35. Backward, the
border slop decreases from = 0.00 to £ = 0.25. The critical friction coefficient
value suddenly jumps from = 4.5 to u = 2.0. Hence, the border slope decreases
again untilE' reache$.8. On the range D1(.05 — 1.40), the stability pattern is mainly
based on a coupling - decoupling backward phenomenon. Ttesvachy point on
ranges E and F1(40 — 1.75 and1.75 — 2.10) is that the stability patterns features two
different trends. On the one hand, stability borders arentpamooth looking. But
on the other hand, in some areas, parameters seem to be telosamapled to figure
out the actual stability behaviour. The last chart, Figedims at summing up the
overall stability of the brake, froi to 2.10 in terms of normalized frequencies. It
presents a bottleneck in the vicinity &f = 0.15 and shows that increasing the disc
Young modulus tends to widen the stable area. Neverthélesast be kept in mind
that instabilities displayed on that graph may be induceddyy different phenom-
ena. For instance a low frequency instability and a highdespy squeal have here
the same weight.

5. Conclusion

In this paper, a parametric study of brake squeal has bededaut on an actual
front brake. The method consists in a complex eigenvalulysisaon the brake FE
model. A technique of modal basis projection has been usasistess the dependency
as a function of the friction coefficient. With this techn&ua full factorial design
of experiment has been launched to study the squeal sétysitith respect to two
parameters: the friction coefficient and the disc Young nhegluThe reasons of this
choice are that squeal is a friction induced instability #mat unstable modes often
involve a disc bending mode component. The large amount &@f clamputed has
been analysed with respect to both parameters. The notepmint is that the eigen-
values sensitivity curves with respect to the first and tosbeond parameter have
the same topology. Indeed, they may be both analysed in tefmsde coupling
also referred to asoalescenceThe coupling patterns turn out to be complicated and
highly sensitive. This key point, which had been highlighttg experiments, has been
here forecasted by computations. The brake stability has bgnthesized on stabil-
ity charts based on the DOE data. This kind of chart, whicimpout the stable and
unstable areas, is very useful to assess the brake robsigtrtesms of squeal. There-
fore, the optimal parameters values can be chosen. Thimabtionfiguration might
not be the most performant one, but the best one in terms fidfrp@aince - robustness
compromise.
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Figure 19. Stability chart on the overall frequency range
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