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ABSTRACT.This works concerns the development of a virtual prototyping tool dedicated to
electro-thermo-mechanical simulation of power converters. The FEM code, written using an
object-oriented language, includes a dual Schur Domain Decomposition Method. The solving
of problems including floating subdomains can be performed in steady-state cases, whereas
one can couple multi-timestep implicit and explicit integration schemes in transient analysis.
The last part of this work is about the study of an industrial benchmark concerning the power
converters used in railway transport: the electro-thermalsimulation of a switch in transient
analysis. This example allows to compare different strategies of tearing into subdomains and
the use of different timesteps on the same structure.

RÉSUMÉ.Ce travail concerne le développement d’une plateforme de prototypage virtuel dédiée
à la simulation numérique électro-thermo-mécanique des convertisseurs de puissance. Le code
éléments finis, développé selon un formalisme orienté objets, est basé sur une décomposition
duale de type Schur. La résolution des sous-problèmes incluant les domaines flottants peut être
réalisée en régime permanent. Il est également possible de coupler les approches implicite mul-
titemps et explicite pour une analyse transitoire. La dernière section de ce travail présente un
cas test industriel concernant les convertisseurs de puissance utilisés dans le transport ferro-
viaire : la simulation électrothermique transitoire d’un switch. Cet exemple permet de comparer
les différentes stratégies et l’utilisation de plusieurs incréments de temps dans une structure.

KEYWORDS:domain decomposition method, finite element, object-oriented programming, paral-
lelization, multi-time stepping.
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1. Introduction

Industrial products are made up of many parts, and they are submitted to multi-
physic and multi-time phenomena. In particular, the prototypes that are built and
designed in the field of Power Electronics focus on power integration components,
with the goal of weight, volume and cost reductions. Becauseof their integration,
these products are difficult to instrument whereas the demand for reliability increases;
therefore there is a real need in more realistic models for their virtual prototyping.

One solution in order to build such models is to link togetherseveral semi-analytic
models using an integration platform such as VTB, Femlab, Matlab/Simulink... The
main inconvenient of this approach relies in the difficulties to build realistic analytic
models for non-linear and complex behaviors. Therefore numerical models are usually
preferred. A multi-code approach implies the use of severalnumerical codes and data
exchanges between them. So, this platform enhances some disadvantages:

– a relatively high cost due to the number of different softwares involved in the
process;

– the need of developing specific data exchange softwares in order to establish the
communications between the solvers;

– the problems encountered when new code versions are used.

However multi-code couplings have been developed using forexample the CORBA
platform (see for example (Pérezet al., 2003)). Therefore, in the approach devel-
oped here, we have choosen to build a unique three-dimensional software, with the
following goals:

– ability to treat large scale problems, and, for transient analysis, ability to use
different timesteps in different parts of the numerical model;

– integration into a single interface, high evolutivity andcode maintenance;

– high performance in order to obtain computing times compatible with industrial
developments.

Domain Decomposition Method (DDM) has been retained in order to give an answer
to the first point; for the second point, the Object-OrientedProgramming is used;
finally, a procedure of parallelization is introduced to improve the performance of the
code.

DDM divides the domain into several sub-domains and restricts the resolution
of the finite element problem to the interface between these sub-domains; moreover,
these methods allow to perform non-linear analysis. Two main kinds of DDM can be
considered, with and without partial overlapping.

The first one derives from the alternative Schwarz method (1869). The solution of
the global problem is obtained by alternating partial resolutions on the different sub-
domains. The partial solutions obtained on the neighbor sub-domains are reported
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as boundary conditions on the studied sub-domain; the global solution is obtained
following this iterative process.

In the second kind of DDM (Kron, 1963), the whole structure isdivided into a set
of adjacent sub-domains linked by an interface (see Figure 1). The first step consists in
building the problem related to each sub-domain; after construction and resolution of
the interfacial problem, one solves the problem on each sub-domain. This last method,
allowing the introduction of contact laws between sub-domains, has been retained in
our work.
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Figure 1. General principle of the DDM without overlapping

First introduced for electrical modelization in the 1960’sby Kron (1963), the
DDM have been adapted to structural mechanics in the 1980’s with the democ-
ratization and the increase of computing power. Farhat, Roux and Rixen have
developed the resolution of the interfacial problem in steady state analysis lead-
ing to the so-called Finite Element Tearing and Interconnecting method (FETI)
(Roux, 1990; Farhat, 1991; Farhatet al., 1994; Rixen, 1998). Now, the develop-
ments focus on the transient analysis: multi-timesteppingin non-linear analysis in
mechanics (Combescureet al., 2002; Gravouil, 2000), and in thermics (Smolinskiet
al., 2000). Moreover, works have been published concerning thegeneralization of the
different formulations of DDM (Papadrakakis, 1997; Fragakis et al., 2002; Fragakis
et al., 2003). The FETI has been extended later to a second generation adapted to
structural elements and ill-conditioned problems. More recently, these methods have
been generalized by the FETI-DP approach, derived as an alternative to the second
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generation methods (Farhatet al., 2001). The multi-physic aspect has been treated in
this paper using a weak coupling approach; for a full coupling one can use a staggered
algorithm such as the the one proposed by B.A. Schreffer for the soil consolidation
(Lewiset al., 1999).

Concerning the field of power converters, (Hoppeet al., 2003; Hoppe, 2004; Chow
et al., 2001; 2003) have investigated multi-physics (electrics,thermics, mechanics)
and multi-domain modelizations.

2. Formulation of domain decomposition methods in steady-state analysis

A structure is subdivided intos sub-domains, that iss sets of elements. The set
of nodes belonging to the different sub-domains and situated on the partition lines
is the “interface” (see Figure 2). Most of the sub-domains are not concerned with
Dirichlet type boundary conditions; they are pointed out as“floating” sub-domains.
For example, in Figure 2, all the sub-domains except sub-domain 5 are “floating”.
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Figure 2. Partition and interface between the sub-domains

For our developments, we have made the choice to use a dual domain decom-
position: the equilibrium of dual quantities is imposed at the interface, whereas the
continuity of the primal quantities is verified after the calculation.

2.1. Global formulation

Starting from a classical variational formulation, the whole finite element problem
can be formulated as a set of all elementary problems on each sub-domain: Equa-
tions [1] (a), associated with the Equation [1] (b) enforcing the continuity of primal
quantities on the interface.

{

K(j)q(j) = g(j) + g
(j)
int , j ∈ {1, .., s} (a)

∑s
j=1 B(j)q(j) = 0 (b)

[1]
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whereK(j) is the matrix relative to the physical behavior of the sub-domain (material
and geometry),q(j) is the vector of the unknown primal quantities,g(j) is the vector of
the external actions applied on the sub-domainj andg

(j)
int is the vector of the actions

of the adjacent sub-domains on the sub-domainj. System [1] includes all physical
boundary conditions. The localization matricesB(j) select the degrees of freedom of
the sub-domainj owning to the interface (B(j)

i = 1 if nodei of sub-domainj belongs

to the interface and zero otherwise). The interaction vector g
(j)
int for each subdomain is

expressed by the projection of a unique unknown vectorλ with the localization matrix
B(j)T

:

g
(j)
int = B(j)T

λ [2]

whereλ is the general vector of the interfacial interactions in thestructure. The prob-
lem related to the global structure is written as follow:








K(1) · · · 0 −B(1)T

...
. . .

...
...

0 · · · K(s) −B(s)T

−B(1) · · · −B(s) 0















q(1)

...
q(s)

λ








=








g(1)

...
g(s)

0








[3]

or in a block form:
[

K −BT

−B 0

] [
q
λ

]

=

[
g
0

]

[4]

2.2. Formulation of the interfacial problem

By inverting the relation [1] (a), and taking into account the Equation [2], the
unknown vectorq(j) can be expressed as:

q(j) = K(j)−1
(

g(j) + B(j)T

λ
)

[5]

In case of floating sub-domains, the matrixK(j) is singular and the resolution of the
problem is achieved according to the following system:







q(j) = K(j)+
(

g(j) + B(j)T

λ
)

+ R(j)γ(j)

R(j)T
(

g(j) + B(j)T

λ
)

= 0
[6]

whereK(j)+ is the generalized inverse matrix ofK(j), R(j) (kernel ofK(j)) is a
basis of the null-space ofK(j), γ(j) contains the unknown amplitudes ofR(j). For
non floating sub-domains,K(j)+ will also be used to represent the inverse ofK(j) (in



804 Revue européenne de mécanique numérique. Volume 15 – n˚ 7-8/2006

this caseR(j)γ(j) = 0). The formulation of the interfacial problem is obtained by
replacing the system [6] into Equation [1] (b). This leads tothe system [7]:







∑s
j=1 B(j)

(

K(j)+
(

g(j) + B(j)T

λ
)

+ R(j)γ(j)
)

= 0
(
R(j)γ(j)

)T
(

g(j) + B(j)T

λ
)

= 0
[7]

or in a block form:
[ FI GI

GT

I 0

] [
λ
γ

]

=

[
gλ

gγ

]

[8]

with:






FI =
∑s

j=1 B(j)K(j)+B(j)T

GI =
[

B(1)R(1) · · · B(f)R(f)
]

γ =
[

γ(1)T · · · γ(f)T
]T

gλ = −
∑s

j=1 B(j)K(j)+g(j)

gγ = −
[

g(1)T

R(1) · · · g(f)T

R(f)
]T

[9]

wheref represents the number of floating sub-domains of the structure. FI is com-
monly called the “dual Schur matrix”.

3. Extension of DDM to multi-timestep transient analysis

We have made the choice of using a dual DDM formulation in transient analysis.
It is necessary to consider separately first order and secondorder problems. The fol-
lowing formulations use classical notations of thermics for first order problems and of
structural dynamics for second order problems.

3.1. First order transient problems

As in the steady state case, the finite element problem related to the whole structure
is set as the sum of the problems related to thes sub-domains linked together by the
use of a continuity equation:

{

C
(j)
n Ṫ

(j)
n + K

(j)
n T

(j)
n = f

(j)
n + B(j)T

λn , j ∈ {1, .., s} (a)
∑s

j=1 B(j)w
(j)
n = 0 (b)

[10]

whereCn is the thermal capacity matrix,Kn is the thermal conductivity matrix,fn

is the vector of the external calorific flux,Tn is the temperature andwn represents
the continuous quantity at the interface between the sub-domains;i.e. wn = Tn for a
continuity in temperature andwn = Ṫn for a continuity in flux. In the present work,
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the Euler time integration scheme is adopted to integrate Equation [10] through time
between incrementsn − 1 andn:

T
(j)
n = T

(j)
n−1 + (1 − α(j))∆t(j)Ṫ

(j)
n−1 + α(j)∆t(j)Ṫ

(j)
n , α(j) ∈ [0, 1] [11]

which can be splited into the sum of a predictorp() and a correctorc():






T
(j)
n = pT

(j)
n + cT

(j)
n

pT
(j)
n = T

(j)
n−1 + (1 − α(j))∆t(j)Ṫ

(j)
n−1

cT
(j)
n = α(j)∆t(j)Ṫ

(j)
n

[12]

The scalar valueα(j) allows to define an explicit integration scheme ifα(j) = 0,
an implicit integration scheme ifα(j) = 1 or a Crank-Nicholson one ifα(j) = 1

2 . We
can choose between two kind of continuity at the interface:T (j) or Ṫ (j). Regarding
these two possible continuities,w

(j)
n can be written in a more general form:

w(j)
n = pw(j)

n + µ(j)Ṫ (j)
n [13]

where:
{

if w
(j)
n = Ṫ

(j)
n , pw

(j)
n = 0 and µ(j) = 1

if w
(j)
n = T

(j)
n , pw

(j)
n = pT

(j)
n and µ(j) = α(j)∆t(j)

[14]

The general first order problem can be rewritten in a block form as:

[

µC̃ −µBT

−µB 0

] [

Ṫn

λn

]

=

[

f̃n
∑s

j=1 B(j)pw
(j)
n

]

[15]

where:

C̃
(j)
n = C

(j)
n + α(j)∆t(j)K

(j)
n and f̃

(j)
n = µ(j)(f

(j)
n − K

(j)
n

pT
(j)
n ) [16]

Then the general problem is splited into in a “free” problem and in a “linked”
problem (Combescureet al., 2002; Gravouil, 2000):Ṫ (j)

n is considered as the sum of
a “free” vectorṪ (j)

nfree solution of the global problem with no interfacial interactions

between the sub-domains, and a “link” vectorṪ
(j)
nlink

solution of the global problem
just considering the interfacial interactions and excluding all the other actions. These
two problems are written:







[

µC̃n 0
0 0

] [

Ṫnfree

0

]

=

[

f̃n

0

]

and
[

µC̃n −µBT

−µB 0

] [

Ṫnlink

λn

]

=

[

0
∑s

j=1 B(j)w
(j)
nfree

] [17]
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with w
(j)
nfree = pw

(j)
n + µ(j)Ṫ

(j)
nfreeonly depending upon free quantities. When all the

sub-domains share the same timestep∆t(j), the interfacial problem is built for each
timestep by using the same procedure as the one used for the steady state analysis.
As there is no floating sub-domains in a transient computation, the expression of the
interfacial problem can be simplified as:

Hnλn = fλn [18]

where:

Hn = −∑s
j=1 µ(j)B(j)C̃

(j)−1

n B(j)T

; fλn =
∑s

j=1 B(j)w
(j)
nfree

[19]

When the free problem is solved, we are able to solve the interfacial problem;λn is
then reintroduced in the expressions of the link problem related to each sub-domain
and allows to solve them. The expressions ofṪ

(j)
n can be computed and using the

integration scheme [12], we can obtain the temperaturesT
(j)
n .

When different timesteps are used in different sub-domains, the interfacial prob-
lem is computed for each minimal timestep of the structure. So it requires the interpo-
lation of the quantities used in continuity and corresponding to the sub-domains which
have timesteps different from the minimal timestep. In thiswork, it is supposed that
all the timesteps are multiples of the minimal one through the value ofk(j) (see Figure
3 presenting the time discretization for 3 domains withk = 1, 2 and 6 respectively).

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

k (1) =1

k (2) =2

k (3) =6

Values of i
(1)

Values of i
(2)

Values of i
(3)

1 2

t∆ (1) (1) ∆ t
(1)

=k

(1)
t∆ ∆ t
(2) (2)=k

(1)
t∆ ∆ t
(3) (3)=k

Subdomain 1

Subdomain 2

Subdomain 3

Calculated quantities

Interpolated quantities

Figure 3. Example of time discretization for three sub-domains

The interfacial problem is modified:

Hiλi = fλi [20]

where:

Hi =
∑s

j=1 µ(j)B(j)C̃
(j)−1

i B(j)T

and fλi = −∑s
j=1 B(j)ŵ

(j)
ifree

[21]
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In this equationŵ(j)
i are interpolated quantities defined by:

ŵ
(j)
ifree

= (1 − i
k(j) )w

(j)
0free

+ i
k(j) w

(j)
kfree

and ∆t(j) = k(j)min(∆t(j))

[22]

depending only on()free quantities. The resolution of the problem for each minimal
timestep is done in the same way as for one unique timestep on the structure.

3.2. Second order transient problems

As previously done concerning first order transient problems, the second order
transient problem is formulated using a dual DDM:

{

M
(j)
n ü

(j)
n + C

(j)
n u̇

(j)
n + K

(j)
n u

(j)
n = f

(j)
n + B(j)T

λn , j ∈ {1, .., s} (a)
∑s

j=1 B(j)w
(j)
n = 0 (b)

[23]

whereM is the mass matrix,C is the capacitance matrix,K is the stiffness matrix,
u is the displacement vector,f is the external force vector andw again represents the
quantity chosen to be continuous at the interface between the sub-domains. Here the
widely used Newmark integration scheme is adopted for time integration:







u̇
(j)
n = u̇

(j)
n−1 + (1 − γ(j))∆t(j)ü

(j)
n−1

︸ ︷︷ ︸

pu̇
(j)
n

+γ(j)∆t(j)ü
(j)
n

u
(j)
n = u

(j)
n−1 + ∆t(j)u̇

(j)
n−1 + (

1

2
− β(j))(∆t(j))2ü

(j)
n−1

︸ ︷︷ ︸

pu
(j)
n

+β(j)(∆t(j))2ü
(j)
n

[24]

and, depending on the continuity set at the interface, we have:






if w
(j)
n = ü

(j)
n , pw

(j)
n = 0 and µ(j) = 1

if w
(j)
n = u̇

(j)
n , pw

(j)
n = pu̇

(j)
n and µ(j) = γ(j)∆t(j)

if w
(j)
n = u

(j)
n , pw

(j)
n = pu

(j)
n and µ(j) = β(j)(∆t(j))2

[25]

Implicit, semi-implicit or explicit integration schemes can be selected through the
β(j) andγ(j) parameters. With the use of the integration scheme and the Lagrange
multipliers λn corresponding to the equilibrium of the interface, the dualtransient
problem can be written in a block form:

[

µM̃n −µBT

−µB 0

] [
ün

λn

]

=

[

f̃n
∑s

j=1 B(j)pw
(j)
n

]

[26]
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with:

M̃
(j)
n = M

(j)
n + γ(j)∆t(j)C

(j)
n + β(j)

(
∆t(j)

)2
K

(j)
n

f̃
(j)
n = µ(j)

(

f
(j)
n − C

(j)
n

pu̇
(j)
n − K

(j)
n

pu
(j)
n

) [27]

The interfacial problem is:

Hnλn = fλn [28]

with the following notations:

Hn =
∑s

j=1 −µ(j)B(j)M̃
(j)−1

n B(j)T

fλn =
∑s

j=1 B(j)pw
(j)
nfree +

∑s
j=1 B(j)T

M̃
(j)−1

n f̃
(j)
n

[29]

The problem is then solved by using a direct method. One usually use an iterative
method known to enhance quite a fast convergence, but in our case this has not been
used for simplicity.

3.3. Discussion about the choice of the continuous quantities atthe interface

This section deals with the stability and precision of the integration schemes when
they are coupled with the DDM. For this purpose, the so calledinterfacial energy
Einter is introduced, and:

– if Einter = 0, stability and precision are identical to those obtained without the
DDM;

– if Einter > 0, the multi-timestep DDM can introduce numerical instabilities;

– if Einter < 0, the multi-timestep DDM can introduce numerical dissipation.

(Combescureet al., 2002) have discussed this point for the second-order problems.
Their approach is based on the use of the energy methods developed by (Hugheset
al., 1978a; 1978b). We follow the same approach here after and give details within
the case of the first order problems.

3.3.1. Single-time transient analysis

For a given quantityA defined respectively byAn andAn+1 at the timesn and
n + 1, one define the average〈A〉 and the difference[A]:

{
〈An〉 = (An+1 + An)/2
[An] = (An+1 − An)

[30]

With the remark that:〈An〉 [An] =
[

1
2 (An)2

]
, starting from the energy formulation:

[

Ṫ e
n

]T (

Ce
n

[

Ṫ e
n

]

+ Ke
n [T e

n] − [fe
n]

)

= 0 [31]
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where, relatively to the Euler’s integration scheme, we canwrite:

[T e
n] = ∆t

〈

Ṫ e
n

〉

+ (α − 1

2
)∆t

[

Ṫ e
n

]

[32]

One obtains:
[

E(Ṫ e
n)

]

= −D(
[

Ṫ e
n

]

) +
[

Eext(Ṫ
e
n)

]

[33]

where
[

E(Ṫ e
n)

]

represents the heat diffused during the interval of time. The term

−D(
[

Ṫ e
n

]

) = − 1
∆t

[

Ṫ e
n

]T

(C + (α− 1
2 )∆t K)

[

Ṫ e
n

]

represents the numerical damp-

ing.
[

Eext(Ṫ
e
n)

]

= 1
∆t

[

Ṫ e
n

]T

[fe
n] is the energetic term due to the balance of the

external fluxes. (Hugheset al., 1978a; 1978b) have shown that this term have no in-
fluence on the stability of the numerical scheme, so this one will be no more taken
into account. For a multi-domain study, Equation [33] becomes:

s∑

j=1

[

E(Ṫ (j)
n )

]

= −
s∑

j=1

D(
[

Ṫ (j)
n

]

) +

s∑

j=1

[

Eext(Ṫ
(j)
n )

]

+ Einter [34]

with:

Einter =
1

∆t

s∑

j=1

[

Ṫ (j)
n

]T

B(j)T [λn] =
1

∆t
[λn]T

s∑

j=1

B(j)
[

Ṫ (j)
n

]

[35]

Thus the stability is depending on the sign ofEinter . As presented earlier, for a
first order problem, the choice can be achieved between two kind of continuities:
continuity of fluxes or continuity of temperatures. Depending on this choice,Einter

may vary.

3.3.1.1. Continuity of fluxes

The continuity is given by the equation:

s∑

j=1

B(j)Ṫ (j)
n = 0 [36]

Therefore we easily find that in this case,
∑s

j=1 B(j)
[

Ṫ
(j)
n

]

= 0 and soEinter = 0.

Hence, the stability of the Euler’s integration scheme is only affected by the computing
errors introduced by the continuity conditions at the interface.

3.3.1.2. Continuity of temperatures

Starting from the expression obtained with the Euler’s integration scheme [32]:

s∑

j=1

B(j)
[

T (j)
n

]

= ∆t

s∑

j=1

B(j)
〈

Ṫ (j)
n

〉

+ (α0 −
1

2
)∆t

s∑

j=1

B(j)
[

Ṫ (j)
n

]

[37]
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in the case of a Crank-Nicholson scheme (α0 = 1
2 ), we can write:

s∑

j=1

B(j)
[

T (j)
n

]

= ∆t

s∑

j=1

B(j)
〈

Ṫ (j)
n

〉

= 0 [38]

and, assuming continuity of the fluxes at the initial time, wededuce:

s∑

j=1

B(j)
[

Ṫ (j)
n

]

= 0 [39]

The conditions of stability and precision are unchanged with the use of DDM in
the case of a Crank-Nicholson scheme for all the sub-domains. Therefore, in this work
a continuity of fluxes(Ṫ ) is retained in order to ensure the stability of the algorithm
for any value ofα(j).

3.3.2. Multi-timestep transient thermics

The demonstration uses the notations [30] and new ones related to the transient
analysis; for a given increment,A0 represents the value of the quantitiesA at the
beginning andAk the same values at the end of the increment:

{
〈〈Ak〉〉 = (Ak + A0)/2
[[Ak]] = (Ak − A0)

[40]

One remarks that:

[[Ak]] =

k−1∑

n=0

[An] [41]

In order to simplify the demonstration, we consider only twosub-domainsA and
B ; for one timestep of sub-domainA

∆tA = kA∆tB = kA∆t [42]

On the interval[t0, tk], the energy balance of each sub-domain leads to:






[[

EA(Ṫ A
k )

]]

= −D(
[[

Ṫ A
k

]]

) + EA
inter

[[

EB(Ṫ B
k )

]]

= −
∑m−1

n=0 D(
[

Ṫ B
n

]

) + EB
inter

[43]

where






EA
inter = 1

m∆t

[[

Ṫ A
k

]]T

BAT [[λk]]

EB
inter =

∑m−1
n=0

1
∆t

[

Ṫ B
n

]T

BBT [λn]
[44]

The study of the stability of these numerical schemes is equivalent to determine
the sign of the total interfacial energyEinter defined by:

Einter = EA
inter + EB

inter [45]



Development of a multi-physic FEM code 811

or moreover:

Einter =
1

m∆t

[[

Ṫ A
k

]]T

BAT [[λk]] +

m−1∑

n=0

1

∆t

[

Ṫ B
n

]T

BBT [λn] [46]

In a first time, we separate the “free” and “linked” terms:

Einter = 1
m∆t

[[

Ṫ A
(free)k

]]T

BAT [[λk]]

+
∑m−1

n=0
1

∆t

[

Ṫ B
(free)n

]T

BBT [λn]

+ 1
m∆t

[[

Ṫ A
(link)k

]]T

BAT [[λk]]

+
∑m−1

n=0
1

∆t

[

Ṫ B
(link)n

]T

BBT [λn]

[47]

and we set as an interpolation form

[

Ṫ A
(free)n

]

=
1

m

[[

Ṫ A
(free)0

]]

[48]

By using the Equations [41] and [48], the expression [47] becomes:

Einter =
∑m−1

n=0
1

∆t

(

BA
[

Ṫ A
(free)n

]

+ BB
[

Ṫ B
(free)n

])T

[λn]

+ 1
m∆t

[[

Ṫ A
(link)k

]]T

BAT [[λk]]

+
∑m−1

n=0
1

∆t

[

Ṫ B
(link)n

]T

BBT [λn]

[49]

Assuming that thėTn terms are continuous at the interface:

BA
[

Ṫ A
(free)n

]

+BB
[

Ṫ B
(free)n

]

= −
(

BA
[

Ṫ A
(link)n

]

+ BB
[

Ṫ B
(link)n

])

[50]

the interfacial energy becomes

Einter = −∑m−1
n=0

1
∆t

(

BA
[

Ṫ A
(link)n

]

+ BB
[

Ṫ B
(link)n

])T

[λn]

+ 1
m∆t

[[

Ṫ A
(link)k

]]T

BAT [[λk]] +
∑m−1

n=0
1

∆t

[

Ṫ B
(link)n

]T

BBT [λn]
[51]

or

Einter =
1

m∆t

[[

Ṫ A
(link)k

]]T

BAT [[λk]] −
m−1∑

n=0

1

∆t

[

Ṫ A
(link)n

]T

BAT [λn]

[52]

Taking into account the linked problem on the sub-domainA

C̃AṪ A
(link)n = BAT λn [53]
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we finally obtain

Einter = 1
m∆t

([[

Ṫ A
(link)k

]]T

C̃A
[[

Ṫ A
(link)k

]]

− m
∑m−1

n=0

[

Ṫ A
(link)n

]T

C̃A
[

Ṫ A
(link)n

]) [54]

It has been shown (Combescureet al., 2002), for a positive definite matrix̃CA, that
the Equation [54] can be written as the sum of negative squareterms:

Einter = − 1

m∆t

m−1∑

i=0

m−1∑

j=i

[

Ṫ A
]T

(i,j)
C̃A

[

Ṫ A
]

(i,j)
[55]

with
[

Ṫ A
]

(i,j)
=

(

Ṫ A
(link)m−i − Ṫ A

(link)m−i−1

)

−
(

Ṫ A
(link)m−j−1 − Ṫ A

(link)m−j−2

)

As a consequence:

Einter ≤ 0 [56]

We have shown that for the multi-timestep transient thermalcalculus, if we choose
a continuity in Ṫ (j) at the interface, the numerical integration schemes are stable.
However a certain amount of energy is dissipated at the interface (Equation [56]).
Moreover, if the variationṡT (j) on the boundary of the sub-domainA are linear, so
the dissipation of energy at the interface vanishes (Equation [55]).

3.3.3. Recall of the results in mono and multi-timestep transient mechanics

We recall in this section the results obtained by (Combescure et al., 2002). They
consider three types of continuity:

– acceleration continuity: for some coefficientsγ(j) all equal in each sub-domain,
the interfacial energy vanishes and the precision of the resolution depends only on the
computing performances;

– speed continuity: the interfacial energy related term vanishes for any parameters
β(j) andγ(j);

– displacement continuity: the interfacial energy vanishes when the initial speed
continuity is assumed and if the parametersγ(j) andβ(j) verify γ(j) = 1

2β(j).

4. Numerical implementation

4.1. Structure of the FEM code

We implemented the multi-domain solver by adding new classes libraries into the
large deformation FEM code DynELA (Pantalé, 2002) developed in our laboratory.
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The whole model is represented by an instance of the classStructurecomposed of
several instances of the classPhysic. Each physic has one or several sub-domains
(classDomain)which are made of one or several meshes (classGrid). Finally, one
or more solvers (classSolver) are related to each sub-domain: this data structure al-
lows to couple iterative and direct, linear and non-linear (in transient) and explicit
and implicit (in transient) computations on a same structure (see Figure 4). Currently,
in this new FEM code, namedMulPhyDo(for Multi-Physic and Multi-Domain), we
implemented three solvers: an electrical, a thermal and a mechanical solver.

Structure

Physicphysics

Domaindomains

Solversolvers

Gridgrids

Elementelements

Nodenodes

SolverElec SolverTherm SolverMeca

Material

Figure 4. UML diagram of the solver

Concerning the resolution of the problem, the methodStructure::MPSolve()
is used to sequentially solve the problem on each physic; foreach physic the
method Physic::ComputeConnections()computes the interfacial nodes list; the
Physic::Solve()method contains a loop over the sub-domains to compute the Schur
matrix and the right hand side. Then the whole problem is solved using a direct method
(Physic::InterfaceSolve()). A final loop is then used to compute the results in each
sub-domain.

4.2. Parallelization

OpenMP is a recently developed programming standard (1997)offering a standard
interface for softwares developed in FORTRAN and C/C++(Chandraet al., 2001; Hu
et al., 2000; Pantalé, 2005), on SMP (Shared Memory Processing) computers.
OpenMP is an API (Application Program Interface) which allows the development
of applications where several threads are executed in parallel: it is composed of com-
pilation pragmas to include directly in the existing code (C/C++ or FORTRAN) and
libraries of functions. The existing code must be modified toinclude the instructions
of task sharing. The data handled by the program are common toall the processors
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in the shared memory. OpenMP works using the Fork/Join principle: a task is de-
composed into several elementary threads running on behalfof some processors (see
Figure 5). Moreover, the program is independent of the number of processors: the
number of processors necessary to compute a task is determined during the execution.
The first elementary thread to be launched is arbitrarily defined as the “master” , the
other ones, declared “slaves”, are created from it.

Fork JoinSerial computation Serial computationParallel computations

Master thread

Slaves Threads

Waitting

Computing

computations thread 2

computations thread 1

computations thread 3

computations thread 4 wait

wait

wait

Figure 5. Parallel computing with OpenMP

Starting from a calculation domain partitioned into several sub-domains and one
interface, the computation steps are the following:

1) building the Finite Elements problems related to each sub-domain;

2) building the interfacial problem;

3) solving the interfacial problem;

4) solving the problems on each sub-domain.
These four steps may be parallelized, but the steps 1 and 4 concerning the whole set
of sub-domains are more CPU time-consuming than the two other ones (2 and 3);
therefore, in a first approach, we only parallelized the two steps 1 and 4.

All the tests and validation of the parallelized version of the code have been done
using a Compaq ProLiant 8000 equipped with 8 processors Intel Xeon PIII 550/2Mb
and 5 Gb of shared memory. This computer works under Linux Redhat 8.0 and an
Intel C++ 7.1 compiler has been used for the compilation of the parallel version of the
code.

5. Validation benchmarks

In this section, some benchmark tests are used to validate the approach imple-
mented in the FEM code MulPhyDo. Those tests are all based on the same structure:
a rectangular beam (with the following dimensions:10m×1m×1m) subdivided into
8 sub-domains and subjected to thermal or mechanical loads.The Young modulus is
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E = 109Pa and the Poisson’s ratio isν = 0.25. Meshing of the beam is done with
13270 elements (4 nodes tetrahedral elements).

5.1. Steady state first order validation

In this first example, the beam is clamped on one end and subjected to plane flex-
ion through the application of a bending forceF = 49000N on the opposite end. The
analytic solution (Incroperaet al., 2002) is compared to the mono-domain 3D com-
putations (MulPhyDo and Abaqus) and to the 8-domain 3D analysis. The same mesh
is used for all FE models. As one can see in Table 1, MulPhyDo and Abaqus gives a
close response (0,3%).

Table 1. Maximal end beam displacements for different computations

MulPhyDo 1 and 8
sub-domains

Abaqus 6.3
Analytic beam

solution
0.1844 m 0.1838 m 0.196 m

5.2. Transient first order problem (mono timestep)

In this second example, the whole beam presents an initial temperature of20˚C
and one of its ends is suddenly set at100˚C. The calculations are done for a thermal
conductivityλ = 40000 W.m−1˚C−1, a specific heatc = 5 J.kg−1.˚C−1 and a vol-
umetric massρ = 1000 kg.m−3. The analytic model best-matching this benchmark
is the semi-infinite solid model (Incroperaet al., 2002) submitted to a temperature of
100˚C suddenly applied on its surface, where the temperature dependence with the
distancex to the surface and the timet is given by the equation:

T (x, t) = Ts + (Ti − Ts)erf(
x

2
√

at
) [57]

where erf(x) = 2√
π

∫ x

t=0 exp(−t2)dt is the Gaussian error function, anda is the ther-

mal diffusivity coefficient (a = λ
ρc

).

Figure 6 illustrates the evolution of the temperature at thenodeP (situated along
the neutral fiber at a distance of40 cm of the face subjected to the thermal load),
for different timesteps and two different values for the parameterα in the numerical
Euler’s integration scheme (α = 1 in Figure 6(a) andα = 0.5 in Figure 6(b)).

5.3. Transient second order test (mono timestep)

Here, in this third example, the beam is clamped at one of its ends and submitted
to a uniform traction forceFt = 2.205 106N on the opposite end. This load is applied
via the time-dependent function given in the Figure 7.
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Figure 6. Evolution of the temperature at nodeP

The integration parameters retained for the simulation with MulPhyDo areβ =
0.5 andγ = 0.25, which satisfy the stability conditionγ = 1

2β. We used a timestep
∆t = 0.5 ms. The small differences in the oscillations between Abaqus and Mul-
PhyDo results (see Figure 7) are due to the integration parametersβ et γ which are
different in Abaqus where they are coupled via a third parameterα (named collocation
parameter); this parameter is fixed to−0.05 by default (Hibbittet al., 1997; Hilberet
al., 1978) (which corresponds toβ = 0.276 andγ = 0.55) and ensures an optimal
precision of the integration schemes. Whereas, results obtained in both cases, Abaqus
with mono-domain simulation and MulPhyDo with 8 sub-domains, are globally in
accordance.
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Figure 7. Comparison of the displacements obtained with MulPhyDo andAbaqus 6.4

5.4. Mono-timesteppingversusmulti-timestepping analysis

The decomposition strategies allow optimization of the transient computations as
in steady state analysis. But in the case of the multi-timestep transient analysis, it is
necessary to adapt these strategies to the characteristic times of the different zones.
Typically, the zones submitted to fast and highly non-linear phenomena must be inte-
grated using smaller timesteps. Tests have been performed to define the best timesteps.
We use the same example as in the subsection 5.2. We defined twocases: in the first
one, half part of the structure have a prescribed timestep twice to the minimal timestep
of the structure, in the other case, 3 sub-domains have a prescribed timestep twice to
the minimal timestep and 3 fourfold to the minimal timestep.The ratios between the
timesteps of the sub-domains are shown in Figure 8 for both analysis. In Figure 9, the
temperature of the nodeP for both cases is compared to the mono timestep evolution.
In the Table 2, we compare the solutions obtained in multi andmono-time analysis.
These results show the interest of the development of the multi-time computation:
small error (less than 1%) and significative computational time reduction (up to 24%).
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Figure 8. Mapping of the different timestep ratios for the 2 test-cases
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Figure 9. Evolution of the temperature at nodeP for the 2 multi-time configurations
and comparison to the mono-time evolution

6. Industrial benchmark

6.1. Definition of the benchmark

The benchmark is an assembly used in power converters: a chipis brazed on a
first DBC (Direct Bonded Copper) substrate and connected to asecond one by the use
of 12 bumps connectors (one lying copper cylinder with top and bottom brazes) as
presented in Figure 10. The current circulates in the inner copper layers of the DBC
substrates, while the heat generated by the chip commutations goes through the bumps
and DBC substrates (see Figure 11).



Development of a multi-physic FEM code 819

Table 2. Comparison of mono-time versus multi-time computations

Mono-time
11111111

Multi-time
11112222

Multi-time
11222444

Error at first
increment (0.05 s)

reference -0.2% -0.3%

Error at last
increment (0.35 s)

reference +0.2% -0.8%

Time decrease reference -17% -24%

Copper metalization
AlN
Copper Metalization
Bumps (Copper and Braze)
Silicon Diod
Braze
Copper Metalization
AlN
Copper Metalization

Figure 10. The different parts of the assembly

(a) (b)

Figure 11. Current circulation (a) and heat circulation with convective cooling (b)

As the repartition of the heat between the top face and the bottom face of the chip
is not known, it is assumed that half of heat escapes by the topface and half by the
bottom face of the chip. Moreover, the bump behavior is the most significative. So we
only modelize the top of the assembly.

6.2. Electro-thermal model

The volumetric calorific power (inW m−3) dissipated by the chip at each timestep
might be approximated by the following relation:

P = −4.41 108−2.04 108α−0.533I+5.606Iα+9.92 10−10I2+2.28 107T

[58]
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whereT (˚C) is the temperature of the chip,I ( A m−3) is the volumetric current
density andα (adimensional value between0 and1) is the cyclic ratio of the power
converter. This expression has been extracted from the study defined with the electro-
thermal chip model developed by (Mussardet al., 2004). For each timestep, we per-
form an electric calculation followed by a thermal one. At the initial time, the whole
structure is set at a potential of0 V and a temperature of50◦C.

Two kinds of decomposition strategies are retained, with a specific idea for each
one:

– a “slice” tearing: each part or each group of parts is a sub-domain. In this case,
the interfacial problem involves large contact surfaces (see Figure 12(a));

– a “block” tearing: the assembly is torn through the parts. This option limits the
size of the interface because it uses only the part thicknesses (see Figure 12(b)).

1

3

2

(a) Slice tearing

1 2 3 4

(b) Block tearing

Figure 12. Slice-tearings and blocks-tearing of the DBC

For a transient multi-timestep analysis, the slice-tearing is more adapted, since
it allows different timesteps on the different parts. In thepresented version of the
software, a mixed partition of the workpiece using both “slice” and “block” tearing
cannot be used since n-uplets (n > 2) interfacial nodes are not implemented. In a new
version, this has been done.

The properties of the material used in the model are resumed in the Table 3: coef-
ficients of dilatationα, heat capacitiesCp, thermal conductivitiesλ, Young’s modulus
E, Poisson’s ratioν, densitiesρ and electrical resistivitiesρelec . The initial tempera-
ture for each material is identicalTini = 20◦C.
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6.3. Mono and multi-timesteps computation

We use a slice-tearing and set up timesteps in sub-domains 1 and 2 twice the
timestep in the sub-domain 3. In fact, this one includes the chip and is submitted to
the fastest electro-thermal phenomenon (see Figure 13 for details). The next figure
shows the evolution of temperature for a node situated on thebottom surface of the
chip for mono (temperature-111) and multi timestep (temperature-112) analysis, lead-
ing to very small differences between the two methods: less than2% for the whole
computation (see Figure 14). The time computations are reported in Table 4 for two
different computers with the corresponding time reductions. The relatively high val-
ues of the ratio reported in Table 4 comes from the fact that the number of elements
with a greater timestep value in the model is very low.

Table 3. Table of the material properties

Copper Silicon AlN Bump
α 1.64 10−5 3.24 10−6 4.5 10−6 2.19 10−5

Cp(J/m.◦C) 385 765 850 385
λ(W/m.◦C) 389 150 173 30

E(Pa) 1.17 1011 1.5 1011 3.3 1011 5.27 1010

ν 0.343 0.278 0.25 0.3
ρ(kg/m3) 8700 2330 3260 7360
ρelec(Ω/m) 1 10−8 3.8 10−8 1 103 1 10−6

0.004 s

0.002 s

0.002 s

Figure 13. Timesteps definition for the multi-timestep analysis
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Figure 14. Temperature in mono and multi-time evolutions

Table 4. Computation times on two different computers and slice tearing

mono timestep multi-timestep Ratio
PIII 1GHz 5778 5609 0.97
PIV 2.6 GHz 1903 1830 0.96

7. Conclusions

This work reports some theoretical results and a validationapproach concerning
multi-timestepping and the application to an industrial problem. Moreover, Mul-
PhyDo includes now three physics (resistive electrics, thermics and structural dynam-
ics), which permit multi-timestepping analysis for both ofthem. This tool can be
currently used in industry for power converters modeling and explores an other way,
compared to other ones (Hoppeet al., 2003; Chowet al., 2001). This first application
leads to a plan for further developments:

– introduction of non-linearities by using the collaboration of explicit (for zones
with fine timesteps) and implicit (for zones with larger timesteps) schemes;

– finest taking into account of the silicon chip heat generation in the power con-
verters. In fact, the use of multi-timestepping allows the use of timesteps close to the
commutation frequency of the chips.

The work of the authors has been supported by the funds of the Power Electronics
Associated Research Laboratory of Alstom Transport in Sémeac (France).
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