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ABSTRACT.This works concerns the development of a virtual prototypimol dedicated to
electro-thermo-mechanical simulation of power convexteFhe FEM code, written using an
object-oriented language, includes a dual Schur Domaindbgmosition Method. The solving
of problems including floating subdomains can be perfornmedtéady-state cases, whereas
one can couple multi-timestep implicit and explicit int#gwn schemes in transient analysis.
The last part of this work is about the study of an industri@hthmark concerning the power
converters used in railway transport: the electro-thermsahulation of a switch in transient
analysis. This example allows to compare different stiagegf tearing into subdomains and
the use of different timesteps on the same structure.

RESUME.Ce travail concerne le développement d’'une plateforme dofypage virtuel dédiée
a la simulation numérique électro-thermo-mécanique desedisseurs de puissance. Le code
éléments finis, développé selon un formalisme orienté Hlgst basé sur une décomposition
duale de type Schur. La résolution des sous-problemesantlas domaines flottants peut étre
réalisée en régime permanent. Il est également possiblew#er les approches implicite mul-
titemps et explicite pour une analyse transitoire. La demisection de ce travail présente un
cas test industriel concernant les convertisseurs de pots utilisés dans le transport ferro-
viaire : la simulation électrothermique transitoire d’'uwich. Cet exemple permet de comparer
les différentes stratégies et I'utilisation de plusieursréments de temps dans une structure.

KEYwoORDSdomain decomposition method, finite element, object-teéeprogramming, paral-
lelization, multi-time stepping.

MOTS-CLES :méthode de décomposition de domaine, éléments finis, pnogation orientée
objets, parallélisation, intégration multipas de temps.
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1. Introduction

Industrial products are made up of many parts, and they dmiied to multi-
physic and multi-time phenomena. In particular, the prgies that are built and
designed in the field of Power Electronics focus on powergirggon components,
with the goal of weight, volume and cost reductions. Becafsiheir integration,
these products are difficult to instrument whereas the derfareliability increases;
therefore there is a real need in more realistic models fair thirtual prototyping.

One solution in order to build such models is to link toget®reral semi-analytic
models using an integration platform such as VTB, FemlabjahéSimulink... The
main inconvenient of this approach relies in the difficidtie build realistic analytic
models for non-linear and complex behaviors. Thereforearigal models are usually
preferred. A multi-code approach implies the use of sevanaierical codes and data
exchanges between them. So, this platform enhances soatvdigages:

— a relatively high cost due to the number of different sofegainvolved in the
process;

— the need of developing specific data exchange softwaresl@r to establish the
communications between the solvers;

— the problems encountered when new code versions are used.

However multi-code couplings have been developed usingxXample the CORBA
platform (see for example (Pérez al, 2003)). Therefore, in the approach devel-
oped here, we have choosen to build a unique three-dimeaisoftware, with the
following goals:

— ability to treat large scale problems, and, for transiardlysis, ability to use
different timesteps in different parts of the numerical relpd

— integration into a single interface, high evolutivity acmtle maintenance;

— high performance in order to obtain computing times combpatvith industrial
developments.

Domain Decomposition Method (DDM) has been retained in iorlgive an answer
to the first point; for the second point, the Object-OrienRrdgramming is used;
finally, a procedure of parallelization is introduced to imye the performance of the
code.

DDM divides the domain into several sub-domains and resttite resolution
of the finite element problem to the interface between thabedomains; moreover,
these methods allow to perform non-linear analysis. Twonrkaids of DDM can be
considered, with and without partial overlapping.

The first one derives from the alternative Schwarz metho69).8The solution of
the global problem is obtained by alternating partial resohs on the different sub-
domains. The partial solutions obtained on the neighbordarbains are reported
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as boundary conditions on the studied sub-domain; the fkddation is obtained
following this iterative process.

In the second kind of DDM (Kron, 1963), the whole structurdiidded into a set
of adjacent sub-domains linked by an interface (see FiguréHe first step consists in
building the problem related to each sub-domain; after tan8on and resolution of
the interfacial problem, one solves the problem on eachdarbain. This last method,
allowing the introduction of contact laws between sub-dimsghas been retained in
our work.
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Structure Dividing into a set of subdome

and one interface

Finite elements discretization
Continuity hypothesis
Building of the problem
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Resolution of the problems Resolution of the
over each subdomain interfacial problem

Figure 1. General principle of the DDM without overlapping

First introduced for electrical modelization in the 196@% Kron (1963), the
DDM have been adapted to structural mechanics in the 198iits the democ-
ratization and the increase of computing power. Farhat,xRaud Rixen have
developed the resolution of the interfacial problem in dteatate analysis lead-
ing to the so-called Finite Element Tearing and Intercotingcmethod (FETI)
(Roux, 1990; Farhat, 1991; Farhet al, 1994; Rixen, 1998). Now, the develop-
ments focus on the transient analysis: multi-timestepjgingon-linear analysis in
mechanics (Combescuet al., 2002; Gravouil, 2000), and in thermics (Smolinski
al., 2000). Moreover, works have been published concerningéneralization of the
different formulations of DDM (Papadrakakis, 1997; Fraigak al, 2002; Fragakis
et al, 2003). The FETI has been extended later to a second gemesadapted to
structural elements and ill-conditioned problems. Moreergly, these methods have
been generalized by the FETI-DP approach, derived as amatitee to the second
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generation methods (Farhettal, 2001). The multi-physic aspect has been treated in
this paper using a weak coupling approach; for a full couptine can use a staggered
algorithm such as the the one proposed by B.A. Schreffertfersbil consolidation
(Lewiset al,, 1999).

Concerning the field of power converters, (Hompal., 2003; Hoppe, 2004; Chow
et al, 2001; 2003) have investigated multi-physics (electribsrmics, mechanics)
and multi-domain modelizations.

2. Formulation of domain decomposition methods in steadytate analysis

A structure is subdivided inte sub-domains, that is sets of elements. The set
of nodes belonging to the different sub-domains and sitlatethe partition lines
is the “interface” (see Figure 2). Most of the sub-domaires ot concerned with
Dirichlet type boundary conditions; they are pointed outfmating” sub-domains.
For example, in Figure 2, all the sub-domains except subaiiotare “floating”.

-

Figure 2. Partition and interface between the sub-domains

For our developments, we have made the choice to use a duaidlatecom-
position: the equilibrium of dual quantities is imposed s tnterface, whereas the
continuity of the primal quantities is verified after theaalhtion.

2.1. Global formulation

Starting from a classical variational formulation, the Whfinite element problem
can be formulated as a set of all elementary problems on eszli@emain: Equa-
tions [1] (a), associated with the Equation [1] (b) enfogcthe continuity of primal
quantities on the interface.

K@q0) = g0 4 g9 jef1,. s} (a) [1]
> BUgW) =0 (b)
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whereK (9) is the matrix relative to the physical behavior of the sulpadin (material
and geometry) /) is the vector of the unknown primal quantitig$’) is the vector of
the external actions applied on the sub—dorrjaamdggfli is the vector of the actions
of the adjacent sub-domains on the sub-domairsystem [1] includes all physical
boundary conditions. The localization matrid8§) select the degrees of freedom of
the sub-domain owning to the interfaceEi(j) = 1if nodei of sub-domairy belongs
to the interface and zero otherwise). The interaction \mﬁﬁé for each subdomain is
expressed by the projection of a unique unknown vekteith the localization matrix
B(j)T:

g =BYA [2]

where is the general vector of the interfacial interactions instrecture. The prob-
lem related to the global structure is written as follow:

TR L 0 _BWT qV g
L 5 2 ]
0 . K () _B(S)T q(s) g(s)

| —BD ... _B®©) 0 A 0

or in a block form:

BN

2.2. Formulation of the interfacial problem

3 | [

By inverting the relation [1] (a), and taking into accounetkquation [2], the
unknown vectog?) can be expressed as:

¢V = KO (gu) o8 A) 5]

In case of floating sub-domains, the matfix’) is singular and the resolution of the
problem is achieved according to the following system:

g = KO* (go‘) + BOKT A) + RU)0)
6
RWT (go) T B(j)ﬁ) -0 [6]
where K" is the generalized inverse matrix &), R (kernel of K@) is a
basis of the null-space dt' ), 4() contains the unknown amplitudes 8f?). For
non floating sub-domaing )" will also be used to represent the inversddf) (in
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this caseR()~U) = (). The formulation of the interfacial problem is obtained by
replacing the system [6] into Equation [1] (b). This leadth® system [7]:

>, BO) ( KO* (go') +BW" A) + R<j>7<j>) —0

(Ro)W(j))T (gu) + B(.nT,\) -0 7]

or in a block form:

F; G

ool ]-n] @
G, O ¥ Gy

with:
Fr=>", BWO KO pWiT
G, = [ BORA .. BE R }
T
y=[ 40T 0T ] ]
g =—>0, BO KO g0)
= T

gy = — [ gOTRM . DT RW }

where f represents the number of floating sub-domains of the streicke; is com-
monly called the “dual Schur matrix”.

3. Extension of DDM to multi-timestep transient analysis

We have made the choice of using a dual DDM formulation indiemt analysis.
It is necessary to consider separately first order and secatat problems. The fol-
lowing formulations use classical notations of thermiadfifst order problems and of
structural dynamics for second order problems.

3.1. First order transient problems

As in the steady state case, the finite element problem ceiatbe whole structure
is set as the sum of the problems related todiseib-domains linked together by the
use of a continuity equation:

CPTY + KPTY = 19 + BO"N, je{l,.,s} (a) 10
S BYuwY =0 (b) [10]

where(,, is the thermal capacity matri¥{,, is the thermal conductivity matrixf,,
is the vector of the external calorific flu¥;, is the temperature and,, represents
the continuous quantity at the interface between the subadtts;i.e. w,, = T;, for a
continuity in temperature and,, = 7}, for a continuity in flux. In the present work,
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the Euler time integration scheme is adopted to integrateafion [10] through time
between increments — 1 andn:

79 =79 4+ (1 — a)AtDTY | 4 aDADTY o) e 0,1]  [11]

n

which can be splited into the sum of a predict¢y and a correctof():

pTD = 7D 4 (1= o) AD T [12]
ed) — o@D AT

The scalar value/”) allows to define an explicit integration schemef) = 0,
an implicit integration scheme if”) = 1 or a Crank-Nicholson one /) = 1. We
can choose between two kind of continuity at the interfage? or 7(). Regarding

these two possible continuitiezsﬁlj) can be written in a more general form:

w7(lj) — png) + .U(j)Tr(ij) [13]
where:
it w =79, rud =0 and U =1 14
it W) — 7, P —r7® and O — oA 14l
The general first order problem can be rewritten in a blockifas:
~ T . =
—uB 0 A\, ijl BP0

where:
6’1(1]) _ 07(13) + OL(J)At(J)Ky(IJ) and fr(zj) _ M(]) (féﬂ) _ Ky(lj)pTng)) [16]

Then the general problem is splited into in a “free” problend an a “linked”
problem (Combescuret al., 2002; Gravoulil, ZOOO)T,Ej) is considered as the sum of
a “free” vectorTﬁ?Tee solution of the global problem with no interfacial interiacts
between the sub-domains, and a “link” vec’ﬂb@nk solution of the global problem
just considering the interfacial interactions and exahgdall the other actions. These
two problems are written:

5 o] e =[]

and [17]

|: I’l’cn _H’BT ] |: Tnzmk :| — O .
-uB 0 An o BOwY)

J=1
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with w) . = Pw{ + @77 only depending upon free quantities. When all the
sub-domains share the same timestep’), the interfacial problem is built for each
timestep by using the same procedure as the one used forethdysstate analysis.
As there is no floating sub-domains in a transient computattoe expression of the

interfacial problem can be simplified as:
Hy i = fon [18]
where:
Hy=-Y, yDBOEY  BOT . fy, = S BOwd) | [19]

When the free problem is solved, we are able to solve thefadil problem;\,, is
then reintroduced in the expressions of the link probleratesl to each sub-domain
and allows to solve them. The expressionéftfﬁ) can be computed and using the
integration scheme [12], we can obtain the temperafﬂ,&é)s

When different timesteps are used in different sub-domaimesinterfacial prob-
lem is computed for each minimal timestep of the structuceit 8quires the interpo-
lation of the quantities used in continuity and correspagdo the sub-domains which
have timesteps different from the minimal timestep. In thigk, it is supposed that
all the timesteps are multiples of the minimal one throughwhlue of:() (see Figure
3 presenting the time discretization for 3 domains with- 1, 2 and 6 respectively).

Subdomain 1
k W=1

(1)
AtP =k DAt 1,1 ,1 ,1 Valuesofi
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-
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=
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k ®=¢ )
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@ Calculated quantities
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Figure 3. Example of time discretization for three sub-domains
The interfacial problem is modified:

Hi\i = fxi [20]
where:

H, = Z;:1 ‘LL(J')B(J')CN’Z.(J‘)AB(J')T and fy; = — 2;21 B(j)wz('szee [21]
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In this equationbgj) are interpolated quantities defined by:

b =1 - Fwd)  + 5w and At = kD min(AtO)
[22]

depending only or1t) ... quantities. The resolution of the problem for each minimal
timestep is done in the same way as for one unique timestdpesstriucture.

3.2. Second order transient problems

As previously done concerning first order transient protdethe second order
transient problem is formulated using a dual DDM:

MP i + eVl + KPu = 17+ BOTN, je{l,.5) ()
S BOwd =0 (b)

(23]

where M is the mass matrix¢' is the capacitance matrixy is the stiffness matrix,
u is the displacement vectof,is the external force vector and again represents the
quantity chosen to be continuous at the interface betweesuih-domains. Here the
widely used Newmark integration scheme is adopted for timegiration:

0 = W9+ (1= 4D)A DY) | 1O AL
py )
W=+ A, (L g9 AR, 24
puld)
180 (At@))24)

and, depending on the continuity set at the interface, we:hav

it w? =a, P =0 and pl) =1

if wg) = aﬁ{’, Pw,(f) = P@ﬁ{’ and pl) =W AW [25]

if w,(f) = uﬁlj), Pw,(f) = Puglj) and M(j) = ﬁ(j)(At(j))?

Implicit, semi-implicit or explicit integration schemear be selected through the
BU) and~) parameters. With the use of the integration scheme and thehge
multipliers \,, corresponding to the equilibrium of the interface, the dwahsient
problem can be written in a block form:

uM, —pB" ][0, ] _ f,
“pB 0 HAn]‘lz;lewgﬂ 126]
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with:
MY = MY + DAY 1 g6) (Ato))? K9
FO = 0 (19 = O — K9 271
The interfacial problem is:
Ho)n = fon (28]
with the following notations:
H, =2, By BT 29]

. - s . ~ (=1 ~(;
Fan =304 B(J)pwgf)ch +Y0 BOT jp) " f0)

The problem is then solved by using a direct method. One lysus¢ an iterative
method known to enhance quite a fast convergence, but inasdr this has not been
used for simplicity.

3.3. Discussion about the choice of the continuous quantitiestaé interface

This section deals with the stability and precision of thegnation schemes when
they are coupled with the DDM. For this purpose, the so calieerfacial energy
FEinter 1S introduced, and:

—if Einer = 0, stability and precision are identical to those obtainethatit the
DDM;

—if Eipger > 0, the multi-timestep DDM can introduce numerical instalas;

—if Einer < 0, the multi-timestep DDM can introduce numerical dissipati

(Combescuret al., 2002) have discussed this point for the second-order prabl
Their approach is based on the use of the energy methodsogedeby (Hughest

al., 1978a; 1978b). We follow the same approach here after areddgtails within
the case of the first order problems.

3.3.1. Single-time transient analysis

For a given quantityd defined respectively by,, and 4,,; at the times: and
n + 1, one define the averagd) and the differencéA]:

<An> = (An 1+ An)/2

With the remark thatA4,,) [4,] = [1(A,)?], starting from the energy formulation:

)" (s [22] + 5 1) - 155) = 0 [31]
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where, relatively to the Euler’s integration scheme, we\wate:

(T5] = A (7)) + (o - % )at [1] [32]
One obtains:

(] = =DAT]) + [Fen )] 3
Where[ } represents the heat diffused during the interval of timee Tdrm

—D( {Tﬁ}) == [Tg} (C+(a—3)At K) [Tg} represents the numerical damp-

n

external fluxes. (Hughest al, 1978a; 1978b) have shown that this term have no in-
fluence on the stability of the numerical scheme, so this oileb@ no more taken
into account. For a multi-domain study, Equation [33] beesm

ing. [Eezt(Tﬁ)} = 4 {Tﬁ} [f¢] is the energetic term due to the balance of the

S

Z{ } ZD { 7)} +Z[ cot(TY) } + Binter [34]

j=1
with:
By = Z [T(j)}TB(j)T Dl = [ ]TXS:BQ') [Tu)} [35]
inter At n n At n . n
.7 1 j:1
Thus the stability is depending on the sign Bf,;.,.. As presented earlier, for a
first order problem, the choice can be achieved between twd &f continuities:
continuity of fluxes or continuity of temperatures. Depermgon this choiceF;,, e,
may vary.
3.3.1.1. Continuity of fluxes

The continuity is given by the equation:
ST BOTY =0 [36]
j=1

Therefore we easily find that in this cage,;_, B [T,(ﬂ)} = 0 and SOE;,,ze, = 0.

Hence, the stability of the Euler’s integration scheme iy affected by the computing
errors introduced by the continuity conditions at the ifeee.

3.3.1.2. Continuity of temperatures

Starting from the expression obtained with the Euler'sgni¢ion scheme [32]:

ZB(J)[ } AtZB < >+(a0—%)AtiB(j) [Ty] [37]
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in the case of a Crank-Nicholson schemg & %), we can write:

ZBW[ ] AtZB7)< > (38]

and, assuming continuity of the fluxes at the initial time,deeluce:
S BU) [T'fﬂ)] —0 [39]
j=1

The conditions of stability and precision are unchanged Wit use of DDM in
the case of a Crank-Nicholson scheme for all the sub-domaherefore, in this work
a continuity of fluxegT") is retained in order to ensure the stability of the algorithm
for any value ofa(/)

3.3.2. Multi-timestep transient thermics

The demonstration uses the notations [30] and new one®delatthe transient
analysis; for a given increment}, represents the value of the quantitiésat the
beginning and4;, the same values at the end of the increment:

((Ar)) = (Ax + Ao)/2
{ [[A:]] = (Akk— AO()) [40]
One remarks that:
k—1

ARl = [An] [41]

n=0

In order to simplify the demonstration, we consider only sut-domainsd and
B ; for one timestep of sub-domait

At = EAAE = EAAL [42]
On the intervalty, t], the energy balance of each sub-domain leads to:
EAEN|| = =D(|[T2]]) + Bibver 3
ER(18)|| = - sy D(TE)) + Eh
where
T
A AT
Eznter - mAt |:|:Tk :|:| B [[/\k]] [44]

EB

T
m—1 -
inter Zn:O ﬁ |:TnB:| BBT [)\n]

The study of the stability of these numerical schemes isvadgiit to determine
the sign of the total interfacial enerdy;,,;..- defined by:

Einter = znter + Egzter [45]



Development of a multi-physic FEM code 811

or moreover:

Einter = ﬁ [[72]] U BAT )+ mf é |77] "BET(] e
n=0

In a first time, we separate the “free” and “linked” terms:

B = 5t [[Tveen]] B2 [0
e & [, BTN
by [T | BAT (D]
E A [T ] BET N

and we set as an interpolation form

[T(I?‘ree)n} = % {[T(?Tee)o}} [48]

By using the Equations [41] and [48], the expression [47Dees:

[47]

. ) T
Einter = 221;01 ﬁ (BA [T(?ree)n} + B” [T(B}ree)n}) [/\n]
. T
it | [Thoe] | BAT D] [49]
. T
+ ) 2 [T8gn] BTl
Assuming that thd’, terms are continuous at the interface:
A [A B [+B _ A [A B [+B
B |:T(free)n:| +B |:T(f7‘ee)n:| - (B [T(lznk)n:| + B [T(lznk)n:|) [50]

the interfacial energy becomes

T
m—1 r r
Binter = = Yonsg 2 (B [Tihyn| + BZ [T p0a]) ]
T

[51]
oy [[Fon] | BAT ] + 50 2 [FBiya] 2T 0 >
or
Einter = ﬁ |:|:T(Il4lnk)k:|:|T BAT [[Ak“ - 1nz_1 é |:T(Il4znk)n:| ! BAT [)\n]
n=0
[52]

Taking into account the linked problem on the sub-donmin

OAT{l‘mk)n = BAT), [53]
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we finally obtain
Binter = ap (HT(ﬁ'nk)kHT cA HT(?mk)kH (54]
= S [Fha] [

It has been shown (Combescwieal., 2002), for a positive definite matri€'#, that
the Equation [54] can be written as the sum of negative scjeanes:

—

m—1m—1

Binter = _ﬁ g [TA} ZJ) o [T.A} (i,4) 159]

i=0 j=i
with
{TA} (i) (Té"k>m‘i - T&"’f)m—i—l) N (T@nk)m—j—l - T'(?}nmm_j_g)
As a consequence:
Einter <0 [56]

We have shown that for the multi-timestep transient thecaklulus, if we choose
a continuity in7’() at the interface, the numerical integration schemes atsesta
However a certain amount of energy is dissipated at thefader(Equation [56]).
Moreover, if the variationd’) on the boundary of the sub-domaihare linear, so
the dissipation of energy at the interface vanishes (Equ#&5]).

3.3.3. Recall of the results in mono and multi-timestep transieatmanics

We recall in this section the results obtained by (Combeseual.,, 2002). They
consider three types of continuity:

— acceleration continuity: for some coefficienté) all equal in each sub-domain,
the interfacial energy vanishes and the precision of theluéisn depends only on the
computing performances;

— speed continuity: the interfacial energy related termistaes for any parameters
ﬁ(ﬂ) andfy(j);

— displacement continuity: the interfacial energy vanssivbien the initial speed
continuity is assumed and if the parametgt8 ands) verify v(9) = 130).

4. Numerical implementation

4.1. Structure of the FEM code

We implemented the multi-domain solver by adding new cladibearies into the
large deformation FEM code DynELA (Pantalé, 2002) devedopeour laboratory.
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The whole model is represented by an instance of the @assturecomposed of
several instances of the claBfysic Each physic has one or several sub-domains
(classDomain)which are made of one or several meshes (ctasd). Finally, one

or more solvers (clasSolve) are related to each sub-domain: this data structure al-
lows to couple iterative and direct, linear and non-lingart(ansient) and explicit
and implicit (in transient) computations on a same struiecf{aee Figure 4). Currently,

in this new FEM code, nameadulPhyDo(for Multi-Physic and MultiDomain), we
implemented three solvers: an electrical, a thermal andeharécal solver.

Structure Material

physics| Physic

elements Element

domains| Domain grids | Grid
Ko>——F—

nodes| Node

solvers| Solver

l [ l

SolverEleg SolverTherm SolverMeca

Figure 4. UML diagram of the solver

Concerning the resolution of the problem, the mett&tducture::MPSolve()
is used to sequentially solve the problem on each physic;efah physic the
method Physic::ComputeConnections€omputes the interfacial nodes list; the
Physic::Solve(method contains a loop over the sub-domains to compute therSc
matrix and the right hand side. Then the whole problem isesblising a direct method
(Physic::InterfaceSolve)) A final loop is then used to compute the results in each
sub-domain.

4.2. Parallelization

OpenMP is a recently developed programming standard (1&€8f)ng a standard
interface for softwares developed in FORTRAN and C/C++(@haet al,, 2001; Hu
et al, 2000; Pantalé, 2005), on SMP (Shared Memory Processingipaters.
OpenMP is an API Application Program Interfacewhich allows the development
of applications where several threads are executed inlpharitis composed of com-
pilation pragmas to include directly in the existing codéG&+ or FORTRAN) and
libraries of functions. The existing code must be modifiethtdude the instructions
of task sharing. The data handled by the program are commal tiee processors
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in the shared memory. OpenMP works using the Fork/Join jpiec a task is de-
composed into several elementary threads running on behsa¢fme processors (see
Figure 5). Moreover, the program is independent of the nurob@rocessors: the
number of processors necessary to compute a task is detstahiming the execution.
The first elementary thread to be launched is arbitrarilyraefias the “master” , the
other ones, declared “slaves”, are created from it.

Serial computation Fork Parallel computations ~ Join  Serial computatior

computations thread 1 wait

) computations thread 2 wait

-2 )
~ computations thread 3
e Iy

Slaves Threads

Master thread

mmmm  Waitting
= Computing

Figure 5. Parallel computing with OpenMP

Starting from a calculation domain patrtitioned into seVstb-domains and one
interface, the computation steps are the following:

1) building the Finite Elements problems related to eachdrinain;
2) building the interfacial problem;
3) solving the interfacial problem;

4) solving the problems on each sub-domain.
These four steps may be parallelized, but the steps 1 andekrung the whole set
of sub-domains are more CPU time-consuming than the twor @thes (2 and 3);
therefore, in a first approach, we only parallelized the tteps 1 and 4.

All the tests and validation of the parallelized versiontuf tode have been done
using a Compag ProLiant 8000 equipped with 8 processorsXeten Pl 550/2Mb
and 5 Gb of shared memory. This computer works under Linuxh@e8.0 and an
Intel C++ 7.1 compiler has been used for the compilation efgarallel version of the
code.

5. Validation benchmarks

In this section, some benchmark tests are used to validataghroach imple-
mented in the FEM code MulPhyDo. Those tests are all baseleosame structure:
a rectangular beam (with the following dimensioh8m x 1m x 1m) subdivided into
8 sub-domains and subjected to thermal or mechanical Iddus Young modulus is
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E = 10°Pa and the Poisson’s ratio i8 = 0.25. Meshing of the beam is done with
13270 elements (4 nodes tetrahedral elements).

5.1. Steady state first order validation

In this first example, the beam is clamped on one end and gebjexplane flex-
ion through the application of a bending forEe= 49000N on the opposite end. The
analytic solution (Incroperat al., 2002) is compared to the mono-domain 3D com-
putations (MulPhyDo and Abaqus) and to the 8-domain 3D &yl he same mesh
is used for all FE models. As one can see in Table 1, MulPhyRio/baqus gives a
close response (0,3%).

Table 1. Maximal end beam displacements for different computations

MulPhyDo 1 gnd 8 Abagus 6.3 Analyt|c_ beam
sub-domains solution
0.1844 m 0.1838 m 0.196 m

5.2. Transient first order problem (mono timestep)

In this second example, the whole beam presents an initighéeature 0R0°C
and one of its ends is suddenly setl@6°C. The calculations are done for a thermal
conductivityh = 40000 W.m~1°C~!, a specific heat = 5 J.kg~'."C~! and a vol-
umetric masg = 1000 kg.m 3. The analytic model best-matching this benchmark
is the semi-infinite solid model (Incropeegal., 2002) submitted to a temperature of
100°C suddenly applied on its surface, where the temperaturendigpee with the
distancer to the surface and the tinmds given by the equation:

x
T(x,t) = Ty + (T; — Ts)erf(—— 57
(@.4) = T+ (T, = Tyjerf( =) (57
where erfz) = 2= [ exp(—t)dt is the Gaussian error function, ands the ther-

mal diffusivity coefficient ¢ = ﬁ).

Figure 6 illustrates the evolution of the temperature atrtbde P (situated along
the neutral fiber at a distance @6 cm of the face subjected to the thermal load),
for different timesteps and two different values for thegraetera in the numerical
Euler’s integration schemex(= 1 in Figure 6(a) andv = 0.5 in Figure 6(b)).

5.3. Transient second order test (mono timestep)
Here, in this third example, the beam is clamped at one ohitss @nd submitted

to a uniform traction forcé; = 2.205 105N on the opposite end. This load is applied
via the time-dependent function given in the Figure 7.
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Figure 6. Evolution of the temperature at node

The integration parameters retained for the simulatio wiulPhyDo areg =
0.5 and~v = 0.25, which satisfy the stability conditiof = %ﬁ. We used a timestep
At = 0.5ms. The small differences in the oscillations between Abaqg ul-
PhyDo results (see Figure 7) are due to the integration petexsi? et v which are
differentin Abaqus where they are coupled via a third patame(named collocation
parameter); this parameter is fixed-td.05 by default (Hibbittet al, 1997; Hilberet
al., 1978) (which corresponds & = 0.276 andy = 0.55) and ensures an optimal
precision of the integration schemes. Whereas, resultsredd in both cases, Abaqus
with mono-domain simulation and MulPhyDo with 8 sub-donsaiare globally in
accordance.
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5.4. Mono-timesteppingrersusmulti-timestepping analysis

The decomposition strategies allow optimization of thaesfant computations as
in steady state analysis. But in the case of the multi-tisgestansient analysis, it is
necessary to adapt these strategies to the characteinstis bf the different zones.
Typically, the zones submitted to fast and highly non-lim@@&nomena must be inte-
grated using smaller timesteps. Tests have been perfomudine the best timesteps.
We use the same example as in the subsection 5.2. We defines$es: in the first
one, half part of the structure have a prescribed timestagetio the minimal timestep
of the structure, in the other case, 3 sub-domains have arniyed timestep twice to
the minimal timestep and 3 fourfold to the minimal timest&pe ratios between the
timesteps of the sub-domains are shown in Figure 8 for badlyais. In Figure 9, the
temperature of the node for both cases is compared to the mono timestep evolution.
In the Table 2, we compare the solutions obtained in multi modo-time analysis.
These results show the interest of the development of théi-timk computation:
small error (less than 1%) and significative computationatreduction (up to 24%).
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Figure 9. Evolution of the temperature at nodefor the 2 multi-time configurations
and comparison to the mono-time evolution

6. Industrial benchmark

6.1. Definition of the benchmark

The benchmark is an assembly used in power converters: ahimzed on a
first DBC (Direct Bonded Copper) substrate and connectedgtrand one by the use
of 12 bumps connectors (one lying copper cylinder with tod anttom brazes) as
presented in Figure 10. The current circulates in the inopper layers of the DBC
substrates, while the heat generated by the chip commuosgagimes through the bumps
and DBC substrates (see Figure 11).
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Table 2. Comparison of mono-time versus multi-time computations

819

Mono-time Multi-time Multi-time
11111111 11112222 11222444
Error at first
- 0, - 0,
increment (0.05 s) reference 0.2% 0.3%
Error at last
0, - 0,
increment (0.35 s) reference +0.2% 0.8%
Time decrease reference -17% -24%
Copper metalization
AN
: : Copper Metalization
L T Bumps (Copper and Braze
W/Silicon Diod
I . . Braze
‘ .QCopper Metalization
L ‘\NN
Copper Metalization
Figure 10. The different parts of the assembly
NN AN,
i ]
‘ ‘ T
lHHHHl o ‘ ]
I J YY"

@) (b)

Figure 11. Current circulation (a) and heat circulation with convegticooling (b)

As the repartition of the heat between the top face and thetndace of the chip
is not known, it is assumed that half of heat escapes by théatmpand half by the
bottom face of the chip. Moreover, the bump behavior is thetraignificative. So we
only modelize the top of the assembly.

6.2. Electro-thermal model

The volumetric calorific power (il m ) dissipated by the chip at each timestep
might be approximated by the following relation:

P =—4.4110%-2.04 1080 —0.5331+5.606]a+9.92 1012 +2.28 10T
[58]
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whereT (°C) is the temperature of the chip,( A m~3) is the volumetric current
density andx (adimensional value betwe@nand1) is the cyclic ratio of the power
converter. This expression has been extracted from theg steithed with the electro-
thermal chip model developed by (Mussatdal., 2004). For each timestep, we per-
form an electric calculation followed by a thermal one. Ag thitial time, the whole
structure is set at a potential ®ft” and a temperature 66°C

Two kinds of decomposition strategies are retained, withexic idea for each
one:

a “slice” tearing: each part or each group of parts is a suinan. In this case,
the interfacial problem involves large contact surfaceg (Sigure 12(a));

a “block” tearing: the assembly is torn through the partsisption limits the
size of the interface because it uses only the part thicksgsee Figure 12(b)).

pEe—7%
/
2
AT
(a) Slice tearing (b) Block tearing

Figure 12. Slice-tearings and blocks-tearing of the DBC

For a transient multi-timestep analysis, the slice-tepi;ymore adapted, since
it allows different timesteps on the different parts. In gresented version of the
software, a mixed partition of the workpiece using bothcsliand “block” tearing
cannot be used since n-uplets¥ 2) interfacial nodes are not implemented. In a new
version, this has been done.

The properties of the material used in the model are resumttkiTable 3: coef-
ficients of dilatationy, heat capacitie§’,, thermal conductivities, Young’s modulus
E, Poisson’s ratiov, densities and electrical resistivitieg,;.. - The initial tempera-
ture for each material is identicdl,,; = 20°C.
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6.3. Mono and multi-timesteps computation

We use a slice-tearing and set up timesteps in sub-domaimsl 2 awice the
timestep in the sub-domain 3. In fact, this one includes ttip and is submitted to
the fastest electro-thermal phenomenon (see Figure 13efmils). The next figure
shows the evolution of temperature for a node situated omthem surface of the
chip for mono (temperature-111) and multi timestep (terapee-112) analysis, lead-
ing to very small differences between the two methods: leas2% for the whole
computation (see Figure 14). The time computations arertegdn Table 4 for two
different computers with the corresponding time reductiohhe relatively high val-
ues of the ratio reported in Table 4 comes from the fact thantimber of elements
with a greater timestep value in the model is very low.

Table 3. Table of the material properties

Copper Silicon AIN Bump
« 1.64107° [ 3.2410°°% | 4510°% | 2.19107°
C,(J/m.°C) 385 765 850 385
AW/m.cC) 389 150 173 30
E(Pa) 11710™ | 1510 | 3.310™ | 5.27 101
v 0.343 0.278 0.25 0.3
p(kg/m?) 8700 2330 3260 7360
Delec(Q/m) 11078 | 3810°% | 110° 11076

J

L B B 74

0.004 ¢
0.002 ¢

0.002 ¢

Figure 13. Timesteps definition for the multi-timestep analysis
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Figure 14. Temperature in mono and multi-time evolutions

Table 4. Computation times on two different computers and sliceingar

mono timestep multi-timestep| Ratio
Plll 1GHz 5778 5609 0.97
PIV 2.6 GHz 1903 1830 0.96

7. Conclusions

This work reports some theoretical results and a validagipproach concerning
multi-timestepping and the application to an industriabidem. Moreover, Mul-
PhyDo includes now three physics (resistive electricantines and structural dynam-
ics), which permit multi-timestepping analysis for bothtoém. This tool can be
currently used in industry for power converters modelindg arplores an other way,
compared to other ones (Hoppeal,, 2003; Chowet al,, 2001). This first application
leads to a plan for further developments:

— introduction of non-linearities by using the collabooatiof explicit (for zones
with fine timesteps) and implicit (for zones with larger tisbeps) schemes;

— finest taking into account of the silicon chip heat generaiin the power con-
verters. In fact, the use of multi-timestepping allows tise of timesteps close to the
commutation frequency of the chips.

The work of the authors has been supported by the funds of aeiPElectronics
Associated Research Laboratory of Alstom Transport in Sén(Erance).
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