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ABSTRACT.A new stochastic finite element procedure (SFEP) in the tradition of Ghanem’s work
is presented. It allows to deal with any number of input random variables of any type that can
model both material properties and loading. The method makes use of Hermite series expansion
of the input random variables and polynomial chaos expansion of the response, for which an
original implementation is proposed. The link with reliability analysis is also established. Three
application examples in geotechnical engineering are given for the sake of illustration. The
accuracy and efficiency of SFEP is thoroughly investigated by comparison with well-established
approaches.

RÉSUMÉ.On présente ici une nouvelle procédure aux éléments finis stochastiques baptisée SFEP.
Elle permet de traiter des problèmes où l’aléa, portant sur les propriétés matériau et le char-
gement, est représenté par des variables aléatoires de n’importe quel type et en nombre quel-
conque. On utilise le développement des variables aléatoires d’entrée en séries d’Hermite et le
développement de la réponse sur le chaos polynomial, pour lequel une implémentation est pro-
posée. On montre également comment exploiter les résultatspour faire de la fiabilité des struc-
tures. Trois exemples d’application en géomécanique sont présentés. La précision et l’efficacité
de la méthode sont évaluées sur ces exemples par comparaisonavec des méthodes standard.

KEYWORDS:stochastic finite elements, polynomial chaos, finite element reliability, parametric
study, foundation.
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1. Introduction

The so-calledstochastic finite element analysishas been paid much attention in
the past two decades. All the methods found in the literatureunder this denomination
have the following common characteristics:

– a finite element model,i.e. the discretized version of the equations governing a
physical phenomenon such as solid mechanics, heat transfer, etc.;

– a probabilistic model of the input parameters: random variables and/or random
fields are introduced for this purpose.

Apart from these common points, the methods referred to asstochastic finite element
analysisare rather different in nature. According to Sudret and Der Kiureghian (Sudret
et al.,2000), they may be classified as follows (see also (Schuëller, G. (Editor), 1997,
Matthieset al.,1997, Kleiber, M. (Editor), 1999) for general reviews on thetopic and
(Frangopol D.M., Maute K. (Editors), 2004) for recent advances):

– second moment methods:these methods essentially aim at computing the vari-
ations of the mechanical response around its mean value,i.e. they provide the mean
and standard deviation of response quantities such as displacements or stresses. The
perturbation methodapplied by (Hisadaet al., 1981; 1985, Liuet al., 1986a; 1986b,
Kleiberet al., 1992) falls within this category. So does theweighted integral method
proposed by (Deodatis, 1991, Deodatis and Shinozuka, 1991,Takada, 1991a; 1991b);

– reliability methods:these methods aim at computing the probability of failure
of a mechanical system with respect to a failure criterion represented by a limit state
function (Ditlevsenet al., 1996). In the context of finite element analysis, the pio-
neering work by (Der Kiureghianet al., 1983; 1988) has been followed by many
contributions, e.g. (Lemaire, 1998, Lemaire et al., 2000, Sudret and Der Kiureghian,
2002) . The so-calledfinite element reliability methodsare nowadays applied in vari-
ous industrial contexts, e.g. (Frangopol and Imaia, 2000, Imaia and Frangopol, 2000,
Pendolaet al., 2000, Mohamedet al., 2002, Sudretet al., 2005);

– polynomial chaos expansion methods (PCEM):these methods aim at represent-
ing the full probabilistic content of the mechanical response as a polynomial series
expansion in standard normal variables. In this respect, PCEM provide anintrinsic
representation of the response, since each response quantity is characterized as a ran-
dom variable through expansion coefficients. The spectral stochastic finite element
method (SSFEM) proposed by Ghanem and Spanos pertains to this category. This
representation can be used together with Monte Carlo simulation to obtain the prob-
ability density function (PDF) of response quantities or second moment information.
The use of SSFEM for finite element reliability analysis has also been demonstrated
by Sudret and Der Kiureghian (Sudretet al.,2002).

The present paper is related to this third category of so-called stochastic finite
element methods denoted hereinafter by PCEM. Before detailing its objectives, a rapid
review of the specific literature is necessary. The originalwork by (Ghanem and
Spanos, 1990; 1991) deals with linear stochastic boundary value problems in which
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the spatial variability of a material property (e.g. Young’s modulus) is modeled using
a random field, which is discretized using the Karhunen-Loève expansion. Later on,
the same approach has been applied to transport in porous media (Ghanem, 1998),
heat transfer (Ghanem, 1999b, Xiuet al.,2003) and recently soil-structure interaction
(Ghiocelet al.,2002) and structural dynamics (Van Den Nieuwenhofet al.,2003).

In all these applications, the spatial variability of one ormore material properties
is represented by a Gaussian or lognormal random field. Attempts to applying the
approach to non linear problems can be found in Anders and Hori (Anders et al.,
1999, Anderset al.,2001) (bounds on the solution are derived) as well as in Keeseand
Matthies (Keeseet al.,2002). A general framework for stochastic mechanics based
on these ideas is described by (Ghanem, 1999a). Babuskaet al.propose a similar
framework and discuss convergence issues and error estimators (Debet al., 2001,
Babuskaet al.,2002).

In the spirit of many of these papers, the use of polynomial chaos expansion in
order to represent the stochastic mechanical response is related to spatial variabil-
ity and the use of random fields. It is clear though that the useof the polynomial
chaos expansion is only a way of representing the mechanicalresponse. It should
be independent from the way the input uncertainties is represented. Moreover, most
applications in engineering mechanics are concerned with modeling the uncertainties
in model parameters by using random variables instead of random fields. Indeed, the
spatial fluctations of a parameter are often second-order quantities compared to the
uncertainty of the parameter considered as homogeneous (geomechanics may be in
some cases a remarkable exception).

Of course, random variables may be considered as the limit case of random fields
having infinite correlation length. However, the formalismproposed in the papers
presented above is not directly suitable to this situation.Indeed, the random variables
used for instance in structural reliability may have various types of distribution (not
only Gaussian or lognormal), they may be correlated. What ismore, loading is of-
ten the principal source of randomness and is rarely taken into account in the above
references (although the possibility of having random loading is mentioned e.g. in
(Ghanemet al.,1991)). Finally, most papers do not address the problems related to
post-processing. Their application examples are often limited to the presentation of
the expansion coefficients of the principal unknowns (e.g. nodal displacement, tem-
perature), sometimes mean and standard deviation of those.The inattentive reader
can then wonder about the point of such complex methods if only mean and standard
deviation of response quantities (which may be obtained easily by crude Monte Carlo
simulation) are sought for. In other words, the great potential of these PCEM meth-
ods is scarcely fully taken advantage of. As a consequence ofthese observations, the
present paper aims at:

– developing a new framework for stochastic finite element analysis, which allows
to take into account any number of random variables of any type to model the in-
put uncertainties. Thus random Young’s modulus, Poisson’sratio, initial stress state
and loading may be considered in the analysis. An original implementation of the
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polynomial chaos used to represent the stochastic responseand related tools are also
presented;

– deriving useful relationships in order to expand strain orstress response quanti-
ties onto the polynomial chaos;

– developing the specific post-processing for moment analysis (i.e. computing the
first four moments of the response), reliability analysis and PDF representation;

– comparing different numerical solving schemes in terms ofaccuracy and com-
putational efficiency on application examples, in order to conclude about the “good
practices” in stochastic finite element analysis.

The proposedstochastic finite element procedure(SFEP) presented in the sequel
requires expanding the input random variables (or functions thereof) as Hermite series
of standard normal random variables. This is detailed in Section 2. SFEP is then
presented in Section 3. The various possible post-processings are then described in
Section 4. Finally three application examples in geotechnical engineering illustrate
the method.

2. Hermite series expansion of random variables

2.1. Introduction and notation

Let us denote byL2(Θ, F, P ) the Hilbert space of random variables with finite
variance. Let us consider a random variableX with prescribed probability density
function (PDF)fX(x) and cumulative distribution function (CDF)FX(x). The math-
ematical expectation is denoted byE[·]. The expectation of a functiong(X) is defined
by:

E[g(X)] =

∫ ∞

−∞
g(x)fX(x)dx [1]

Let us denote byξ a standard normal variable,ϕ(x) = 1√
2π

e−
x2

2 the standard
normal PDF andΦ the standard normal CDF. Let{Hi, i = 0, · · · ,∞} be the Hermite
polynomials defined by:

Hi(x) = (−1)i 1

ϕ(x)

diϕ(x)

dxi
[2]

The set{Hi, i = 0, · · · ,∞} is an orthogonal basis of the Hilbert spaceL2(ϕ)
of the square integrable functions with respect to the Gaussian measure (Malliavin,
1997). Thus:

E[Hi(ξ)Hj(ξ)] = δij · i! [3]
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whereδij is the Kronecker symbol. Classical results (e.g. (Malliavin, 1997)) allow to
expand any random variableX with prescribed PDF as a Hermite polynomial series
expansion:

X =
∞∑

i=0

aiHi(ξ) [4]

where{ai, i = 0, · · · ,∞} are coefficients to be evaluated. Two methods are now
presented for this purpose.

2.2. Computation of the expansion coefficients

2.2.1. Projection method

This method was used by (Puiget al., 2002, Xiu and Karniadakis, 2002, Field and
Grigoriu, 2004). Due to the orthogonality of the Hermite polynomials with respect to
the Gaussian measure, it comes from Equation [4]:

E[XHi(ξ)] = ai E[H2
i (ξ)] [5]

whereE[H2
i (ξ)] = i!. By using the transformation to the standard normal space

X → ξ: FX(X) = Φ(ξ), one can write:

X(ξ) = F−1
X (Φ(ξ)) [6]

Thus:

ai =
1

i!
E[X(ξ)Hi(ξ)] =

1

i!

∫

R

F−1
X (Φ(t))Hi(t)ϕ(t)dt [7]

WhenX is a normal, lognormal or uniform random variable, coefficients {ai, i =
0, · · · ,∞} can be evaluated analytically:

X ≡ N(µ, σ) a0 = µ, a1 = σ, ai = 0 for i ≥ 2

X ≡ LN(λ, ζ) ai =
ζi

i!
exp [λ +

1

2
ζ2] for i ≥ 0

X ≡ U[a, b] a0 =
a + b

2
, a2i = 0 , [8]

a2i+1 =
(−1)i(b − a)

22i+1
√

π i! (2i + 1)

For other types of distribution, the integral in Equation [7] can be evaluated numeri-
cally using Gaussian quadrature (Sudretet al.,2003).
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2.2.2. Regression method

This method was introduced by (Websteret al.,1996) and (Isukapalli, 1999). It is
based on a least square minimization of the discrepancy between the input variableX
and its truncated approximatioñX:

X̃ =

p∑

i=0

aiHi(ξ) [9]

Let {ξ(1), · · · , ξ(n)} ben outcomes ofξ. Equation [6] (resp. [9]) yieldsn outcomes
{X(i), i = 1, · · · , n} (resp.{X̃(i), i = 1, · · · , n}). The least square method consists
in minimizing the following quantity with respect to{ ai , i = 0 , · · · , p }:

∆X =
n∑

i=1

(X(i) − X̃(i))2

=
n∑

i=1


F−1

X (Φ(ξ(i)) −
p∑

j=0

ajHj(ξ
(i))




2 [10]

This leads to the following linear system yielding the expansion coefficients
{ ai , i = 0 , · · · , p }:




n∑

i=1

H0(ξ
(i))H0(ξ

(i)) · · ·
n∑

i=1

H0(ξ
(i))Hp(ξ

(i))

...
. . .

...
n∑

i=1

Hp(ξ
(i))H0(ξ

(i)) · · ·
n∑

i=1

Hp(ξ
(i))Hp(ξ

(i))







a0

...
ap




=




n∑

i=1

X(i)H0(ξ
(i))

...
n∑

i=1

X(i)Hp(ξ
(i))




[11]

Both methods are illustrated in Figure 1 and in Table 1 in caseof a lognormal
distributionLN(0.6501, 0.2936) with a mean value of 2 and a standard deviation of
0.6.

Note that there are several methods for selecting regression points. First, they
can be chosen as roots of the Hermite polynomial of orderp + 1 (Websteret al.,
1996, Isukapalli, 1999). They can also be chosen randomly. This question is addressed
in details in (Berveilleret al.,2004b).
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Figure 1. Theoretical and third-order approximated PDF of a lognormal distribution
LN(0.6501, 0.2936)

Table 1. Coefficients of the third-order expansion of a lognormal distribution
LN(0.6501, 0.2936)

Method a0 a1 a2 a3

Projection 2.0000 0.5871 0.0862 0.0084
Regression 1.9986 0.5869 0.0872 0.0085

2.3. Error estimators

In order to qualify the accuracy of the polynomial series expansion, two error
estimators are proposed. Note that the first coefficienta0 is the mean of the random
variableX under consideration. Thus it is supposed to be known. The mean square
error estimator is defined as:

ǫ1 = E

[(
X − X̃

)2
]

/σ2 [12]
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whereX̃ is thep-th order approximation ofX andσ2 is the variance ofX . From
Equations [4],[9], one gets:

E

[(
X − X̃

)2
]

= E




∑

i≥p+1

∑

j≥p+1

aiajHi(ξ)Hj(ξ)





=
∑

j≥p+1

a2
j · j!

[13]

Moreover, the varianceσ2 may be cast as:

σ2 = E
[
(X − a0)

2
]

= E



∑

i≥1

∑

j≥1

aiajHi(ξ)Hj(ξ)




=
∑

j≥1

a2
j · j!

[14]

From the above equations, it finally comes:

σ2 =

p∑

j=1

a2
j · j! + E

[
(X − X̃)2

]
[15]

Thus:

ǫ1 = 1 − 1

σ2

p∑

j=1

a2
jj! [16]

The CDF error estimator is defined as:

ǫ2 = sup
X

|FX(x) − FX̃(x)| [17]

In this expression,FX(x) is supposed to be known andFX̃(x) is computed from
the isoprobabilistic transformation:FX̃(x) = Φ(ξ). Tables 2 and 3 gather the values
of both error estimators for selected random variables withprescribed mean value and
standard deviation.

Table 2. Mean square error estimatorǫ1 (%) (Equation [16])

Projection method Regression method
Distribution∗ order 2 order 3 order 4 order 2 order 3 order 4
Lognormal(2, 0.6) 0.00 0.00 0.00 −0.07 −3.10−4 5.10−4

Weibull (1, 0.36) 0.01 0.01 0.01 0.09 0.01 0.01
Gamma(2, 1.41) 0.75 0.75 0.75 0.73 0.75 0.75
∗ Bracketed parameters are mean value and standard deviation

It appears from these examples that 1% accuracy “in the mean region” (estima-
tor ǫ1) is obtained in all cases as soon asp ≥ 2. As far as the global accuracy is
concerned (estimatorǫ2), orderp = 3 or 4 is required to obtain a 1% accuracy.
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Table 3. CDF error estimatorǫ2 (Equation [17])

Projection method Regression method
Distribution∗ order 2 order 3 order 4 order 2 order 3 order 4
Lognormal(2, 0.6) 0.08 0.01 0.01 0.05 0.01 0.01
Weibull (1, 0.36) 0.06 0.02 0.01 0.04 0.01 0.01
Gamma(2, 1.41) 0.18 0.07 0.01 0.10 0.04 0.01
∗ Bracketed parameters are mean value and standard deviation

2.4. Functions of random variables

In the sequel, it will be required to expand functions of random variables that
appear in the mechanical model (e.g. elastic coefficients asfunctions of the Poisson’s
ratio in the Hooke law). Both methods allow to expand non linear functions of random
variables. Let us denote byh(x) the function under consideration. The coefficients of
the expansion ofh(X) are obtained by projection as:

ai =
1

i!

∫

R

h[F−1
X (Φ(t))]Hi(t)ϕ(t)dt [18]

Using the regression method, the coefficients should minimize the following quan-
tity:

∆X =
n∑

i=1



h(X(i)) −
p∑

j=0

ajHj(ξ
(i))




2

[19]

where notation(ξ(i), X(i)) has been given above. This leads to a linear system
similar to Equation [11], where the right hand side is replaced by:




n∑

i=1

h(X(i))H0(ξ
(i))

...
n∑

i=1

h(X(i))Hp(ξ
(i))




[20]

As an example, let us consider a random variableν (e.g. Poisson’s ratio) with
uniform distributionU [0.2, 0.4] and the non linear functionh(ν) = 1/2(1 + ν). The
coefficients obtained by the two methods are listed in Table 4. It appears that the
expansion coefficients are close to one another in this example.
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Table 4. Coefficients of the third order expansion of the function12(1+ν) whereν =

U [0.2, 0.4]
Method a0 a1 a2 a3

Projection 0.3854 -0.0167 0.0004 0.0014
Regression 0.3852 -0.0167 0.0003 0.0017

2.5. Joint expansion of several independent random variables

In the sequel, various input parameters of the finite elementmodel will be ex-
panded onto the Hermite polynomial basis. SupposeM variables are used, each of
them being expanded by means of a standard normal variableξi at orderni:

X i =

ni∑

k=0

xi
kHk(ξi) i = 1, · · · , M [21]

All these expansions are cast in a common basis called thepolynomial chaos,
which is the set of multi-dimensional Hermite polynomials (Ghanemet al., 1991).
Precisely, theM -th dimensionalp-th order polynomial chaos is the set of multi-
dimensional Hermite polynomials in{ξi}M

i=1 whose degree does not exceedp. Let
us denote byP the size of this set (its analytical expression in terms ofM andp is
given in Appendix I). Each polynomial is denoted by:

Ψα =
M∏

i=1

Hαi
(ξi) , αi ≥ 0,

M∑

i=1

αi ≤ p [22]

An implementation of the polynomial chaos based on symboliccalculus is pro-
posed by (Ghanemet al.,1991). In this paper we propose an original implementation
based on the generation of relevant integer sequencesα (see also (Sudretet al.,2000)).
The detail is given in Appendix I. As the uni-dimensional Hermite polynomials are
contained in the polynomial chaos, Equation [21] may be rewritten as:

X i =

P−1∑

j=0

x̃i
jΨj({ξk}M

k=1) [23]

The positioning algorithm that links coefficients{xi
k} (Equation [21]) and{x̃i

k}
(Equation [23]) is detailed in Appendix II.

2.6. Conclusions

In this section, two methods have been presented for the computation of a series
expansion of random variables with prescribed PDF or functions thereof. Two error
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estimators have been developed to qualify the accuracy of these expansions. Note
the following interpretation of the methods. The projection method gives the best
approximation ofX at any order. The values of the coefficients do not depend on the
cut-off orderp. However, errors are introduced in the numerical calculation of the
coefficients. On the contrary, the regression method selects the best set of coefficients
for a given orderp. If p is changed top′ > p, all the set of coefficients{a0, · · · , ap′}
will change. It is seen in Tables 2 and 3 that the error is always slightly greater in the
projection method than in the regression scheme.

As a conclusion it seems that both methods are almost equivalent in terms of ac-
curacy. The third order of expansion(p = 3) seems to be the best compromise be-
tween accuracy and efficiency. Correlated random variablescan also be expanded
onto the polynomial chaos. They are decorrelated by using a Nataf transformation
(Der Kiureghianet al.,1986). Then the regression method allows to jointly expand
the uncorrelated random variables onto the polynomial chaos.

3. Stochastic finite element procedure (SFEP) in linear mechanics

Using classical notations (Zienkiewiczet al.,2000), the finite element method for
static problems in linear elasticity yields a linear systemof sizeNdof , whereNdof

denotes the number of degrees of freedom of the structure:

K · U = F [24]

In the above equation,K is the global stiffness matrix,U is the basic response
quantity (e.g. vector of nodal displacements) andF is the vector of nodal forces.
In SFEP, due to the introduction of input random variables, the basic response quantity
is a random vector of nodal displacementsU(θ). In this expression and in the sequel,
θ denotes the random characteristics of each quantity. Each component is a random
variable expanded onto the polynomial chaos:

U(θ) =

∞∑

j=0

U jΨj({ξk(θ)}M
k=1) [25]

where{ξk(θ)}M
k=1 denotes the set of standard normal variables appearing in the dis-

cretization of all input random variables and{Ψj, j ≥ 0} are multidimensional Her-
mite polynomials that form an orthogonal basis ofL2(Θ, F, P ). In the sequel, the
dependency ofΨj in {ξk(θ)}M

k=1 will be omitted for the sake of clarity.

3.1. Taking into account randomness in material properties

In the deterministic case, the global stiffness matrix reads:

K =
⊕

e

ke =
⊕

e

∫

Ωe

BT · D · B dΩe [26]
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whereB is the matrix that relates the components of strain to the element nodal
displacement,D is the elasticity matrix and

⊕

e

is the assembly procedure over all

elements. When material properties are described by means of random variables, the
elasticity matrix hence the global stiffness matrix becomerandom. The latter may be
expanded onto the polynomial chaos as follows:

K =
∞∑

j=0

KjΨj [27]

where

Kj = E[KΨj ] =
⊕

e

∫

Ωe

BT · E[DΨj ] · BdΩe [28]

Note thatB is a deterministic matrix whileD is random. In case of an isotropic
elastic material with random independent Young’s modulusE and Poisson’s ratioν,
the latter may be written as:

D = E(λ̃(ν)D1 + 2µ̃(ν)D2) [29]

whereλ̃(ν), µ̃(ν) are function ofν which depend on the modeling (plane strain,
plane stress or three-dimensional problem) andD1, D2 are deterministic matrices.
Random Young’s modulusE is expanded as in Equation [23]. Functions of the ran-
dom Poisson’s ratio{λ̃(ν), µ̃(ν)} (which should be mixed up with the Lamé’s coeffi-
cients of the material) may be expanded in the same way, usingeither the projection
or the regression method:

E =

∞∑

i=0

eiHi(ξE)

λ̃(ν) =

∞∑

j=0

λjHj(ξν)

µ̃(ν) =

∞∑

j=0

µjHj(ξν)

[30]

Note that the same standard normal variableξν is used to expand both functions
λ̃(ν) andµ̃(ν). By substituting for Equation [30] in Equation [29], one finally gets:

D =
∞∑

i=0

∞∑

j=0

eiλjHi(ξE)Hj(ξν)D1

+

∞∑

i=0

∞∑

j=0

eiµjHi(ξE)Hj(ξν)D2

[31]

ProductsHi(ξE)Hj(ξν) may be injected into the polynomial chaos (Section 2.5),
finally yielding:

D =
∞∑

k=0

(αkD1 + βkD2)Ψk [32]
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If the structure under consideration is made of several materials, the above pro-
cedure is applied using different random variables in each element group having the
same material properties.

3.2. Taking into account randomness in loading

The vector of nodal forces may be written as:

F =

Nq∑

i=1

qiF i [33]

whereNq is the number of load cases,{qi}Nq

i=1 denote random loading parameters
and F i “load pattern" vectors corresponding to a unit value ofqi. Note that this
formulation equally applies to pinpoint forces, pressure or initial stresses. Coefficients
qi can be expanded onto the polynomial chaos (see Equation [23]):

qi =

∞∑

j=0

qi
jHj(ξi) ≡

∞∑

j=0

q̃i
jΨj [34]

Thus the random vector of nodal forces reads:

F =

Nq∑

i=1

∞∑

j=0

q̃i
jΨjF i =

∞∑

j=0

F̃ jΨj [35]

3.3. Global linear system

By using Equations [25],[27],[35], the discretized stochastic equilibrium equation
reads:

( ∞∑

i=0

KiΨi

)
·




∞∑

j=0

U jΨj


 =

∞∑

j=0

F̃ jΨj [36]

After a truncature of the series appearing in Equation [36] at orderP , the residual
in the equilibrium equation is:

ǫP =

(
P−1∑

i=0

KiΨi

)
·




P−1∑

j=0

U jΨj


−

P−1∑

j=0

F̃ jΨj [37]

Coefficients{U0, · · · , UP−1} are computed using the Galerkin method minimiz-
ing the residual defined above, which is equivalent to requiring that this residual be
orthogonal to the space spanned by{Ψj}P−1

j=0 (Ghanemet al.,1991):

E[ǫP Ψk] = 0 , k = {0, · · · , P − 1} [38]
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This leads to the linear system:




K0,0 · · · K0,P−1

K1,0 · · · K1,P−1

...
...

KP−1,0 · · · KP−1,P−1


 ·




U0

U1
...

UP−1


 =




F̃ 0

F̃ 1
...

F̃P−1


 [39]

denoted hereinafter byK · U = F . In this expression,Kj,k =

P−1∑

i=0

Kidijk and

dijk = E[ΨiΨjΨk]. Coefficientsdijk may be calculated analytically (see details in
Appendix I). The number of unknows in the above linear systemis Ndof × P , where
Ndof is the number of degrees of freedom of the mechanical model, andP is the order
of expansion of each response quantity. Note that the globalstiffness matrixK in
Equation [39] is a block matrix. The diagonal blocks represent the contribution of the
mean value. When the scattering of the input parameters (i.e. the standard deviation of
the input random variables) increases, the weight of the out-diagonal blocks increases.
Figure 2 shows that the block matrix is symmetric and sparse,i.e. it contains a large
number of zeros.
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Figure 2. Representation of the global stiffness matrixK (Dots are non zeros values)

The linear system Equation [39] may be solved directly (Ghanem et al., 1996)
by linear solvers suitable to large sparse systems (for instance, using pre-conditioned
conjugate gradient techniques). A hierarchical solving scheme has also been proposed
by (Ghanem, 1999a, Ghanem, 2000).
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3.4. Object-oriented implementation

The implementation of the proposed stochastic finite element procedure has been
made within the Matlab environment (Mathworks, 2001) in an object-oriented way.
The main objects are:

– the polynomials chaos. The detail of its implementation isgiven in Appendix I;

– the classRANDOM_VARIABLE contains the type and parameters of each random
variable, the method of approximation, the order of expansion, and the obtained ex-
pansion coefficients;

– the classMATERIAL contains all the information about material properties which
may be random or deterministic. Note that a deterministic parameter may be consid-
ered as a random variable which is expanded at order 0 onto theHermite polynomial
basis. This allows a common treatment of deterministic parameters and random vari-
ables;

– the classLOADS contains all information about loading: load patterns and coeffi-
cients of load parameters expansion onto the polynomial chaos.

As presented above, the resolution of Equation [39] can be made by two ways: the
direct method and the hierarchical method. Figure 3 shows animplementation scheme
for the direct method.

The hierarchical method computes response coefficients by successive resolutions
of systems of smaller size. Let us denote indeed byl = {0, · · · , Q−1, Q < P−1} the
lower orderindices andu = {Q, · · · , P − 1} theupper orderindices of the unknown
vector. Equation [39] may rewritten as:

(
Kl,l Kl,u

Ku,l Ku,u

)
·
(

U l

Uu

)
=

(
F l

Fu

)
[40]

Due to the hierarchical properties of the polynomial chaos,note thatK l,l ·Ũ l = F l

is exactly the linear system to be solved when the response isexpanded at orderQ.
If this lower order expansion is accurate enough, it is supposed thatŨ l is a good
approximation ofU l in Equation [40]. Thus Equation [40] can be solved as follows:

Ul = Ũl = K−1
l,l · Fl [41]

Uu = K−1
u,u · (Fu − Ku,l · Ũl) [42]

[43]

In practice, order of expansionQ is related to a maximal degreeq < p of the multidi-
mensional Hermite polynomials based on theM input random variables.
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Figure 3. Implementation scheme of the direct resolution scheme

4. Post-processing of the results

Solving the linear system Equation [39] yields the expansion coefficients of the
vector of nodal displacements:

U =

P−1∑

j=0

U jΨj [44]

In this section, several results on quantities of interest are derived from the set of
expansion coefficients. These results are not limited to theproposed SFEP, but apply
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more generally to any stochastic finite element method basedon the polynomial chaos
expansion of the response.

4.1. Expansion of all response quantities

4.1.1. Strain tensor

In each elementΩe of the finite element mesh, the strain tensor in a given pointx
reads:

ε(x) = B(x) · ue [45]

whereue denotes the vector of nodal displacements of elemente. The expansion
[44] restricted to vectorue is:

ue =

P−1∑

j=0

ue,jΨj [46]

Thus:

ε(x) =
P−1∑

j=0

εj(x)Ψj

with εj(x) = B(x) · ue,j

[47]

4.1.2. Stress tensor

When Young’s modulusE is random, whereas Poisson’s ratioν is deterministic,
the elasticity matrix may be rewritten as:

D =




P−1∑

j=0

ejΨj


D0 [48]

where{ej} are the coefficients of the expansion ofE. The stress tensorσ(x) in a
given pointx ∈ Ωe is:

σ(x) = D · ε(x) =

P−1∑

i=0

P−1∑

k=0

eiD0 · εk(x)ΨiΨk [49]

To simplify this expression, productsΨiΨk are injected into the polynomial chaos
basis:

ΨiΨk =
P−1∑

j=0

dijk

E[Ψ2
j ]

Ψj [50]
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One finally gets:

σ(x) =
P−1∑

j=0

σjΨj

with σj(x) =

P−1∑

i=0

P−1∑

k=0

dijk ei D0 · εk(x)

[51]

When both Young’s modulusE and Poisson’s ratioν are random, the elasticity
matrix is:

D =
P−1∑

i=0

(αiD1 + βiD2)Ψi [52]

where coefficients(αi, βi) have been given in section 3.1. Then the stress tensor
becomes:

σ(x) =

P−1∑

j=0

σjΨj

with σj(x) =

P−1∑

i=0

P−1∑

k=0

dijk (αiD1 + βiD2) · εk(x)

[53]

As a conclusion, it appears that the mechanical response of the systemS (i.e. the
set of all nodal displacements, nodal strain or stress components) may be written as:

S =

P−1∑

j=0

SjΨj . [54]

4.2. Moment analysis

From Equation [54], the statistical moments of any responsequantity can be easily
computed. The mean of the response quantityS (nodal displacement, strain or stress
component) is given by:

E[S] = s0 [55]

The variance ofS is:

Var[S] = σ2
S =

P−1∑

i=1

E[Ψ2
i ]s

2
i [56]

The skewness and the kurtosis coefficients ofS are:

δS =
1

σ3
S

P−1∑

i=1

P−1∑

j=1

P−1∑

k=1

dijk sisjsk dijk = E[ΨiΨjΨk] [57]



A stochastic finite element procedure 843

κS =
1

σ4
S

P−1∑

i=1

P−1∑

j=1

P−1∑

k=1

P−1∑

l=1

dijkl sisjsksl dijkl = E[ΨiΨjΨkΨl] [58]

Note that coefficients(dijk, dijkl) are known analytically (See Appendix I).

4.3. Finite element reliability analysis

In reliability analysis (Ditlevsenet al.,1996), the failure criterion of a structure is
defined in terms of a limit state functiong(X, S(X)) which may depend both on basic
random variablesX and response quantitiesS(X). The domain{g(X, S(X)) > 0}
defines the safe state and{g(X, S(X)) ≤ 0} defines the failure state. Using this
notation, the aim of reliability analysis is to compute the probability of the failure
event:

Pf = Prob [g(X, S(X)) ≤ 0]
=

∫
g(X,S(X))≤0

fX(x)dx
[59]

wherefX(x) is the joint probability density function of the random variablesX.
The computation of this integral is not possible directly because the failure domain
depends implicitly onS(X), which is computed using a finite element code.

The First Order Reliability Method (FORM) has proven efficiency together with
finite element analysis for approximating the probability of failure (Der Kiureghianet
al., 1988, Lemaire, 1998). However, this approach, which is based on an iterative op-
timization algorithm that provides the design point (most probable failure point in the
standard normal space) may be computationally expensive. It requires indeed succes-
sive deterministic finite element runs until convergence ofthe algorithm is obtained.
By the way, any parametric study requires rerun the full coupled model, without being
able to reuse the previous finite element calculations.

The SFEP developed in the above section offers an attractivealternative for finite
element reliability analysis. It has been shown indeed thatany response quantity can
be cast as a series expansion, whose coefficients results from Equations [44],[47],[53].
Thus any limit state function may be approximated as follows, once a stochastic finite
element analysis has been carried out:

g(X, S(X)) ∼= g


{ξk}M

k=1,
P−1∑

j=0

SjΨj({ξk}M
k=1)


 [60]

Then the reliability problem, which is already formulated in the standard normal
space by construction, may be solved by any available methodincluding Monte-Carlo
Simulation, FORM/SORM, Importance Sampling, etc. (Ditlevsenet al.,1996).
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4.4. Representation of the response PDF

Three methods for representating the probability density function of response
quantities are presented in this section.

4.4.1. Histograms

The first method is the classical Monte-Carlo simulation, which generates an his-
togram fromn samples. The number of binsnbin of the histogram can be computed
using the Stuge’s rule:

nbin = 1 + log2(n) [61]

This requires only simulating samples of the standard normal vector ξ =
{ξ1, · · · , ξM}. Note that the simulation is inexpensive in our case since each response
quantity is a polynomial function ofξ.

4.4.2. Averaged shifted histograms

The idea behind this method is to generate several histograms, which have the
same bin width∆x but different origins, and to average them in order to obtaina
smoother histogram (Yu, 2003). Let us considerm histograms{h1(x), · · · , hm(x)},
whose origin are respectively:

x′
0 = x0, x0 +

∆x

m
, x0 +

2∆x

m
, · · · , x0 +

(m − 1)∆x

m
[62]

The mean histogram is then obtained by:

hmoy =
1

m

m∑

i=1

hi(x) [63]

4.4.3. Parametric FORM analysis

Let us consider a componentS of the random response vectorS whose PDFfS(x)
is looked after. The CDFFS(x) may be considered as the solution of a reliability
problem. Indeed:

FS(x) = P (S ≤ x)

= P




P−1∑

j=0

SjΨj({ξk}M
k=1) − x ≤ 0





= P
(
gS(ξ, x) ≤ 0

)
[64]

where

gS(ξ, x) =

P−1∑

j=0

SjΨj({ξk}M
k=1) − x [65]
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Suppose thatβ(x) is the reliability index associated with the above reliability prob-
lem, andPf (x) = Φ(−β(x)) is the corresponding FORM approximation. Straight-
forward algebra yields:

fS(x) =
dFS(x)

dx

=
dΦ(−β(x))

dx

= −ϕ(β(x)) · dβ(x)

dx

[66]

The quantity
dβ(x)

dx
may be now be considered as the sensitivity ofβ(x) with

respect to parameterx. Analytical results for this kind of problem have been givenin
(Ditlevsenet al.,1996):

dβ(x)

dx
=

1∥∥∥∇ξgS(ξ, x)
∥∥∥

ξ=ξ∗

∂gS(ξ, x)

∂x
[67]

where the gradient appearing in the denominator is evaluated at the design point
ξ = ξ∗ (most likely failure point in the standard normal space). Due to Equation [65],
∂gS(ξ, x)

∂x
= −1. Thus:

fS(x) =
ϕ(β(x))∥∥∥∇ξgS(ξ, x)

∥∥∥
ξ=ξ∗

[68]

As a conclusion, the PDF of any response quantityS may be obtained by succes-
sive FORM analysis with different values of thresholdx, using Equation [68]. Note
that this method provides a smooth representation offS(x), in contrary to histograms.
The FORM analysis are inexpensive since the underlying limit state function is ana-
lytical (Equation [64]) and already formulated in the standard normal space.

5. Application examples in geotechnical engineering

5.1. Example #1: homogeneous soil layer

5.1.1. Deterministic problem statement

Let us consider an elastic soil mass made of an isotropic linear elastic material
lying on a rigid substratum. A foundation on this soil mass ismodeled as a uniform
pressure loadP applied over a length2B of the free surface (Figure 4). Due to the
symmetry, half of the structure is modeled by finite element.The mesh of half of the
foundation comprises 99 nodes and 80 4-node elements which allows a 1%-accurate
evaluation of the maximal settlement compared to a reference solution (Figure 5).
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Figure 4. Homogeneous soil layer: scheme of the fondation

Figure 5. Mesh of the foundation

The model parameters are listed in Table 5. As the soil mass has an elastic behav-
ior, the maximal settlement is given by:

U i0 = χ
P

E
[69]

The numerical value ofχ is 13.575 m for the mesh under consideration, corre-
sponding to a maximal settlementUmax=0.0543 m (the “exact” solution obtained with
a refined mesh isχ = 13.744 m).

Table 5. Homogeneous soil layer: parameters of the foundation

Parameter Notation Mean Value
Young’s Modulus E 50 MPa
Poisson’s Ratio ν 0.3
Load P 0.2 MPa
Width of the foundation 2B 10 m
Mesh size L 60 m
Soil thickness t 30 m
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5.1.2. Stochastic problem

In this first example, we consider that there are only two random variables: the
Young’s modulusE and the applied loadP . The Young’s modulus is represented by
a lognormal random variable with a mean valueµE = 50 MPa and a coefficient of
variation of 20%. The load is represented by a lognormal variable with meanµP =
0.2 MPa and a coefficient of variation of 20%. AsP andE are lognormal random
variables,U i0 is also a lognormal random variable with parametersλU = ln(χ) +
λP − λE = −2.9022 andζU =

√
ζ2
P + ζ2

E = 0.2801.

Table 6. Homogeneous soil layer: coefficients of the polynomial chaos expansion of
U i0

Direct Hierarchical
p = 2 p = 3 p = 4 p = 3(2) p = 4(2) p = 4(3)

-5.64E-02 -5.64E-02 -5.64E-02 -5.64E-02 -5.64E-02 -5.64E-02
-1.12E-02 -1.12E-02 -1.12E-02 -1.12E-02 -1.12E-02 -1.12E-02
1.11E-02 1.12E-02 1.12E-02 1.11E-02 1.11E-02 1.12E-02
-5.32E-04 -5.53E-04 -5.53E-04 -5.32E-04 -5.32E-04 -5.53E-04
2.13E-03 2.21E-03 2.21E-03 2.13E-03 2.13E-03 2.21E-03
-1.02E-03 -1.11E-03 -1.11E-03 -1.02E-03 -1.02E-03 -1.11E-03

-1.17E-05 -1.22E-05 -1.17E-05 -1.17E-05 -1.17E-05
1.05E-04 1.09E-04 -4.06E-04 -4.06E-04 1.05E-04
-2.11E-04 -2.19E-04 -1.16E-05 -1.16E-05 -2.11E-04
7.34E-05 7.28E-05 2.44E-05 2.45E-05 7.34E-05

-1.45E-07 -1.45E-07 -1.45E-07
2.32E-06 7.73E-05 -2.01E-05
-1.04E-05 -3.65E-05 -7.29E-07
1.39E-05 7.13E-07 -6.74E-06
-3.32E-06 1.44E-06 1.46E-06

Table 6 collects the expansion coefficients of the settlement U i0 obtained by SFEP
at different orders with the two methods of resolution (direct and hierarchical). Note
thatp is the degree of the polynomial chaos expansion. The notation p = 3(2) means
"hierarchal resolution at order 3 with a pre-resolution at the order 2". It is observed that
the values of the lower order (six first) coefficients computed at order 3 or 4 are close
to the values computed at order 2. This is a justification of the use of the hierarchical
approach.

5.1.3. Statistical analysis

The statistical moments obtained from Equations [55]-[58]after SFEP analysis
are collected in Table 7. SinceU i0 is a lognormal random variable whose parameters
have been computed above, exact values of these moments are also available (Table 7,
column #2).
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Table 7. Homogeneous soil layer: moments of the maximal settlementU i0

Theoretical Direct
values p = 2 p = 3 p = 4

mean/Umax 1.0286 1.0273 1.0278 1.0278
coeff. var. 0.2857 0.2837 0.2846 0.2846
skewness -0.8803 -0.6831 -0.7573 -0.7599
kurtosis 4.4088 3.6366 4.0050 4.0373

Hierarchical
p = 3(2) p = 4(2) p = 4(3)

mean/Umax 1.0278 1.0278 1.0280
coeff. var. 0.2838 0.2838 0.2846
skewness -0.6517 -0.6493 -0.7565
kurtosis 3.4233 3.4713 3.9884

One can note that for the mean and the coefficient of variation, all solving schemes
provide accurate results (about 1% discrepancy compared tothe exact values). The
estimation of the skewness and kurtosis coefficients becomes accurate with increasing
order of the polynomial chaos. The direct resolution methodgives better results than
the hierarchical method but the difference is often unsignificant.

Table 8. Homogeneous soil layer: computer processing time (s)
Deterministic Direct Hierarchical

p = 2 p = 3 p = 4 p = 3(2) p = 4(2) p = 4(3)
0.82 3.74 8.43 53.76 5.9 7.7 10.88

Computer processing time (CPT) associated to each scheme isreported in Table 8
(the simulations were run on Pentium 4 PC at 1.7 GHz, the results are given in sec-
onds). It is observed that the CPT increases fast when the direct approach is used.
The hierarchical resolution allows to decrease the CPT by a factor of 5 or more. This
shows the relevance of such schemes, since the results obtained by those are quite
close to the results obtained by the direct approach, as explained above.

5.1.4. Reliability analysis

The aim of this section is to compute the reliability index associated with the max-
imum settlement of a foundation. The limit state-function is:

g(U) = uS − U i0 [70]

whereuS denotes the threshold. SinceU i0 is lognormal, it can be written as (ξ
denotes a standard normal random variable):

U i0 = exp [λU + ζU ξ] [71]
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Thus the limit state function is equivalent to:

g2(ξ) = ln(uS) − (λU + ζUξ) [72]

The associated reliability index straightforwardly reads:

β =
ln(uS) − λU

ζU

=
ln(uS) − ln(χ) − λP + λE√

ζ2
P + ζ2

E

[73]

and the exact value of the probability of failure is:

Pf = Φ(−β) [74]

On the other hand, by using the SFEP solution for having the polynomial chaos
expansion ofU i0 , Equation [70] becomes:

g(U) = uS −
P−1∑

j=0

U i0
j Ψj(ξE , ξP ) [75]

An efficient way of accurately compute the probability of failure associated with
such a limit state function is the so-calledimportance samplingtechnique. First
FORM analysis is applied in order to find the design point. Then Monte Carlo simula-
tion is applied by concentrating samples around the design point. In the present study,
importance sampling is applied using 1,000 simulations. The estimated probability of
failurePf,IS is obtained with a coefficient of variation of less than 5%. The equivalent
reliability indexβIS = −Φ−1(Pf,IS) obtained by the analytical solution and various
approximations using SFEP are given in Table 9.

Table 9. Homogeneous soil layer: reliability indexβIS

Threshold Theoretical Stochastic Finite Element Procedure (Eq. [75] + FORM)
(m) Eq. [73] Direct Hierarchical

p = 2 p = 3 p = 4 p = 3(2) p = 4(2) p = 4(3)

0.07 0.8626 0.8704 0.8841 0.8848 0.8650 0.8684 0.8828
0.08 1.3394 1.3724 1.3752 1.3769 1.3731 1.3808 1.3726
0.09 1.7599 1.8331 1.8148 1.8162 1.8478 1.8561 1.8119
0.10 2.1361 2.2612 2.2137 2.2132 2.2971 2.3000 2.2116
0.12 2.7871 3.0421 2.9185 2.9090 3.1389 3.1075 2.9217
0.15 3.5838 4.0768 3.8099 3.7766 4.2973 4.1494 3.8292
0.17 4.0307 4.7002 4.3257 4.2713 5.0146 4.7484 4.3606
0.20 4.6110 5.5610 5.0149 4.9231 6.0202 5.5272 5.0787

The theoretical reliability index is computed using Equation [73]. As expected, the
accuracy in the computed reliability indices increases with the orderp of the response
expansion in the direct solving scheme. The gain between orders 2 and 3 is always
greater than the gain between orders 3 and 4. Orderp = 3 thus appears to be a
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good compromise between accuracy and efficiency. It allows to get accurate results
(e.g. within 5-10% discrepancy compared to the exact solution) in a broad range of
reliability indicesβ = [0.8 − 4.6].

By comparing the hierarchical vs. the direct results (e.g.p = 3(2) vs. p =
2), one can see that the hierarchical step does not degrade much the results in this
case, whereas the computation time has been divided by 2-5 compared to the direct
resolution effort (see Table 8).

5.1.5. Probability density function of the maximal displacement

The PDF of the maximal displacement is plotted in Figure 6 with the method
presented in Section 4.4.3. The reference PDF is plotted from the analytical expression
of the PDF of a lognormal random variable. PDFs that are closest to the reference PDF
are those computed by SFEP at an orderp ≥ 3.
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Figure 6. Homogeneous soil layer: PDF of the maximal settlement

5.2. Example #2: two-layer soil mass submitted to two loads (Sudretet al.,2004)

5.2.1. Deterministic problem statement

Let us consider an elastic soil mass made of two layers of different isotropic linear
elastic materials lying on a rigid substratum (Figure 7). A foundation on this soil mass
is modeled by two uniform pressuresP1 andP2 applied over a length2B of the free
surface (Figure 5).
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Figure 7. Two-layer soil layer mass: scheme of the foundation

Due to the symmetry, half of the structure is modeled by finiteelement. The mesh
is the same as in section 5.1 (Figure 5). The model parametersare listed in Table 10.

Table 10.Two-layer soil layer mass: parameters of the foundation

Parameter Notation Mean
Upper layer Young’s Modulus E1 50 MPa
Lower layer Young’s Modulus E2 70 MPa
Upper layer Poisson’s Ratio ν1 0.3
Lower layer Poisson’s Ratio ν2 0.3
Load #1 P1 0.2 MPa
Load #2 P2 0.2 MPa
Width of the foundation 2B 10 m
Mesh size L 60 m
Upper layer soil thickness t1 7.75 m
Lower layer soil thickness t2 22.25 m

5.2.2. Stochastic problem

The upper (resp. lower) layer Young’s modulus is represented by a lognormal
random variable with a mean valueµE1

= 50 MPa (resp.µE2
= 70 MPa) and a co-

efficient of variationCoVE1
= 20%. Both layers’ Poisson’s ratio are represented by

uniform random variables defined on[0.28, 0.32]. The applied loads are represented
by a Weibull random variable (mean valueµP1

= 0.2 MPa, coefficient of variation
CoVP1

= 20%) and a lognormal random variable (mean valueµP2
= 0.2 MPa and

coefficient of variation ofCoVP2
= 20%) respectively. All six random variables are

supposed independent.

In this example, no analytical results are available. Reference re-
sults presented in the sequel are obtained by coupling the probabilistic code
PROBAN (Det Norske Veritas, 2000) and the finite element codeCode_Aster
[http://www.code-aster.org].
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5.2.3. Statistical analysis

In this section, the statistical moments of the maximal settlement of the foundation
are computed. The reference solution is obtained using Monte Carlo simulation with
10,000 samples. Using SFEP, the direct solving scheme at orderp = 2 (resp.p = 3)
is considered. Since the problem involves 6 random variables, the number of response
coefficients for each degree of freedom is 28 (resp. 84). The hierarchical scheme
p = 3(2) is also considered. Table 11 gathers the results.

Table 11.Two-layer soil layer mass: moments of the maximal settlement

Monte Carlo direct hierarchical
Simulation∗ p = 2 p = 3 p = 3(2)

mean/Umax 1.04 1.04 1.04 1.04
Coeff. Var. 0.23 0.22 0.23 0.22
skewness -0.45 -0.42 -0.45 -0.42
kurtosis 3.39 3.28 3.39 3.28
∗ 10,000 samples

Here again it is observed thatp = 2 is sufficient to get accurately the mean and
standard deviation of the response. The orderp = 3 is required to obtain also an
accurate estimation of the skewness and kurtosis coefficients, either by direct or hier-
archical analysis.

Table 12.Two-layer soil layer mass: computer processing time (s)

Deterministic SFEP SFEP
Direct Hierarchical

p = 0 p = 2 p = 3 p = 3(2)
Number of coefficients 1 28 84 84

CPT 1 83 2003 174

Table 12 gathers the CPT for this second example (the time unit corresponds to a
deterministic finite element run). Due to the number of variables, the computational
effort is 25 times greater for a third order analysis compared to a second order analysis.
Note that this factor is reduced to 2 when the hierarchical approach is selected. This
makes the latter attractive as a compromise between accuracy and efficiency.

5.2.4. Reliability analysis

The limit state function under consideration is identical to that used in the first
example, see Equation [70]. The reliability index is computed by various methods for
different admissible maximal settlement and compared. Theresults are gathered in
Table 13. Note that more accurate results could be obtained by importance sampling
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after SFEP. However, these results would not be directly comparable to the FORM
results obtained by the coupling PROBAN/Code_Aster.

Table 13.Two-layer soil layer mass: reliability indexβ.

Threshold βref βSFEP

(m) FORM p = 2 p = 3 p = 3(2)
0.10 0.3353 0.3195 0.3286 0.3175
0.12 1.1683 1.1553 1.1662 1.1434
0.15 2.2471 2.2634 2.2496 2.2390
0.20 3.7040 3.8483 3.7334 3.8061
0.25 4.8633 5.2171 4.9510 5.1560
0.30 5.8171 6.4388 5.9911 6.3546

The reference results are obtained by FORM analysis using a coupling between
PROBAN and the finite element code Code_Aster.

The other results are obtained by applying FORM after SFEP analysis. The con-
clusions drawn in the first example are still valid: the accuracy of the approach is
satisfactory (less than 3% discrepancy compared to the reference) for a large range
of reliability indicesβ = [0.3, 5.8], and even better than in the first example. In the
present case, the hierarchical schemep = 3(2) allows to improve results compared to
the schemep = 2.

Note that only the FORM reliability indices are presented inTable 13 in order to
compare with the reference FORM analysis. It is of course possible to post-process at
low cost the SFEP results using crude Monte Carlo simulationor accelerated methods
such as importance sampling.

5.3. Example #3: fragility curve of the foundation (Sudretet al.,2003)

Let us consider an elastic soil mass made of two layers of different isotropic linear
elastic materials lying on a rigid substratum (Figure 7). A foundation on this soil mass
is modeled as a uniform pressureλP0 applied over a length2B of the free surface
(whereP0 denotes the unit pressure). There are four random variables, namely the
Young’s modulus and Poisson’s ratio of each layer. The modelparameters are listed
in Table 14.

The reliability of the foundation with respect to the maximum admissible settle-
mentuS is investigated as a function of the applied pressure denoted hereinafter byλ.
The result is the so-calledfragility curve. Hence the parametric limit state function:

g(X, λ) = uS − λU i0(E1, ν1, E2, ν2) [76]
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Table 14.Two-layer soil mass - parameter study: parameters of the foundation

Parameter Notation Type Mean Coef. of Var.
Upper layer Young’s Modulus E1 Lognormal 50 MPa 20%
Lower layer Young’s Modulus E2 Lognormal 70 MPa 20%
Upper layer Poisson’s Ratio ν1 Beta[0, 0.5] 0.3 20%
Lower layer Poisson’s Ratio ν2 Beta[0, 0.5] 0.3 20%
Width 2B Deterministic 10 m -
Mesh width L Deterministic 60 m -
Upper layer soil thickness t1 Deterministic 7.75 m -
Lower layer soil thickness t2 Deterministic 22.25 m -
Threshold uS Deterministic 0.1 m -

whereU i0(E1, ν1, E2, ν2) is the maximal displacement obtained for a unit pres-
sure (i.e. λ = 1). The reliability index is computed by FORM for different values of
λ using the two strategies, namely:

– a direct coupling between the finite element code Code_Aster and the proba-
bilistic code PROBAN using the “parametric study” feature;

– a single SFEP analysis leading to a polynomial chaos approximation of
U i0(E1, ν1, E2, ν2) followed by a parametric FORM reliability analysis. These tools
are implemented in a Matlab package.

Table 15.Two-layer soil mass - parameter study: reliability index vs. load
parameterλ

λ (MPa) Direct Coupling SFEP
p = 2 p = 3 p = 3(2)

0.100 9.4605 12.0038 10.7559 10.7350
0.150 6.9900 7.9454 7.6122 7.6175
0.200 5.1135 5.4536 5.4004 5.4047
0.250 3.6212 3.7013 3.7412 3.7228
0.300 2.3963 2.3674 2.4322 2.4024
0.350 1.3637 1.2971 1.3622 1.3377
0.400 0.4732 0.4054 0.4612 0.4536
0.450 -0.3084 -0.3589 -0.3183 -0.3037
0.500 -1.0022 -1.0285 -1.0091 -0.9723
0.550 -1.6268 -1.6257 -1.6351 -1.5799
0.600 -2.1942 -2.2657 -2.2133 -2.1463

Results are reported in Table 15. Column #2 corresponds to the reference solution
(direct coupling between Code_Aster and PROBAN), columns #3-5 correspond to
different strategies of resolution in the SFEP analysis, namely a complete resolution
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at order 2 or 3 and a hierarchical resolution at order 3 with pre-resolution at order 2.
The evolution of the reliability index (resp. the probability of failure) is plotted in
Figures 8-9 as a function of the load parameter.
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Figure 8. Two-layer soil mass - parameter study: reliability indexvs. load parameter

As in the previous sections, a good agreement is observed fora large range of
reliability indices, namelyβ = [−2, 5]. In this example, the results obtained with
a second order polynomial chaos expansion are rather satisfactory (less than 10%
discrepancy inβ).

Table 16.Two-layer soil mass - parameter study: total computer processing time
required by the direct coupling and by SFEP at various orders

Direct SFEP
Coupling p = 0 p = 2 p = 3 p = 3(2)

CPT 1280 1 56 1291 105

Table 16 reports the computer processing time for the complete parametric study
in each case, where the unit time corresponds to one single deterministic analysis
(i.e. p = 0 in the SFEP context). It appears that the direct coupling is about as
computationally expensive as SFEP at third order. However the same accuracy is
obtained for SFEP (p = 3(2)) hierarchical solution at aboutone tenthof the cost. As
a conclusion, the hierarchical solutionp = 3(2) offers a good compromise between
accuracy and efficiency in this third example.
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6. Conclusion

An original stochastic finite element procedure in the tradition of Ghanem’s work
has been proposed. The method is based on a) the representation of input random
variables in terms of Hermite series expansions of standardnormal variates b) the
polynomial chaos expansion of the response by means of multi-dimensional Hermite
polynomials. The method allows to include any number of random variables of any
type for modeling the uncertainties in material parameters(Young’s modulus, Pois-
son’s ratio) and loading.

An original implementation of the polynomial chaos and related tools is proposed.
This should allow new researchers to take over the techniquemore easily.

A great amount of work has been devoted to clarify the post-processing of the
response coefficients obtained by SFEP. The expansion of derived quantities such as
strain or stresses is presented. The post-processing of SFEP for moment analysis has
been detailed: analytical expressions of the first four moments of response quantities
are given. The post-processing of SFEP for reliability analysis has been presented.
Finally an efficient method based on sensitivity FORM analysis has been given for
plotting smooth PDFs of response quantities.

The proposed SFEP is applied to three geotechnical problemsrelated to the settle-
ment of a foundation. The first truly simple problem (which involves only two random
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variables) is presented as a validation example since an analytical solution of the re-
sponse moments (resp. the probability of failure or equivalently, the reliability index)
is available. The second problem is more general and involves six random variables.
The third problem deals with thefragility curveof the foundation,i.e. the evaluation
of the probability of failure by exceeding an admissible settlement as a function of the
applied loading.

Through these three examples, several numerical schemes have been tested,
namely a direct solver at different orders and a so-called hierarchical solver. It fol-
lows from this investigation that the second-order polynomial chaos expansion of the
response should be used when only mean and standard deviation of the response are
sought (this is the common practice in the literature). However, when higher order mo-
ments are sought, or when reliability analysis (which involves the tails of the variables’
PDFs) is concerned, the third-order expansion has to be used. A quicker computation
of the third-order response coefficients by a hierarchical solver (calledp = 3(2) in
the above section) appears a good compromise between accuracy and efficiency. The
SFEP post-processing for parametric reliability study (fragility curve) is an example
in which the proposed method is faster than usual techniques(e.g. repeated FORM
analysis).

Finally, it is believed that the systematic link between polynomial chaos expan-
sions (PCEM) and random field representations, which is commonly implicit in many
papers related to stochastic finite element analysis shouldbe broken, as demonstrated
in the paper. This may help these PCEM come out the circle of university labora-
tories and become mature for true industrial applications which do not always need
to include spatial variability. Note that the use of random fields together with ran-
dom variables is straightforward using the presented framework provided the field has
been previously discretized, e.g. using the Karhunen-Loève expansion (Ghanemet
al., 1991), the Orthogonal Series Expansion (OSE) method (Zhanget al.,1994) or the
Expansion Optimal Linear Estimation (EOLE) method (Liet al.,1993).

Again within the framework of polynomial chaos expansion ofthe response, al-
ternative methods for computing the response coefficients may be considered in the
future: thenon intrusive methodused by (Ghiocel and Ghanem, 2002, Choiet al.,
2004a;2004b) or theregression method(Berveilleret al.,2006). These methods have
been investigated and compared to the present SFEP by (Berveiller et al., 2004a;
2004b). A summary of these investigations can be found in (Sudret, 2005). These
approaches appear already attractive, since they transform the stochastic finite element
problem into a succession of deterministic analysis, whichcan of course be carried out
by any commercial finite element code without intrusive implementation. Moreover,
the assembling and inversion of a large linear system such asEquation [39] is avoided.
This is of crucial importance for being able to deal with a larger number of random
variables. Finally, non linear stochastic finite element problems can be solved without
additional trouble using these non intrusive approach, provided the finite element code
at hand allows to solve the related deterministic problem. An application example in
non linear fracture mechanics can be found in (Berveilleret al.,2005).
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Appendix I: description of the polynomial chaos and implementation

Introduction and notation

Let us denote byL2(Θ, F, P ) the Hilbert space of random variables with finite
variance.{Hi, i = 0, · · · ,∞} are Hermite polynomials defined by:

Hi(x) = (−1)i 1

ϕ(x)

diϕ(x)

dxi
[77]

whereϕ(x) = 1√
2π

e−
x2

2 . The set{Hi, i = 0, · · · ,∞} is an orthogonal basis of

the Hilbert spaceL2(ϕ) of the square integrable functions with respect to the Gaussian
measure (Malliavin, 1997):

dHn(x)

dx
= n Hn−1(x) [78]

and:

Hi(x)Hj(x) =
∑

k≥0

Cijk Hk(x) [79]

with:

Cijk =






i!j!(
i+j−k

2

)
!
(

j+k−i
2

)
!
(

k+i−j
2

)
!

if

{
(i + j + k) even
k ∈ [|i − j|, i + j]

0 otherwise

[80]

Using these properties, deriving the expectation of products of two, three or four
Hermite polynomials of a standard normal variableξ is straightforward:

Dij = E[Hi(ξ)Hj(ξ)] = δijj! [81]
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whereδij is the Kronecker symbol.

Dijk = E[Hi(ξ)Hj(ξ)Hk(ξ)]

=





i! j! k!(
i+j−k

2

)
!
(

j+k−i
2

)
!
(

k+i−j
2

)
!

if

{
(i + j + k) even
k ∈ [|i − j|, i + j]

0 otherwise

[82]

and finally:

Dijkl = E[Hi(ξ)Hj(ξ)Hk(ξ)Hl(ξ)] =
∑

q≥0

Dijq Cklq [83]

Let us denote by{ξi}M
i=1 M standard normal variables and by{Ψj} the so-called

polynomial chaos basis. TheM -th dimensionalp-th order polynomial is the set of
multidimensional Hermite polynomials in{ξi}M

i=1, whose degree does not exceedp.
Each polynomial is completely defined by a sequence ofM non-negative integers
α = {α1, · · · , αM} (whose sum is smaller or equal thanp):

Ψα =

M∏

i=1

Hαi
(ξi) , αi ≥ 0 [84]

Let us denotes by∂α =

M∑

i=1

αi the degree of the sequenceα. The implementation

of the polynomial chaos requires:

– computing and storing the coefficients of the one-dimensional Hermite polyno-
mials (Equation [78]);

– generating all sequencesα, whose degree is less or equal top. These se-
quences are labeled from 0 toP − 1 and the corresponding polynomials are denoted
by {Ψj, j = 0, · · · , P − 1}.

Implementation of the polynomial chaos basis

For each degreeq = {1, · · · , p}, the goal is to compute all sequences ofM non
negative integers whose sum equalsq. This problem is equivalent to that of filling
(M + q − 1) boxes with(M − 1) balls (Figure 10], see also (Sudretet al., 2000).
The correspondence between the integer sequence and the boxsamples is described
below:

– for each integerαi of the sequence, skipαi empty boxes and put a ball in the
next one;
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– conversely, for each ball sample, each integerαi of the sequence equals the
number of empty boxes (possibly 0) between two consecutive balls.

From this equivalence, the number of sequencesα of degree∂α = q is the num-

ber of corresponding ball samples,i.e. the binomial factor

(
M + q − 1

M − 1

)
=

(
M + q − 1

q

)
.

ball sample integer sequence

1 0 1 0

0 0 0 2

Polynomial basis

H1(ξ1) · H1(ξ3) = ξ1ξ3

H2(ξ4) = ξ2
4 − 1

Figure 10. Equivalence of the balls samples and the integers sequenceα for
(M = 4, p = 2)

The algorithm which generates all filling of(M + q − 1) boxes with(M − 1) ball
in the case(q = 2, M = 4) is described in Figure 11 and reads as follows (note that
only polynomials of degree 2 are represented):

– for a givenq, the initial sample is obtained by putting all balls in the(M − 1)
first boxes and corresponds to the sequenceα = {0, · · · , 0, q}.

– from the current sample, the next one is recursively obtained by shifting the
rightmost ball by one box to the right. If this is not possible(i.e. the right most ball
is already in the rightmost box), then the rightmost ball that can be shifted by one box
to the right is found. This ball is shifted, and all the balls lying to its right are brought
back to its immediate left.

Note that, for each degreeq, the integer sequences are labeled in reverse order in
order to get theΨj basis in the same order as that originally presented in (Ghanemet
al., 1991). The number of polynomials inM variables having a degree lower than or
equal top is given by:

P =

p∑

k=0

(
M + k − 1

k

)
[85]

Expectation of products of Hermite polynomials

By extension of Equation [81], the polynomials{Ψj, j = 0, · · · , P − 1} are or-
thogonal and satisfy:

E[Ψα · Ψβ] = δαβ ·
M∏

i=1

αi! [86]
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integer sequence
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0 0 1 1

0 0 2 0

0 1 0 1

0 1 1 0
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~ + +
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Reverse order

0 0 0 2

0 0 1 1

0 0 2 0

0 1 0 1
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0 2 0 0
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1 0 1 0

11 0 0

2 0 0 0

Polynomial basis

ξ2
4 − 1

ξ3ξ4

ξ2
3 − 1

ξ2ξ4

ξ2ξ3

ξ2
2 − 1

ξ1ξ4

ξ1ξ3

ξ1ξ2

ξ2
1 − 1

Figure 11. Recursive generation of the polynomial chaos(q = 2, M = 4)

whereδαβ is the Kronecker symbol, whose value is 1 if sequencesα andβ are
identical and 0 otherwise.

In Equation [39], the expectation of three polynomials is needed. Following Equa-
tion [84], let us denote:






Ψi =
M∏

m=1

Hαm
(ξm) , αm ≥ 0

Ψj =
M∏

m=1

Hβm
(ξm) , βm ≥ 0

Ψk =

M∏

m=1

Hγm
(ξm) , γm ≥ 0

[87]

where{α1, · · · , αM}, {β1, · · · , βM}, {γ1, · · · , γM} denoteM non-negative in-
teger sequences. From Equations [82],[87], it comes:

dijk = E[ΨiΨjΨk] =

M∏

m=1

Dαm βm γm
[88]
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Similarly, the expectation of products of four multi-dimensional Hermite polyno-
mials used in Equation [58] is:

dijkl = E[ΨiΨjΨkΨl] =

M∏

m=1

Dαm βm γm δm
[89]

whereDαm βm γm δm
is given in Equation [83].

The Matlab implementation of the polynomial chaos as described above can be
download for free at: [http://www.ce.berkeley.edu/haukaas/
FERUM/ferum.html]

Appendix II: positioning of coefficients in the polynomial chaos basis

Let us denote by{X1, · · · , XM} M independent random variables expanded
separately onto the Hermite polynomial basis of standard normal random variables
{ξ1, · · · , ξM} at the orderni , i = {1, · · · , M}:

X i =

ni∑

k=0

xi
kHk(ξi) [90]

Input
. (xi

k) i = {1, · · · , M}, k = {0, · · · , ni}
Initialisation
. x̃i

0 = xi
0 i = {1, · · · , M}

. x̃i
j = 0 i = {1, · · · , M} j = {1, · · · , P − 1}

Positioning
. for j = {1, · · · , P − 1}
. if αj has only one non zero termαj(q) atq-th position:
. if αj(q) ≤ nq thenx̃q

j = xq

αj(q)

. end if

. end for j

Figure 12.Positioning algorithm for injection Hermite series expansion into the poly-
nomial chaos

These variables can be expanded onto the polynomial chaos basis of degree
p = max

i=1,··· ,M
ni as follows:

X i =

P−1∑

j=0

x̃i
jΨj({ξk}M

k=1) [91]
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whereP is related top andM by Equation [85]. The positioning consists in estab-
lishing the correspondence betweenx̃i

j andxi
k. For each variableX i, the coefficient

of order 0 (the mean value) is the same in both basis. Moreover, all coefficientsx̃i
j

corresponding to a truly multidimensional polynomialΨj (i.e., Ψj depends on more
than one variableξk) are zero. Thus the positioning algorithm described in Figure 12.


