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ABSTRACT.A new stochastic finite element procedure (SFEP) in thetiadof Ghanem’s work
is presented. It allows to deal with any number of input randariables of any type that can
model both material properties and loading. The method make of Hermite series expansion
of the input random variables and polynomial chaos expansithe response, for which an
original implementation is proposed. The link with reliétyianalysis is also established. Three
application examples in geotechnical engineering are mif@ the sake of illustration. The
accuracy and efficiency of SFEP is thoroughly investigatecddmparison with well-established
approaches.

RESUMEOn présente ici une nouvelle procédure aux éléments firchastiques baptisée SFEP.
Elle permet de traiter des problemes ou I'aléa, portant ss propriétés matériau et le char-
gement, est représenté par des variables aléatoires depolit® quel type et en nombre quel-
conque. On utilise le développement des variables aléstaitentrée en séries d’'Hermite et le
développement de la réponse sur le chaos polynomial, pquelaine implémentation est pro-
posée. On montre également comment exploiter les résptiatsfaire de la fiabilité des struc-

tures. Trois exemples d’application en géomécanique s@septés. La précision et I'efficacité
de la méthode sont évaluées sur ces exemples par compagaisores méthodes standard.

KEYWORDSstochastic finite elements, polynomial chaos, finite el¢émaiability, parametric
study, foundation.
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métrique, fondation.

Revue européenne de mécanigue numérique. Volume 15 —200&/pages 825 to 866



826 Revue européenne de mécanique numérique. Volume 1582606

1. Introduction

The so-calledstochastic finite element analysias been paid much attention in
the past two decades. All the methods found in the literatader this denomination
have the following common characteristics:

— a finite element model.e. the discretized version of the equations governing a
physical phenomenon such as solid mechanics, heat traesfer

— a probabilistic model of the input parameters: randomatdeis and/or random
fields are introduced for this purpose.

Apart from these common points, the methods referred giahastic finite element
analysisare rather differentin nature. According to Sudret and Daréghian (Sudret
et al.,2000), they may be classified as follows (see also (Schu@ldiEditor), 1997,
Matthieset al.,1997, Kleiber, M. (Editor), 1999) for general reviews on thpic and
(Frangopol D.M., Maute K. (Editors), 2004) for recent adses):

—second moment method$iese methods essentially aim at computing the vari-
ations of the mechanical response around its mean viduehey provide the mean
and standard deviation of response quantities such asad&pkents or stresses. The
perturbation metho@pplied by (Hisadat al., 1981; 1985, Liwet al, 1986a; 1986b,
Kleiberet al,, 1992) falls within this category. So does tiveighted integral method
proposed by (Deodatis, 1991, Deodatis and Shinozuka, T@@ada, 1991a; 1991b);

— reliability methods:these methods aim at computing the probability of failure
of a mechanical system with respect to a failure criterigmmesented by a limit state
function (Ditlevsenet al., 1996). In the context of finite element analysis, the pio-
neering work by (Der Kiureghiaet al, 1983; 1988) has been followed by many
contributions, e.g. (Lemaire, 1998, Lemaire et al., 20@@ir8t and Der Kiureghian,
2002) . The so-callefinite element reliability methodse nowadays applied in vari-
ous industrial contexts, e.g. (Frangopol and Imaia, 200@ja and Frangopol, 2000,
Pendolaet al., 2000, Mohameet al, 2002, Sudregt al., 2005);

— polynomial chaos expansion methods (PCE§&se methods aim at represent-
ing the full probabilistic content of the mechanical respoas a polynomial series
expansion in standard normal variables. In this respedENP@rovide anintrinsic
representation of the response, since each responsetyustiaracterized as a ran-
dom variable through expansion coefficients. The spectoghastic finite element
method (SSFEM) proposed by Ghanem and Spanos pertainstoatigigory. This
representation can be used together with Monte Carlo stionlto obtain the prob-
ability density function (PDF) of response quantities arael moment information.
The use of SSFEM for finite element reliability analysis his® deen demonstrated
by Sudret and Der Kiureghian (Sudedtal.,2002).

The present paper is related to this third category of sled¢atochastic finite
element methods denoted hereinafter by PCEM. Before ahej#tis objectives, a rapid
review of the specific literature is necessary. The origimatk by (Ghanem and
Spanos, 1990; 1991) deals with linear stochastic bounddne\problems in which
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the spatial variability of a material property (e.g. Youngiodulus) is modeled using
a random field, which is discretized using the Karhunen-leag&pansion. Later on,
the same approach has been applied to transport in porous ifé&tanem, 1998),
heat transfer (Ghanem, 1999b, Xatial.,2003) and recently soil-structure interaction
(Ghiocelet al.,2002) and structural dynamics (Van Den Nieuwengtadl.,2003).

In all these applications, the spatial variability of onenwore material properties
is represented by a Gaussian or lognormal random field. Atteno applying the
approach to non linear problems can be found in Anders and (Aoderset al.,
1999, Ander®t al.,2001) (bounds on the solution are derived) as well as in Kerde
Matthies (Keeset al.,2002). A general framework for stochastic mechanics based
on these ideas is described by (Ghanem, 1999a). Baletsipropose a similar
framework and discuss convergence issues and error egtsn@ebet al., 2001,
Babuskeet al.,2002).

In the spirit of many of these papers, the use of polynomiabshexpansion in
order to represent the stochastic mechanical responséateddo spatial variabil-
ity and the use of random fields. It is clear though that theafshe polynomial
chaos expansion is only a way of representing the mecharéspbnse. It should
be independent from the way the input uncertainties is sgoed. Moreover, most
applications in engineering mechanics are concerned wattletmg the uncertainties
in model parameters by using random variables instead dbrarfields. Indeed, the
spatial fluctations of a parameter are often second-ordantgies compared to the
uncertainty of the parameter considered as homogeneooséphanics may be in
some cases a remarkable exception).

Of course, random variables may be considered as the lirgét cirandom fields
having infinite correlation length. However, the formaligmoposed in the papers
presented above is not directly suitable to this situatiodeed, the random variables
used for instance in structural reliability may have vasitypes of distribution (not
only Gaussian or lognormal), they may be correlated. Whatadse, loading is of-
ten the principal source of randomness and is rarely takenaiccount in the above
references (although the possibility of having random ilogds mentioned e.g. in
(Ghanemet al.,1991)). Finally, most papers do not address the problerageto
post-processing. Their application examples are ofteitdiirto the presentation of
the expansion coefficients of the principal unknowns (e gdah displacement, tem-
perature), sometimes mean and standard deviation of thbise.inattentive reader
can then wonder about the point of such complex methods yf melan and standard
deviation of response quantities (which may be obtaineitiydascrude Monte Carlo
simulation) are sought for. In other words, the great padénf these PCEM meth-
ods is scarcely fully taken advantage of. As a consequeniteeé observations, the
present paper aims at:

— developing a new framework for stochastic finite elemeatyasis, which allows
to take into account any number of random variables of ang tgpmodel the in-
put uncertainties. Thus random Young's modulus, Poiss@tis, initial stress state
and loading may be considered in the analysis. An originglémentation of the
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polynomial chaos used to represent the stochastic respmaseelated tools are also
presented,;

— deriving useful relationships in order to expand straistogss response quanti-
ties onto the polynomial chaos;

— developing the specific post-processing for moment aisafiys. computing the
first four moments of the response), reliability analysid BDF representation;

— comparing different numerical solving schemes in termaagiuracy and com-
putational efficiency on application examples, in order@aaude about the “good
practices” in stochastic finite element analysis.

The proposedtochastic finite element proced(®FEP) presented in the sequel
requires expanding the input random variables (or funsttbareof) as Hermite series
of standard normal random variables. This is detailed ini®&@@. SFEP is then
presented in Section 3. The various possible post-protgssire then described in
Section 4. Finally three application examples in geotediréngineering illustrate
the method.

2. Hermite series expansion of random variables
2.1. Introduction and notation

Let us denote byC?(©, F, P) the Hilbert space of random variables with finite
variance. Let us consider a random variallewith prescribed probability density
function (PDF)fx (x) and cumulative distribution function (CDHE)x (x). The math-
ematical expectation is denoted B]. The expectation of a functigf(X) is defined
by:

B = [ g()fx(@do 1]
Let us denote by a standard normal variable(z) = \/LQ_ﬂefé the standard

normal PDF an@ the standard normal CDF. Léf;,i =0, - - - , oo} be the Hermite
polynomials defined by:

(2]

The set{H;,i = 0,--- ,00} is an orthogonal basis of the Hilbert spat#&(y)
of the square integrable functions with respect to the Gansseasure (Malliavin,
1997). Thus:

E[H;(§)H;(§)] = 6ij - 4! [3]
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whered;; is the Kronecker symbol. Classical results (e.g. (Mallali997)) allow to
expand any random variablé with prescribed PDF as a Hermite polynomial series
expansion:

X = aiH(©) [4]
=0

where{a;,i = 0,--- ,00} are coefficients to be evaluated. Two methods are now
presented for this purpose.

2.2. Computation of the expansion coefficients

2.2.1. Projection method

This method was used by (Pugal., 2002, Xiu and Karniadakis, 2002, Field and
Grigoriu, 2004). Due to the orthogonality of the Hermiteypwmials with respect to
the Gaussian measure, it comes from Equation [4]:

E[XH;(¢)] = a; E[H}(€)] (5]
whereE[H?(¢)] = i!. By using the transformation to the standard normal space
X — & Fx(X) = ®(¢), one can write:

X(6) = Fx' (2(6)) (6]
Thus:

1 1 _

0 = FEXQ©] = § [ PR @O)H et 17
When X is a normal, lognormal or uniform random variable, coeffits{a;,i =
0,---,00} can be evaluated analytically:

X =N(y,0) ag =, a1 =0, a; =0 fori > 2
X =LN(), Q) a; = g,—'exp[)\Jr%CQ] fori >0
1!
X = Ula, b] aoza;—b,agi:0, [8]

o (=1)'(b — a)
2T 9204 il (20 + 1)

For other types of distribution, the integral in Equatioh¢@n be evaluated numeri-
cally using Gaussian quadrature (Sudrieal.,2003).
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2.2.2. Regression method

This method was introduced by (Websgtal.,1996) and (Isukapalli, 1999). It is
based on a least square minimization of the discrepancyeeetihe input variablé&l
and its truncated approximatict:

X= _Z a;H;(€) 9]

Let {¢W), ... ¢(™} ben outcomes of. Equation [6] (resp. [9]) yields outcomes
{(X@ i =1,--- n} (resp.{X®, i =1,--- ,n}). The least square method consists
in minimizing the following quantity with respecttpa; , i = 0, --- , p }:

n

Z(X(i) — X®)2

=1
2
p
( JENESY ajHj(E(i)))
§=0

AX
[10]

HM:

This leads to the following linear system yielding the exgian coefficients
{aiai = Oa 7p}:

ZHo(E(i))Ho(f(i)) ZHO (D) H,(¢D)

=1 ap

ST H,(€D)Ho () - ZHp 5“ Sy | N
= . [11]
ZX(i)HO(f(i))
=1
zn:X(i)Hp(g(i))
=1

Both methods are illustrated in Figure 1 and in Table 1 in a#s& lognormal
distribution LN (0.6501, 0.2936) with a mean value of 2 and a standard deviation of
0.6.

Note that there are several methods for selecting regregsmts. First, they
can be chosen as roots of the Hermite polynomial of ogder1 (Websteret al.,
1996, Isukapalli, 1999). They can also be chosen randorhig.question is addressed
in details in (Berveilleet al.,2004b).
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Figure 1. Theoretical and third-order approximated PDF of a lognofrdistribution
LN(0.6501,0.2936)

Table 1.Coefficients of the third-order expansion of a lognormaltriisition
LN(0.6501,0.2936)

Method ao a1 as as
Projection 2.0000 0.5871 0.0862 0.0084
Regression 1.9986 0.5869 0.0872 0.0085

2.3. Error estimators

In order to qualify the accuracy of the polynomial seriesamgion, two error
estimators are proposed. Note that the first coefficigris the mean of the random
variable X under consideration. Thus it is supposed to be known. Thearegaare
error estimator is defined as:

a=E [(X - X)T /o [12]
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where X is thep-th order approximation ok ando? is the variance of{. From
Equations [4],[9], one gets:
N\ 2
E [(X - X) ] = B[ Y Y agH(9H;(©)
i>p+1j>p+1 [13]
= 2 4
Jjzp+1
Moreover, the variance? may be cast as:
0'2 = E (X — ao)ﬂ
= E ZzazajHl(g)HJ(g) [14]
i>1j>1
j>1
From the above equations, it finally comes:
p
0= a2 jI+E [(X—X)Q} [15]
j=1
Thus:
1 p
61=1—§Za§j! [16]
j=1
The CDF error estimator is defined as:
& = sup | Fx (z) — Fi(x)] [17]
X

In this expressionf’x () is supposed to be known ad; (x) is computed from
the isoprobabilistic transformatio’y (z) = ®(&). Tables 2 and 3 gather the values
of both error estimators for selected random variables prigiscribed mean value and
standard deviation.

Table 2. Mean square error estimater (%) (Equation [16])

Projection method Regression method
Distribution™ order2 order3 order4 order2 order3 order4
Lognormal(2,0.6)  0.00 0.00 0.00 -0.07 -3.107% 5.10°1%
Weibull (1,0.36) 0.01 0.01 0.01 0.09 0.01 0.01
Gamma(2,1.41) 0.75 0.75 0.75 0.73 0.75 0.75
* Bracketed parameters are mean value and standard deviation

It appears from these examples that 1% accuracy “in the negon” (estima-
tor €;) is obtained in all cases as soon@as> 2. As far as the global accuracy is
concerned (estimatas), orderp = 3 or 4 is required to obtain a 1% accuracy.
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Table 3. CDF error estimatores (Equation [17])

Projection method Regression method
Distribution* order2 order3 order4 order2 order3 order4
Lognormal(2,0.6)  0.08 0.01 0.01 0.05 0.01 0.01
Weibull (1, 0.36) 0.06 0.02 0.01 0.04 0.01 0.01
Gamma(2,1.41) 0.18 0.07 0.01 0.10 0.04 0.01
* Bracketed parameters are mean value and standard deviation

2.4. Functions of random variables

In the sequel, it will be required to expand functions of ramdvariables that
appear in the mechanical model (e.g. elastic coefficienfisragions of the Poisson’s
ratio in the Hooke law). Both methods allow to expand nondirfanctions of random
variables. Let us denote By x) the function under consideration. The coefficients of
the expansion ok(X) are obtained by projection as:

@ = [ HES @) Hi(0) 18]
R

ol
Using the regression method, the coefficients should mi@rtie following quan-
tity:

2
n

AX =Y [ (X)) - _ZoajHj (D) [19]
=

i=1

where notation¢”, X () has been given above. This leads to a linear system
similar to Equation [11], where the right hand side is repthby:

S X D) Hy(g)
- [20]
S AKX O) A, ()

i=1

As an example, let us consider a random variablg.g. Poisson’s ratio) with
uniform distributionZ/[0.2, 0.4] and the non linear functioh(v) = 1/2(1 + v). The
coefficients obtained by the two methods are listed in Tabldtdppears that the
expansion coefficients are close to one another in this eleamp
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Table 4. Coefficients of the third order expansion of the funct&gﬁm wherev =
U[0.2,0.4]

Method ag aj as as
Projection 0.3854 -0.0167 0.0004 0.0014
Regression 0.3852 -0.0167 0.0003 0.0017

2.5. Joint expansion of several independent random variables

In the sequel, various input parameters of the finite elemerdel will be ex-
panded onto the Hermite polynomial basis. SuppbSeariables are used, each of
them being expanded by means of a standard normal vagabaterdem:

X' =Y ajHy(&) i=1,---,M [21]
k=0

All these expansions are cast in a common basis callegpdhgromial chaos
which is the set of multi-dimensional Hermite polynomia@h@nemet al., 1991).
Precisely, theM -th dimensionalp-th order polynomial chaos is the set of multi-
dimensional Hermite polynomials if¢;}*, whose degree does not exceedLet
us denote byP the size of this set (its analytical expression in termabfndp is
given in Appendix I). Each polynomial is denoted by:

M M
Vo= [[Hoil&), >0, > a;i<p [22]
i=1 i=1

An implementation of the polynomial chaos based on symhiculus is pro-
posed by (Ghanemt al.,1991). In this paper we propose an original implementation
based on the generation of relevant integer sequen¢sse also (Sudret al.,2000)).
The detail is given in Appendix I. As the uni-dimensional ke polynomials are
contained in the polynomial chaos, Equation [21] may be iteswr as:

P-1
X' =3 #B ({6 L) 23]
§=0

The positioning algorithm that links coefficienfs! } (Equation [21]) and{Z} }
(Equation [23]) is detailed in Appendix II.
2.6. Conclusions

In this section, two methods have been presented for the etatipn of a series
expansion of random variables with prescribed PDF or fonstithereof. Two error
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estimators have been developed to qualify the accuracyesktiexpansions. Note
the following interpretation of the methods. The projextimethod gives the best
approximation ofX at any order. The values of the coefficients do not dependen th
cut-off orderp. However, errors are introduced in the numerical calcotadf the
coefficients. On the contrary, the regression method selketbest set of coefficients
for a given ordep. If p is changed tp’ > p, all the set of coefficientéag, - - - , ap}

will change. It is seen in Tables 2 and 3 that the error is adngdightly greater in the
projection method than in the regression scheme.

As a conclusion it seems that both methods are almost equivial terms of ac-
curacy. The third order of expansigp = 3) seems to be the best compromise be-
tween accuracy and efficiency. Correlated random variatdesalso be expanded
onto the polynomial chaos. They are decorrelated by usingtafNransformation
(Der Kiureghianret al.,1986). Then the regression method allows to jointly expand
the uncorrelated random variables onto the polynomialshao

3. Stochastic finite element procedure (SFEP) in linear meeanics

Using classical notations (Zienkiewiet al.,2000), the finite element method for
static problems in linear elasticity yields a linear systeisize Ng,, where Ny, ¢
denotes the number of degrees of freedom of the structure:

K-U=F [24]

In the above equationks is the global stiffness matrixX/ is the basic response
quantity (e.g. vector of nodal displacements) @i the vector of nodal forces.
In SFEP, due to the introduction of input random variables asic response quantity
is a random vector of nodal displacemetit®). In this expression and in the sequel,
# denotes the random characteristics of each quantity. Eatipanent is a random
variable expanded onto the polynomial chaos:

U0) => U W5 ({€(0) 1)) [25]
7=0

where{¢,(0)}1L, denotes the set of standard normal variables appearing idish
cretization of all input random variables af&;, j > 0} are multidimensional Her-
mite polynomials that form an orthogonal basis@f(©, F, P). In the sequel, the
dependency ol ; in {&,(6)}2L, will be omitted for the sake of clarity.

3.1. Taking into account randomness in material properties

In the deterministic case, the global stiffness matrix sead

K=k =8 i BT .D.BdQ, [26]
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where B is the matrix that relates the components of strain to thexete nodal
displacementD is the elasticity matrix an@ is the assembly procedure over all

e
elements. When material properties are described by mdaasdom variables, the
elasticity matrix hence the global stiffness matrix becoarelom. The latter may be
expanded onto the polynomial chaos as follows:

K=> KU, [27]
j=0
where
K; =E[KV;] = EB/ BT .E[DY,] - BdQ. [28]
e Qe

Note thatB is a deterministic matrix whild is random. In case of an isotropic
elastic material with random independent Young’s mod#luasnd Poisson’s ratio,
the latter may be written as:

D = EQ(v)Ds + 2ii(v) Ds) [29]

where\(v), fi(v) are function ofv which depend on the modeling (plane strain,
plane stress or three-dimensional problem) #hd D5 are deterministic matrices.
Random Young's modulug’ is expanded as in Equation [23]. Functions of the ran-
dom Poisson’s rati¢ (1), ()} (which should be mixed up with the Lamé’s coeffi-
cients of the material) may be expanded in the same way, edthgr the projection
or the regression method:

E = ZeiHi(fE)
=0
Awv) =Y NH;j(&) [30]
j=0

i) = > i (6)

_Note that the same standard normal varigplés used to expand both functions
A(v) andji(v). By substituting for Equation [30] in Equation [29], one figagets:

D = 3 N e\ Hi(¢s)H;(&)Dy
i:;)ojzo()o 1]
+3°5 eous Hi(6p) Hy (6,) D2
i=0 j=0

ProductsH; ({g)H,(€,) may be injected into the polynomial chaos (Section 2.5),
finally yielding:

D = (axDy + 3 D2) ¥y [32]
k=0
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If the structure under consideration is made of several nadgethe above pro-
cedure is applied using different random variables in ed@ment group having the
same material properties.

3.2. Taking into account randomness in loading

The vector of nodal forces may be written as:
Nq
E=> ¢F, [33]
i=1

whereN, is the number of load case@i}f.vj1 denote random loading parameters
and F, “load pattern” vectors corresponding to a unit valuegbf Note that this
formulation equally applies to pinpoint forces, pressuriaitial stresses. Coefficients
¢ can be expanded onto the polynomial chaos (see Equation [23]

¢ =Y _qH;j&) =) 4T, [34]
j=0 j

j=0

Thus the random vector of nodal forces reads:

Ny o 0o
E=)">"Gu,F, :ZEj\I]j [35]
=0

i=1 j=0

3.3. Global linear system

By using Equations [25],[27],[35], the discretized stosti@equilibrium equation
reads:

<ZK1‘I’1> ZQj‘I’j :ZEj‘I’j (36]
=0 =0 =0

After a truncature of the series appearing in Equation [86}der P, the residual
in the equilibrium equation is:

P-1 P-1 P-1 _
cp = (Z Kﬂ%)- Suy | - F, [37]
i=0 =0 =0

Coefficients{U,, - - - ,Up_, } are computed using the Galerkin method minimiz-
ing the residual defined above, which is equivalent to reéagithat this residual be
orthogonal to the space spanned{ldy; 52—01 (Ghanenet al.,1991):

Elep¥s] =0 , k={0,---,P—1} [38]
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This leads to the linear system:

Koo Ko p-1 Uy E,
K Kip_1 U, F, [39]
Kp_1o0 -+ Kp_1,p- Up_y Fp_,
P-1

denoted hereinafter bi - &/ = F. In this expressionkK; ; = Z K d;;, and

i=0
dijr = E[¥,;¥;T;]. Coefficientsd;;; may be calculated analytically (see details in
Appendix I). The number of unknows in the above linear system,,; x P, where
Ngor is the number of degrees of freedom of the mechanical moaelPas the order
of expansion of each response quantity. Note that the gktifiless matrixiC in
Equation [39] is a block matrix. The diagonal blocks repnesiee contribution of the
mean value. When the scattering of the input parameterst{e standard deviation of
the input random variables) increases, the weight of thel@gonal blocks increases.
Figure 2 shows that the block matrix is symmetric and spdeseit contains a large
number of zeros.

AN
m\\\ N\

1000

iii\\

1600 -

1800

. . . . . . . . .
0 200 400 600 800 1000 1200 1400 1600 1800
nz = 74964

Figure 2. Representation of the global stiffness mat@iXDots are non zeros values)

The linear system Equation [39] may be solved directly (Gmaet al., 1996)
by linear solvers suitable to large sparse systems (foanmtst, using pre-conditioned
conjugate gradient techniques). A hierarchical solvirigesee has also been proposed
by (Ghanem, 1999a, Ghanem, 2000).
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3.4. Object-oriented implementation

The implementation of the proposed stochastic finite elempmtedure has been
made within the Matlab environment (Mathworks, 2001) in &feot-oriented way.
The main objects are:

— the polynomials chaos. The detail of its implementatiagiven in Appendix I;

— the clas®KRANDOM_VARIABLE contains the type and parameters of each random
variable, the method of approximation, the order of expamsand the obtained ex-
pansion coefficients;

— the clas$IATERIAL contains all the information about material propertiesahhi
may be random or deterministic. Note that a deterministiaip@ter may be consid-
ered as a random variable which is expanded at order O ontdefaite polynomial
basis. This allows a common treatment of deterministicipatars and random vari-
ables;

— the clas4.0ADS contains all information about loading: load patterns avefft-
cients of load parameters expansion onto the polynomialcha

As presented above, the resolution of Equation [39] can kierbg two ways: the
direct method and the hierarchical method. Figure 3 shovimplementation scheme
for the direct method.

The hierarchical method computes response coefficientadnessive resolutions
of systems of smaller size. Let us denote indeetlby{0,--- ,Q—1,Q < P—1} the
lower orderindices and: = {Q, - - - , P — 1} theupper orderindices of the unknown
vector. Equation [39] may rewritten as:

K, K.\ (U)\_/[E
Due to the hierarchical properties of the polynomial chaoss thatk; ; Ql =F,
is exactly the linear system to be solved when the responsepianded at ordep.

If this lower order expansion is accurate enough, it is sspnaha@l is a good
approximation o/, in Equation [40]. Thus Equation [40] can be solved as follows

U = Ui=K;''F [41]
U, = K.\, (Fu—Ku  U) [42]
[43]

In practice, order of expansidap is related to a maximal degrge< p of the multidi-
mensional Hermite polynomials based on ftieéinput random variables.
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Computation of the polmormdal chaos (PC)

Corputation of the expansion coefficients for
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Figure 3. Implementation scheme of the direct resolution scheme

4. Post-processing of the results

Solving the linear system Equation [39] yields the expamsioefficients of the
vector of nodal displacements:

i

U= UV, [44]

<.
Il
o

In this section, several results on quantities of interesti@rived from the set of
expansion coefficients. These results are not limited tgpthposed SFEP, but apply
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more generally to any stochastic finite element method basdide polynomial chaos
expansion of the response.

4.1. Expansion of all response quantities

4.1.1. Strain tensor

In each elemert®, of the finite element mesh, the strain tensor in a given point
reads:

[45]

whereu, denotes the vector of nodal displacements of eleraeiihe expansion
[44] restricted to vectow, is:

P-1
U, = Z Qe,j\P]— [46]
j=0
Thus:
P-1
E(I’) = €j (w)\IJJ [47]
j=0
with  €;(z) = B(x) - u,

4.1.2. Stress tensor

When Young’s modulu# is random, whereas Poisson’s ratidgs deterministic,
the elasticity matrix may be rewritten as:

P-1

D= ¢V, | Dy [48]
j=0

where{e;} are the coefficients of the expansionfof The stress tenser(z) in a
given pointz € Q. is:

P—1P-1

o(x)=D -e(x) = Z Z e; Dy -ep(x)V; ¥y, [49]

i=0 k=0

To simplify this expression, producis; ;. are injected into the polynomial chaos
basis:

P-1 4

ijk

AT E[éﬂ.] 0, [50]
j=0 J
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One finally gets:

P-1
P—1P-1

with o (z) = Z Zdijk e; Do - ex(x)

=0 k=0

(51]

When both Young’s modulug’ and Poisson’s ratie are random, the elasticity
matrix is:
P-1
D= Z(%‘D1 + BiD2)¥; [52]
=0

where coefficient$c;, 5;) have been given in section 3.1. Then the stress tensor
becomes:

=0 (53]
with  o;(z) = Z Zdijk (a; D1+ B;D2) - e(x)
1=0 k=0
As a conclusion, it appears that the mechanical responsedyistent (i.e. the
set of all nodal displacements, nodal strain or stress coends) may be written as:

P-1
S=) 5V; [54]
=0

4.2. Moment analysis

From Equation [54], the statistical moments of any respojusatity can be easily
computed. The mean of the response quatstifpodal displacement, strain or stress
component) is given by:

E[S] = so [55]

The variance of is:

P
Var[S] = 02 = Z [56]

The skewness and the kurtosis coefficients afre:
P—-1P-1P-1

o Z SN dijesisisk dije = B[ 0;0,] [57]

zljlkl
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P—1P-1P-1P-1

ks = %Z Z Z Zdijkl 8iSjSkS] dijii = B[, 0,0, 0] [58]

i=1 j=1 k=1 I=1

Note that coefficient§d; ;x, d;jx; ) are known analytically (See Appendix I).

4.3. Finite element reliability analysis

In reliability analysis (Ditlevseet al.,1996), the failure criterion of a structure is
defined in terms of a limit state functigiiX , S(X)) which may depend both on basic
random variables( and response quantiti€§ X ). The domain{g(X, S(X)) > 0}
defines the safe state afd(X,S(X)) < 0} defines the failure state. Using this
notation, the aim of reliability analysis is to compute thelmbility of the failure
event:

P; = Prob[g(X,S(X)) < 0]

9(X,5(X))<0 fx(z)dz

[59]

where fx (z) is the joint probability density function of the random \abiesX.
The computation of this integral is not possible directlgdngse the failure domain
depends implicitly ot (X)), which is computed using a finite element code.

The First Order Reliability Method (FORM) has proven effieig together with
finite element analysis for approximating the probabilityedlure (Der Kiureghiaret
al., 1988, Lemaire, 1998). However, this approach, which is dasean iterative op-
timization algorithm that provides the design point (masitiable failure point in the
standard normal space) may be computationally expensitequires indeed succes-
sive deterministic finite element runs until convergencehefalgorithm is obtained.
By the way, any parametric study requires rerun the full ¢tedimodel, without being
able to reuse the previous finite element calculations.

The SFEP developed in the above section offers an attraadteenative for finite
element reliability analysis. It has been shown indeeddhgtresponse quantity can
be cast as a series expansion, whose coefficients result&ijoations [44],[47],[53].
Thus any limit state function may be approximated as follange a stochastic finite
element analysis has been carried out:

P—-1
9(X,5(X)) =g ({gk}ﬁil, > ;—%({gk}ﬁin) [60]
=0

Then the reliability problem, which is already formulatede standard normal
space by construction, may be solved by any available meéittotutiing Monte-Carlo
Simulation, FORM/SORM, Importance Sampling, etc. (Ditleret al.,1996).
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4.4. Representation of the response PDF

Three methods for representating the probability densityction of response
quantities are presented in this section.

4.4.1. Histograms

The first method is the classical Monte-Carlo simulationiclvtgenerates an his-
togram fromn samples. The number of bimg,,, of the histogram can be computed
using the Stuge’s rule:

Npin, = 1 + log,y(n) [61]

This requires only simulating samples of the standard nbrveator { =
{&, - ,€m}. Note that the simulation is inexpensive in our case sinch ezsponse
quantity is a polynomial function &f.

4.4.2. Averaged shifted histograms

The idea behind this method is to generate several histagrasmich have the
same bin widthAz but different origins, and to average them in order to obtain
smoother histogram (Yu, 2003). Let us consig@iehistograms{h; (z),-- - ,hy,(2)},
whose origin are respectively:

Ax 2Ax (m—1)Ax

$6:$07x0+_7x0+—)”'7x0+7 [62]
m m m

The mean histogram is then obtained by:
1 m
hmoy = E Zl h; (EC) [63]

4.4.3. Parametric FORM analysis

Let us consider a compone$ibf the random response vect®whose PDFfs ()
is looked after. The CDFs(z) may be considered as the solution of a reliability
problem. Indeed:

Fs(m) = P(S < .I')

P-1

= P S%({&H) -2 <0 [64]
=0

= P(gs(é,x) <0)

where
P—1
95(& @) = > S5 ({&hl) — = [65]
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Suppose that(x) is the reliability index associated with the above relidggpjprob-
lem, andPs(x) = ®(—0G(x)) is the corresponding FORM approximation. Straight-
forward algebra yields:

fs(x) = %(EE)
- d‘b(r(_iﬁ(m)) [66]
X
- dp(x)
= —p(B@) -
The quantityM may be now be considered as the sensitivity3af) with

respect to parameter. Analytical results for this kind of problem have been givien
(Ditlevsenet al.,1996):

dB(x) _ 1 9gs(&, )
da HvﬁgS(é’z)Hﬁzg* ox [67]

where the gradient appearing in the denominator is evalugttéhe design point
& = £ (most likely failure point in the standard normal space)eluEquation [65],

73938(5,17) = —1. Thus:
fs(@) = ¢(B(z)) [68]
o)

£=¢~

As a conclusion, the PDF of any response quarftitpay be obtained by succes-
sive FORM analysis with different values of threshaldusing Equation [68]. Note
that this method provides a smooth representatigfy@f), in contrary to histograms.
The FORM analysis are inexpensive since the underlying Btaite function is ana-
lytical (Equation [64]) and already formulated in the starddnormal space.

5. Application examples in geotechnical engineering
5.1. Example #1: homogeneous soil layer

5.1.1. Deterministic problem statement

Let us consider an elastic soil mass made of an isotropiadieéastic material
lying on a rigid substratum. A foundation on this soil masmisdeled as a uniform
pressure load® applied over a lengtB B of the free surface (Figure 4). Due to the
symmetry, half of the structure is modeled by finite elem@ihie mesh of half of the
foundation comprises 99 nodes and 80 4-node elements wihietsaa 1%-accurate
evaluation of the maximal settlement compared to a referentution (Figure 5).
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2B = 10m
[ H
:A
t=30m E E v
7 7

Figure 4. Homogeneous soil layer: scheme of the fondation

Wi

Figure 5. Mesh of the foundation

The model parameters are listed in Table 5. As the soil masamealastic behav-
ior, the maximal settlement is given by:

. P
Ui — v 69
Xg [69]
The numerical value of is 13.575 m for the mesh under consideration, corre-
sponding to a maximal settlemdii,,.=0.0543 m (the “exact” solution obtained with
arefined mesh ig = 13.744 m).

Table 5. Homogeneous soil layer: parameters of the foundation

Parameter Notation Mean Value
Young’s Modulus E 50 MPa
Poisson’s Ratio v 0.3

Load P 0.2 MPa
Width of the foundation 2B 10m
Mesh size L 60 m

Soil thickness t 30m
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5.1.2. Stochastic problem

In this first example, we consider that there are only two camdvariables: the
Young’s modulust’ and the applied loaé’. The Young’s modulus is represented by
a lognormal random variable with a mean vajue = 50 MPa and a coefficient of
variation of 20%. The load is represented by a lognormakbdei with meanup =
0.2 MPa and a coefficient of variation of 20%. A3andE are lognormal random
variables,U* is also a lognormal random variable with parameters= in(y) +

Ap — Ap = —2.9022 and{y = /(3 + (% = 0.2801.

Table 6. Homogeneous soil layer: coefficients of the polynomial steagansion of
Uto

Direct Hierarchical
p=2 p=3 p=4 p=32) p=4(2) p=403)
-5.64E-02 -5.64E-02 -5.64E-02 -5.64E-02 -5.64E-02 -5:62E
-1.12E-02 -1.12E-02 -1.12E-02 -1.12E-02 -1.12E-02 -1-02E
1.11E-02 1.12E-02 1.12E-02 1.11E-02 1.11E-02 1.12E-02
-5.32E-04 -5.53E-04 -5.53E-04 -5.32E-04 -5.32E-04 -5-B3E
2.13E-03 2.21E-03 2.21E-03 2.13E-03 2.13E-03 2.21E-03
-1.02E-03 -1.11E-03 -1.11E-03 -1.02E-03 -1.02E-03 -1-DBE
-1.17E-05 -1.22E-05 -1.17E-05 -1.17E-05 -1.17E-05
1.05E-04 1.09E-04 -4.06E-04 -4.06E-04 1.05E-04
-2.11E-04 -2.19E-04 -1.16E-05 -1.16E-05 -2.11E-04
7.34E-05 7.28E-05 2.44E-05 2.45E-05 7.34E-05

-1.45E-07 -1.45E-07 -1.45E-07
2.32E-06 7.73E-05 -2.01E-05
-1.04E-05 -3.65E-05 -7.29E-07
1.39E-05 7.13E-07 -6.74E-06
-3.32E-06 1.44E-06 1.46E-06

Table 6 collects the expansion coefficients of the settleiénobtained by SFEP
at different orders with the two methods of resolution (dirend hierarchical). Note
thatp is the degree of the polynomial chaos expansion. The notatie 3(2) means
"hierarchal resolution at order 3 with a pre-resolutiorhatdrder 2". Itis observed that
the values of the lower order (six first) coefficients compweorder 3 or 4 are close
to the values computed at order 2. This is a justification efuke of the hierarchical

approach.

5.1.3. Statistical analysis

The statistical moments obtained from Equations [55]-[&B&r SFEP analysis
are collected in Table 7. Sindé® is a lognormal random variable whose parameters
have been computed above, exact values of these moments@available (Table 7,

column #2).
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Table 7. Homogeneous soil layer: moments of the maximal settlefient
Theoretical Direct
values p=2 p=3 p=4
meanl/,,,qx 1.0286 1.0273 1.0278 1.0278

coeff. var. 0.2857 0.2837 0.2846 0.2846
skewness -0.8803 -0.6831 -0.7573  -0.7599
kurtosis 4.4088 3.6366 4.0050 4.0373
Hierarchical
p=302) p=4(2) p=43)

meanl,,qx 1.0278 1.0278 1.0280
coeff. var. 0.2838 0.2838 0.2846
skewness -0.6517 -0.6493  -0.7565
kurtosis 3.4233 3.4713 3.9884

One can note that for the mean and the coefficient of variadilbaolving schemes
provide accurate results (about 1% discrepancy comparttetexact values). The
estimation of the skewness and kurtosis coefficients bes@aoeurate with increasing
order of the polynomial chaos. The direct resolution methiods better results than
the hierarchical method but the difference is often unsicpmt.

Table 8. Homogeneous soil layer: computer processing time (s)

Deterministic Direct Hierarchical
p=2 p=3 p=4 p=3(2) p=4(2) p=40)
0.82 3.74 8.43 53.76 5.9 7.7 10.88

Computer processing time (CPT) associated to each schae@oiged in Table 8
(the simulations were run on Pentium 4 PC at 1.7 GHz, the teeané given in sec-
onds). It is observed that the CPT increases fast when teetdipproach is used.
The hierarchical resolution allows to decrease the CPT lagtof of 5 or more. This
shows the relevance of such schemes, since the resultaiethay those are quite
close to the results obtained by the direct approach, asieqal above.

5.1.4. Reliability analysis

The aim of this section is to compute the reliability indez@sgated with the max-
imum settlement of a foundation. The limit state-functisn i

g(U) =us —U" [70]

whereug denotes the threshold. Sin€&° is lognormal, it can be written ag (
denotes a standard normal random variable):

U' = exp [\ + (v € [71]
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Thus the limit state function is equivalent to:

92(§) = In(us) — (A\v + Cwé) [72]
The associated reliability index straightforwardly reads

3= ln(us) - \u _ ln(us) — hl(x) —Ap+ g [73]
Cu VG +E

and the exact value of the probability of failure is:

Py = ®(=p) [74]

On the other hand, by using the SFEP solution for having thgnpanial chaos
expansion ot/ Equation [70] becomes:

P-1

g(U) = us = Y USW;(ém,p) [75]

J=0

An efficient way of accurately compute the probability ofifia¢ associated with
such a limit state function is the so-call@dportance samplindechnique. First
FORM analysis is applied in order to find the design point.Mi®nte Carlo simula-
tion is applied by concentrating samples around the degign.dn the present study,
importance sampling is applied using 1,000 simulationg @$timated probability of
failure Py ;s is obtained with a coefficient of variation of less than 5%eEguivalent
reliability index3;s = —®~1(Ps ;5) obtained by the analytical solution and various
approximations using SFEP are given in Table 9.

Table 9. Homogeneous soil layer: reliability inde¥ s
Threshold Theoretical Stochastic Finite Element Proaedg. [75] + FORM)
(m) Eq. [73] Direct Hierarchical
p=2 p=3 p=4 p=3(2) p=42) p=403)
0.07 0.8626  0.8704 0.8841 0.8848  0.8650 0.8684 0.8828

0.08 1.3394 1.3724 1.3752 1.3769 1.3731 1.3808 1.3726
0.09 1.7599 1.8331 1.8148 1.8162 1.8478 1.8561 1.8119
0.10 2.1361 22612 2.2137 2.2132 2.2971 2.3000 2.2116
0.12 2.7871 3.0421 2.9185 2.9090 3.1389 3.1075 2.9217

0.15 3.5838 4.0768 3.8099 3.7766  4.2973 4.1494 3.8292
0.17 4.0307 47002 4.3257 4.2713 5.0146 4.7484 4.3606
0.20 4.6110 5.5610 5.0149 4.9231 6.0202 5.5272 5.0787

The theoretical reliability index is computed using Eqoafi73]. As expected, the
accuracy in the computed reliability indices increasef Wit ordep of the response
expansion in the direct solving scheme. The gain betweearsr2land 3 is always
greater than the gain between orders 3 and 4. Opder 3 thus appears to be a
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good compromise between accuracy and efficiency. It alloaget accurate results
(e.g. within 5-10% discrepancy compared to the exact smi)iin a broad range of
reliability indicesg = [0.8 — 4.6].

By comparing the hierarchical vs. the direct results (exg= 3(2) vs. p =
2), one can see that the hierarchical step does not degrade tmeicesults in this
case, whereas the computation time has been divided by Mpared to the direct
resolution effort (see Table 8).

5.1.5. Probability density function of the maximal displacement

The PDF of the maximal displacement is plotted in Figure éhwfte method
presented in Section 4.4.3. The reference PDF is plottedfine analytical expression
of the PDF of alognormal random variable. PDFs that are stdeghe reference PDF
are those computed by SFEP at an onder 3.

30 T
theoritical

direct p=3 ----e--
direct p=4 e

hierarchical p=4(3) ===

20 7 i b

15 -

10

& \
¢ Y
\
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X,
1 1 Mg

L | |
-0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0

Figure 6. Homogeneous soil layer: PDF of the maximal settlement

5.2. Example #2: two-layer soil mass submitted to two loads (Saiét al.,2004)

5.2.1. Deterministic problem statement

Let us consider an elastic soil mass made of two layers afrdifft isotropic linear
elastic materials lying on a rigid substratum (Figure 7) oAridation on this soil mass
is modeled by two uniform pressurés and P, applied over a lengtB B of the free
surface (Figure 5).
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Figure 7. Two-layer soil layer mass: scheme of the foundation

Due to the symmetry, half of the structure is modeled by fieleanent. The mesh
is the same as in section 5.1 (Figure 5). The model paraneetsted in Table 10.

Table 10. Two-layer soil layer mass: parameters of the foundation

Parameter Notation Mean
Upper layer Young's Modulus  E; 50 MPa
Lower layer Young's Modulus  FE» 70 MPa
Upper layer Poisson’s Ratio 1 0.3
Lower layer Poisson’s Ratio ) 0.3
Load #1 P 0.2 MPa
Load #2 P 0.2 MPa
Width of the foundation 2B 10m
Mesh size L 60 m
Upper layer soil thickness t1 7.75m
Lower layer soil thickness ta 22.25m

5.2.2. Stochastic problem

The upper (resp. lower) layer Young's modulus is represkbtea lognormal
random variable with a mean valpyg, = 50 MPa (respug, = 70 MPa) and a co-
efficient of variationCoVg, = 20%. Both layers’ Poisson’s ratio are represented by
uniform random variables defined ¢in28,0.32]. The applied loads are represented
by a Weibull random variable (mean valpe, = 0.2 MPa, coefficient of variation
CoVp, = 20%) and a lognormal random variable (mean valye = 0.2 MPa and
coefficient of variation ofCoVp, = 20%) respectively. All six random variables are
supposed independent.

In this example, no analytical results are available. Refee re-
sults presented in the sequel are obtained by coupling tléapilistic code
PROBAN (Det Norske Veritas, 2000) and the finite element cQadele Aster
[http://www.code-aster.org].
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5.2.3. Statistical analysis

In this section, the statistical moments of the maximalesgtent of the foundation
are computed. The reference solution is obtained using &6atlo simulation with
10,000 samples. Using SFEP, the direct solving scheme at prd 2 (resp.p = 3)
is considered. Since the problem involves 6 random varsatie number of response
coefficients for each degree of freedom is 28 (resp. 84). Téeltchical scheme
p = 3(2) is also considered. Table 11 gathers the results.

Table 11. Two-layer soil layer mass: moments of the maximal settlémen

Monte Carlo direct hierarchical

Simulatiot p=2 p=3 p=3(2)
meanl/,,,qx 1.04 1.04 1.04 1.04
Coeff. Var. 0.23 0.22 0.23 0.22
skewness -0.45 -0.42 -0.45 -0.42
kurtosis 3.39 3.28 3.39 3.28

* 10,000 samples

Here again it is observed that= 2 is sufficient to get accurately the mean and
standard deviation of the response. The ondet 3 is required to obtain also an
accurate estimation of the skewness and kurtosis coefticieither by direct or hier-
archical analysis.

Table 12. Two-layer soil layer mass: computer processing time (s)

Deterministic SFEP SFEP
Direct Hierarchical
p=0 p=2 p=3 p=3(2)
Number of coefficients 1 28 84 84
CPT 1 83 2003 174

Table 12 gathers the CPT for this second example (the tintecamiesponds to a
deterministic finite element run). Due to the number of \alga, the computational
effortis 25 times greater for a third order analysis comg#éoex second order analysis.
Note that this factor is reduced to 2 when the hierarchicpt@gch is selected. This
makes the latter attractive as a compromise between agcanacefficiency.

5.2.4. Reliability analysis

The limit state function under consideration is identieakthat used in the first
example, see Equation [70]. The reliability index is consgplity various methods for
different admissible maximal settlement and compared. r€kalts are gathered in
Table 13. Note that more accurate results could be obtaipéufortance sampling
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after SFEP. However, these results would not be directlypaoable to the FORM
results obtained by the coupling PROBAN/Code_Aster.

Table 13. Two-layer soil layer mass: reliability inde.

Threshold ..y Bsrep

(m) FORM p=2 p=3 p=3(2)

0.10 0.3353 0.3195 0.3286 0.3175
0.12 1.1683 1.1553 1.1662 1.1434
0.15 2.2471 2.2634 2.2496 2.2390
0.20 3.7040 3.8483 3.7334 3.8061
0.25 48633 5.2171 4.9510 5.1560
0.30 5.8171 6.4388 5.9911 6.3546

The reference results are obtained by FORM analysis usiraugliag between
PROBAN and the finite element code Code_Aster.

The other results are obtained by applying FORM after SFE#ysis. The con-
clusions drawn in the first example are still valid: the aecyrof the approach is
satisfactory (less than 3% discrepancy compared to theergfe) for a large range
of reliability indicess = [0.3, 5.8], and even better than in the first example. In the
present case, the hierarchical scheme 3(2) allows to improve results compared to
the scheme = 2.

Note that only the FORM reliability indices are presentedale 13 in order to
compare with the reference FORM analysis. It is of courssiptesto post-process at
low cost the SFEP results using crude Monte Carlo simulati@accelerated methods
such as importance sampling.

5.3. Example #3: fragility curve of the foundation (Sudrett al., 2003)

Let us consider an elastic soil mass made of two layers afrdifft isotropic linear
elastic materials lying on a rigid substratum (Figure 7) oAridation on this soil mass
is modeled as a uniform pressuxé®, applied over a lengtBB of the free surface
(where Py denotes the unit pressure). There are four random varjaméesely the
Young’s modulus and Poisson’s ratio of each layer. The mpdeimeters are listed
in Table 14.

The reliability of the foundation with respect to the maximadmissible settle-
mentug is investigated as a function of the applied pressure ddr@eeinafter by.
The result is the so-callddagility curve Hence the parametric limit state function:

9(X, ) = ug — AU (Eq,v1, B2, v2) [76]
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Table 14. Two-layer soil mass - parameter study: parameters of thedation

Parameter Notation Type Mean Coef. of Var.
Upper layer Young's Modulus  E; Lognormal 50 MPa 20%
Lower layer Young's Modulus  FE» Lognormal 70 MPa 20%
Upper layer Poisson’s Ratio V1 Beta|0, 0.5] 0.3 20%
Lower layer Poisson’s Ratio 2 Beta0, 0.5] 0.3 20%

Width 2B Deterministic 10m -

Mesh width L Deterministic 60m -

Upper layer soil thickness t1 Deterministic ~ 7.75m -

Lower layer soil thickness to Deterministic  22.25m -
Threshold us Deterministic 0.1 m -

whereU (Ey, vy, E2, v5) is the maximal displacement obtained for a unit pres-
sure {.e. A = 1). The reliability index is computed by FORM for differentluas of
A using the two strategies, namely:

— a direct coupling between the finite element code Code rAstel the proba-
bilistic code PROBAN using the “parametric study” feature;

—a single SFEP analysis leading to a polynomial chaos approximatibn o
Ui (Ey, 11, B2, ;) followed by a parametric FORM reliability analysis. Thesels

are implemented in a Matlab package.

Table 15. Two-layer soil mass - parameter study: reliability index &ad

parameter\
A (MPa) Direct Coupling SFEP
p= p=3 p=3(2)
0.100 9.4605 12.0038 10.7559 10.7350
0.150 6.9900 7.9454 7.6122 7.6175
0.200 5.1135 5.4536  5.4004 5.4047
0.250 3.6212 3.7013  3.7412 3.7228
0.300 2.3963 2.3674 2.4322 2.4024
0.350 1.3637 1.2971  1.3622 1.3377
0.400 0.4732 0.4054 0.4612 0.4536
0.450 -0.3084 -0.3589 -0.3183 -0.3037
0.500 -1.0022 -1.0285 -1.0091 -0.9723
0.550 -1.6268 -1.6257 -1.6351 -1.5799
0.600 -2.1942 -2.2657 -2.2133 -2.1463

Results are reported in Table 15. Column #2 correspondgtrefbrence solution
(direct coupling between Code_Aster and PROBAN), columB #orrespond to
different strategies of resolution in the SFEP analysisyeigt a complete resolution
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at order 2 or 3 and a hierarchical resolution at order 3 withnessolution at order 2.
The evolution of the reliability index (resp. the probatyilof failure) is plotted in
Figures 8-9 as a function of the load parameter.

14

‘direct p:i —a—

hierarchical p=3(2) ---=--- |

12 Coupling

Y &\’\“\«

-4 I I I I I I I I I
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

Figure 8. Two-layer soil mass - parameter study: reliability index load parameter

As in the previous sections, a good agreement is observeal farge range of
reliability indices, namely3 = [—2,5]. In this example, the results obtained with
a second order polynomial chaos expansion are ratheraatis§ (less than 10%
discrepancy im).

Table 16.Two-layer soil mass - parameter study: total computer pssog time
required by the direct coupling and by SFEP at various orders

Direct SFEP
Coupling p=0 p=2 p=3 p=3(2)
CPT 1280 1 56 1291 105

Table 16 reports the computer processing time for the camplerametric study
in each case, where the unit time corresponds to one singdgendieistic analysis
(i,e. p = 0in the SFEP context). It appears that the direct couplingbisub as
computationally expensive as SFEP at third order. Howedwersame accuracy is
obtained for SFEPy(= 3(2)) hierarchical solution at aboohe tenttof the cost. As
a conclusion, the hierarchical solutipn= 3(2) offers a good compromise between
accuracy and efficiency in this third example.
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Figure 9. Two-layer soil mass - parameter study: probability of fadlws. load pa-
rameter

6. Conclusion

An original stochastic finite element procedure in the tiadiof Ghanem’s work
has been proposed. The method is based on a) the represemfinput random
variables in terms of Hermite series expansions of standarthal variates b) the
polynomial chaos expansion of the response by means of-ginignsional Hermite
polynomials. The method allows to include any humber of candiariables of any
type for modeling the uncertainties in material paramefgosing’s modulus, Pois-
son’s ratio) and loading.

An original implementation of the polynomial chaos and tedtools is proposed.
This should allow new researchers to take over the techmitpre easily.

A great amount of work has been devoted to clarify the postgssing of the
response coefficients obtained by SFEP. The expansion wedeguantities such as
strain or stresses is presented. The post-processing ¢f &FEnoment analysis has
been detailed: analytical expressions of the first four mumef response quantities
are given. The post-processing of SFEP for reliability gsialhas been presented.
Finally an efficient method based on sensitivity FORM analyss been given for
plotting smooth PDFs of response quantities.

The proposed SFEP is applied to three geotechnical problkdated to the settle-
ment of a foundation. The first truly simple problem (whichadlves only two random
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variables) is presented as a validation example since dptmahsolution of the re-
sponse moments (resp. the probability of failure or eqeivily, the reliability index)
is available. The second problem is more general and ingalixerandom variables.
The third problem deals with tHeagility curve of the foundationi.e. the evaluation
of the probability of failure by exceeding an admissibldleatent as a function of the
applied loading.

Through these three examples, several numerical schenves been tested,
namely a direct solver at different orders and a so-calledanchical solver. It fol-
lows from this investigation that the second-order polyf@mhaos expansion of the
response should be used when only mean and standard deétize response are
sought (this is the common practice in the literature). Hevavhen higher order mo-
ments are sought, or when reliability analysis (which imeglthe tails of the variables’
PDFs) is concerned, the third-order expansion has to be ésgdicker computation
of the third-order response coefficients by a hierarchiobles (calledp = 3(2) in
the above section) appears a good compromise between egeund efficiency. The
SFEP post-processing for parametric reliability studgdfiity curve) is an example
in which the proposed method is faster than usual technifpigs repeated FORM
analysis).

Finally, it is believed that the systematic link betweenypamial chaos expan-
sions (PCEM) and random field representations, which is contyrimplicit in many
papers related to stochastic finite element analysis stmmlitoken, as demonstrated
in the paper. This may help these PCEM come out the circle iveusity labora-
tories and become mature for true industrial applicatiohikvdo not always need
to include spatial variability. Note that the use of randoeid$ together with ran-
dom variables is straightforward using the presented freonleprovided the field has
been previously discretized, e.g. using the Karhunen-e@xpansion (Ghaneet
al., 1991), the Orthogonal Series Expansion (OSE) method (Zbtalg, 1994) or the
Expansion Optimal Linear Estimation (EOLE) method étial.,1993).

Again within the framework of polynomial chaos expansiortted response, al-
ternative methods for computing the response coefficieatg Ine considered in the
future: thenon intrusive methodsed by (Ghiocel and Ghanem, 2002, Chbal,
2004a;2004b) or theegression metho(Berveilleret al.,2006). These methods have
been investigated and compared to the present SFEP by (Bamet al., 2004a;
2004b). A summary of these investigations can be found inl@&yu2005). These
approaches appear already attractive, since they trangfigrstochastic finite element
problem into a succession of deterministic analysis, wharmof course be carried out
by any commercial finite element code without intrusive iempéntation. Moreover,
the assembling and inversion of a large linear system suEkjaation [39] is avoided.
This is of crucial importance for being able to deal with grnumber of random
variables. Finally, non linear stochastic finite elementy@ms can be solved without
additional trouble using these non intrusive approachyigeal the finite element code
at hand allows to solve the related deterministic problem.afplication example in
non linear fracture mechanics can be found in (Bervedteal.,2005).
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Appendix I: description of the polynomial chaos and implemetation
Introduction and notation

Let us denote byC?(0, F, P) the Hilbert space of random variables with finite

variance{H,;,i = 0,--- , 00} are Hermite polynomials defined by:
1 d'p(x)
Hi(z)=(-1) : 7
wherep(z) = \/%e*§. The set{H;,7 = 0,--- , 00} is an orthogonal basis of

the Hilbert spac&? () of the square integrable functions with respect to the Gaoss
measure (Malliavin, 1997):

%;x) =nHp1(z) [78]
and:
Hi(z) Hj(z) =Y Ciji Hy(x) [79]
k>0
with:
ilj! i { (i4j+ k) even
Cisp = (iﬂ;k)! <j+12c—z')! <k+;'—j). kelli—jl|,i+ 7]

0 otherwise

(80]

Using these properties, deriving the expectation of prtslottwo, three or four
Hermite polynomials of a standard normal variaple straightforward:

D;j = E[Hi(§)H;(§)] = ;5! [81]
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whered;; is the Kronecker symbol.

Diji. = E[H;(§)H;(§) Hy(€)]
il g k! . {(iJerrk)even
f

_ (i+]éfk)!(j+12€7i)!(k+2ifj)! ' ke lli—jl,i+ 7]

0 otherwise

(82]
and finally:

Dijri = E[H;(§)H;(§)Hi(§) Hi(§)] = Z Dijq Criq (83]

q>0

Let us denote by¢; }M, M standard normal variables and ¥ ;} the so-called
polynomial chaos basisThe M -th dimensionap-th order polynomial is the set of
multidimensional Hermite polynomials if¢; } 4, whose degree does not exceed
Each polynomial is completely defined by a sequencéfohon-negative integers

a={aq, - ,apn} (whose sum is smaller or equal than
M
Vo =[[Hoi(&) . ai>0 [84]
i=1
M

Let us denotes by, = Z «; the degree of the sequenae The implementation

=1
of the polynomial chaos requires:

— computing and storing the coefficients of the one-dimaradiblermite polyno-
mials (Equation [78]);

— generating all sequences whose degree is less or equalfio These se-
guences are labeled from 0 fo— 1 and the corresponding polynomials are denoted

Implementation of the polynomial chaos basis

For each degree = {1,--- ,p}, the goal is to compute all sequencesiéfnon
negative integers whose sum equalsThis problem is equivalent to that of filling
(M + g — 1) boxes with(M — 1) balls (Figure 10], see also (Sudsedtal., 2000).
The correspondence between the integer sequence and thsaidnpies is described
below:

— for each integety; of the sequence, skip; empty boxes and put a ball in the
next one;
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— conversely, for each ball sample, each integgof the sequence equals the
number of empty boxes (possibly 0) between two consecuéills.b

From this equivalence, the number of sequeneesf degreed, = ¢ is the num-

M+qg-1
M -1

ber of corresponding ball sampleise. the binomial factor(

(]V[+q1 )
. .

ball sample integer sequence Polynomial basis

| tif\] [A j 1010 Hi(&) - Hi(&) = &8s
S9SN N 0002 Ha(6d) = &2 — 1

Figure 10.Equivalence of the balls samples and the integers sequender
(M =4,p=2)

The algorithm which generates all filling 68 + ¢ — 1) boxes with(M — 1) ball
in the casdq = 2, M = 4) is described in Figure 11 and reads as follows (note that
only polynomials of degree 2 are represented):

— for a giveng, the initial sample is obtained by putting all balls in the — 1)
first boxes and corresponds to the sequenee {0, - ,0,¢}.

— from the current sample, the next one is recursively obthiny shifting the
rightmost ball by one box to the right. If this is not possifile. the right most ball
is already in the rightmost box), then the rightmost balt tremn be shifted by one box
to the right is found. This ball is shifted, and all the bajlim to its right are brought
back to its immediate left.

Note that, for each degreg the integer sequences are labeled in reverse order in
order to get thel’; basis in the same order as that originally presented in (@ha
al., 1991). The number of polynomials i variables having a degree lower than or
equal top is given by:

Pi<M+kk—1) (85]

k=0

Expectation of products of Hermite polynomials

By extension of Equation [81], the polynomigl®,,j = 0,--- , P — 1} are or-
thogonal and satisfy:

M
E[Vq - Vgl =dag - [ ] ! [86]

i=1
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ball sample integer sequence Reverse order Polynomial basis

|O|O|OL | | 0002 2000 21

w 0011 1100 313
w 0020 1010 €15
Q_DE%’ 0101 1001 6164
Q_w 0110 0200 21
w 0200 0110 b2t
LDD%’ 1001 0101 284
LD%Q 1010 0020 21
w 1100 0011 €34

LL OO 2000 d-1

Figure 11. Recursive generation of the polynomial chdg@s= 2, M = 4)

whered,g is the Kronecker symbol, whose value is 1 if sequeneemnd3 are
identical and O otherwise.

In Equation [39], the expectation of three polynomials isched. Following Equa-
tion [84], let us denote:

M

U = [[Ho(ém) » am>0
m]El

U = [[Ho(6m) + Bm=0 87]
m]\:41

U= [[Hv(&n) » m >0
m=1

where{ai, -+ ,an}, {61, -+, Bu}s {71, yar} denoteM non-negative in-

teger sequences. From Equations [82],[87], it comes:

M
dZ]k = E[lljl\lj]\ljk] = H D(XWL Bm Ym [88]
m=1
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Similarly, the expectation of products of four multi-dinggonal Hermite polyno-
mials used in Equation [58] is:

M
dijir = B[, 90)] = [] Day. g von o [89]
m=1

whereD,,, 8,. ~.. 5., IS given in Equation [83].

m

The Matlab implementation of the polynomial chaos as dbedriabove can be
download for free at:qJttp://www.ce.berkeley.edu/haukaas/
FERUM/ferum.html]

Appendix II: positioning of coefficients in the polynomial chaos basis
Let us denote by{ X!,--- , XM} M independent random variables expanded

separately onto the Hermite polynomial basis of standarchabrandom variables
{&, - ,&v} attheorden; , i = {1, -, M}:

X' =" ap Hi(&) [90]
k=0
Input
Initialisation

L Zy=ab i={1,---, M}
Li@t=0 i={l,--- M} j={1,---,P-1}
Positioning
forj={1,--- ,P-1}
if ; has only one non zero tera;(¢) atg-th position:
if a; (¢) < ngthenz§ = xij(q)
end if
. end forj

Figure 12. Positioning algorithm for injection Hermite series expamsinto the poly-
nomial chaos

These variables can be expanded onto the polynomial chegis bhdegree

p = max ny as follows:
i=1,-,M
P-1
X' = 505 ({&ly) [91]

=0
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whereP is related tg and M by Equation [85]. The positioning consists in estab-
lishing the correspondence betweﬁj'nand:c};. For each variabl&(?, the coefficient
of order 0 (the mean value) is the same in both basis. Moreaﬂaroeﬁicients%§
corresponding to a truly multidimensional polynomia] (i.e., ¥; depends on more
than one variabl€) are zero. Thus the positioning algorithm described in FEdL?.



