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ABSTRACT.We present an h-adaptive version of the spacetime-discontinuous Galerkin (SDG) fi-
nite element method for linearized elastodynamics (Abediet al., 2006). The adaptive version
inherits key properties of the basic SDG formulation, including element-wise balance of linear
and angular momentum, complexity that is linear in the number of elements and oscillation-
free shock capturing. Unstructured spacetime grids allow simultaneous adaptation in space
and time. A localized patch-by-patch solution process limits the cost of reanalysis when the
error indicator calls for more refinement. Numerical examples demonstrate the method’s per-
formance and shock-capturing capabilities.

RÉSUMÉ. Nous présentons une version h-adaptative de la méthode de Galerkin discontinu
espace-temps (SDG) pour l’elastodynamique linéaire (Abediet al., 2006). La version adapta-
tive hérite des principales propriétés de la formulation de base de la méthode SDG, comme
par exemple l’équilibre par élément de la quantité de mouvement et du moment cinétique,
la complexité informatique linéairement proportionnelle au nombre d’éléments et la capture
sans oscillation de chocs. Les maillages, qui sont non structurés en espace-temps, permettent
l’adaptation simultanée en espace et en temps. Une procédure de résolution localisée par patch
permet de limiter le coût de la réanalyse après le raffinement local imposé par l’indicateur
d’erreur. Des exemples numériques sont présentés et montrent l’efficacité de la méthode et plus
particulièrement sa capacité à capter des chocs.
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1. Introduction

Simulations of elastodynamic wave propagation often involve multi-scale analysis
problems that require adaptive computational procedures. Shocks and sharp wave-
fronts introduce length and time scales that are typically far smaller than the small-
est features of the macroscopic analysis domain. Direct simulation of material mi-
crostructure and other small-scale geometric features can similarly introduce a multi-
scale character to the problem. In other problems, crack-tip singular fields or fracture
process zones are the source of small-scale solution features. In all these cases, numer-
ical methods based on uniform mesh refinement can lead to intractable problem sizes.
Graded meshes generated by adaptive refinement procedures are a practical response
that ensures accurate solutions at a reasonable cost.

Multi-scale problems sometimes involve moving small-scale features (e.g., pro-
pagating cracks or sharp wavefronts) whose trajectories are hard to predicta priori.
In such cases, static mesh refinement is inadequate, and adaptive procedures are the
only available methods that are capable of capturing the fine-scale physics. Ideally,
the solution procedure should be adaptive in both space and time, since Courant lim-
its can impose unacceptable restrictions on the global time-step size in methods that
are adaptive in space only. Not only does this increase the computational load, but
it can also cause excessive numerical dispersion (Becacheet al., 2005). Beyond the
requirements for adaptive modeling, the underlying numerical method must be com-
putationally efficient and capable of resolving shocks and other small-scale features
without spurious oscillations or excessive numerical dissipation.

This paper proposes anh-adaptive version of the spacetime-discontinuous
Galerkin (SDG) finite element method for elastodynamic analysis (Abediet al., 2006)
to address the above requirements. We give brief reviews of existing adaptive algo-
rithms and of discontinuous Galerkin methods for elastodynamics before introducing
the new method.

1.1. Conforming adaptive analysis methods for elastodynamics

While there exists an extensive literature on adaptive analysis methods for elasto-
statics (Guoet al., 1986a; Guoet al., 1986b; Mackerle, 2001), the literature on adap-
tive schemes for elastodynamics is more limited. Cho and Youn (Choet al., 1995)
propose a scheme based on spacetime interpolations that is hierarchicalp-adaptive
in time. The spatial discretization and the global time-step size are fixed and non-
adaptive. The temporal polynomial order is determined adaptively, but is uniform over
the space mesh within each time step. Safjan and Oden (Safjanet al., 1993) present a
semi-discrete scheme that ishp-adaptive in space only; the time-step size and tempo-
ral integration scheme are not controlled adaptively. (Wiberget al., 1992) propose two
adaptive schemes that are bothhp-adaptive in space. One is a semi-discrete method
based on Newmark integration that ish-adaptive in time; the other is a conform-
ing spacetime method using Cartesian-product basis functions that isp-adaptive in
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time on a per-element basis. Adaptive multi-grid solvers applied to frequency-domain
methods are proposed in (Jooet al., 1988; Hanet al., 2002). (Bajer, 1989; Bajeret
al., 1991) use conforming, non-prismatic, spacetime elements to implement a purely
r-adaptive procedure with a spatially uniform time step. Nodes migrate in space to
minimize error subject to a fixed mesh connectivity; there is no temporal adaptivity in
this method.

1.2. Discontinuous Galerkin methods for elastodynamics

Conforming finite element methods tend to generate spurious high-frequency os-
cillations when shocks are present unless the solution is stabilized, for example, by
filtering or numerical damping. Unfortunately, stabilization causes numerical dissipa-
tion that limits the accuracy of these methods. The balance properties of conforming
methods tend to be global in nature, while multi-scale problems demand balance over
local subdomains to ensure accurate resolution of the fine-scale response. Discontin-
uous Galerkin methods have received increasing attention in recent years due to their
ability to generate oscillation-free solutions without the introduction of extraneous
stabilization. Fully discontinuous methods also offer element-wise balance properties
that are attractive for multi-scale analysis.

Time-discontinuous Galerkin methods, first introduced in (Reedet al., 1973; Le-
saintet al., 1974), feature spacetime basis functions that are continuous in space and
discontinuous across a series of constant-time manifolds. The collection of elements
filling the spacetime volume between two adjacent constant-time manifolds is called
a slab. The solution is assumed to be continuous within a slab, and weak enforce-
ment of various jump conditions in the variational formulation approximates the ap-
propriate level of continuity between slabs. Hulbert and Hughes introduced a time-
discontinuous Galerkin method for elastodynamics in (Hugheset al., 1988; Hulbertet
al., 1990). The stability and convergence properties of time-discontinuous Galerkin
methods are analyzed in (French, 1993; Johnson, 1993; Costanzoet al., 2005).

(Li et al., 1996, 1998, Wiberget al., 1999) implementh-adaptive procedures for
elastodynamics using the time-discontinuous Galerkin method. The arrangement of
spacetime elements within each slab allows for simultaneous mesh adaptation in space
and time. The discontinuous basis admits spacetime meshes that are nonconforming
across inter-slab boundaries, and this facilitates adaptive refinement and coarsening
between slabs. However, the continuous basis within each slab requires a new compu-
tation for the entire slab whenever any element in the slab is refined. This increases the
overhead associated with adaptive refinement. The slab-wise continuous basis leads
to balance properties at the level of complete slabs, a scale that is larger than desired
in the context of multi-scale analysis.

Spacetime-discontinuous Galerkin (SDG)finite element methods were first intro-
duced by Richter for the wave equation (Richter, 1994). SDG methods use spacetime
Galerkin bases that admit discontinuities across all inter-element boundaries in the
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spacetime mesh. It is not necessary to organize elements into slabs; fully unstructured
nonconforming spacetime grids are admissible, so it is natural (although not manda-
tory) to abandon the notion of a global time step and instead determine the time in-
terval locally for individual spacetime elements. (Yinet al., 2000; Yin, 2002) propose
the first SDG method for linear elastodynamics ; an improved formulation is proposed
in (Abediet al., 2006) that provides the basis for the adaptive algorithm introduced in
this paper. The latter formulation guarantees balance of linear and angular momen-
tum to within machine precision on every spacetime element; a desirable property
for multi-scale applications. Here balance is defined with respect to physically and
mathematically consistent Godunov values, rather than numerical fluxes.

SDG methods have the same oscillation-free property as time-discontinuous meth-
ods, but with better shock-capturing capabilities. If the spacetime mesh is constructed
to satisfy acausality constraint, then a direct patch-by-patch advancing-front solution
procedure is possible, with linear computational complexity in the number of patches
(cf. Section 3.1). For causal meshes, the solution on any given patch is independent
of all subsequent patches in the solution sequence. Thus, a refinement operation re-
quires the solution on only a single patch to be discarded, a property that substantially
reduces the cost of adaptive algorithms. The SDG method fully supports nonconform-
ing spacetime grids, and this facilitates the construction of heavily graded meshes in
our adaptive procedure. The discontinuous formulation has intrinsic support for jumps
in the mechanical fields, so there is no need to implement data projections when the
mesh is refined or coarsened.

We use an extended version of theTent Pitcheralgorithm (Üngöret al., 2002;
Ericksonet al., 2002) to construct causal spacetime meshes that adapt simultaneously
in space and time. While our method balances linear and angular momentum on every
spacetime element, the method is dissipative with respect to energy balance. Hence,
the goal of our adaptive scheme is to limit the numerical energy dissipation and to
distribute it evenly over the spacetime mesh. In order to meet this objective, we use
an error indicator based on the element-wise dissipation to drive adaptive refinement
and coarsening.

1.3. Scope of this paper

The remainder of this paper is organized as follows. Section 2 summarizes a space-
time formulation for continuum elastodynamics in the framework of differential forms
and the exterior calculus (Abediet al., 2006) and formulates the corresponding dis-
continuous Galerkin finite element method. We describe our adaptive implementation
in Section 3, including an advancing-front spacetime meshing algorithm (Ericksonet
al., 2002; Abediet al., 2004) with extensions for local grid refinement and coarsening
and an error indicator that controls the element-wise numerical dissipation. A crack-
tip wave scattering example, including numerical convergence studies and a compari-
son between adaptive and non-adaptive algorithms, is presented in Section 4, followed
by concluding remarks in Section 5.
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2. Formulation

2.1. Spacetime manifolds and notation for differential forms

We use differential forms and the exterior calculus on manifolds to develop a
spacetime continuum theory for linearized elastodynamics. Letd be the spatial dimen-
sion, and let the reference spacetime analysis domainD be an open(d+ 1)-manifold
in Ed ×R with a regular boundary. The spacetime coordinates

(
x1, . . . , xd, t

)
are the

material coordinates associated with the undeformed configuration followed by the
time coordinate and are defined with respect to the ordered basis(e1, . . . , ed, et). The
dual basis is

(
e1, . . . , ed, et

)
. We follow the standard summation convention; latin

indices range from1 throughd, except the index ‘t’ which denotes time and does not
imply summation when repeated.

The standard basis for top forms onD is Ω = dx1 ∧ . . . ∧ dxd ∧ dt, and the
d-form dx̂j is defined by:dxj ∧dx̂k = δj

kΩ;dt∧dx̂k = 0. We define thetemporal
insertionasi := iēt

, in which ēt is a vector field onD with uniform valueet. Thus,
dt∧iΩ = Ω anddxj∧iΩ = 0. We use forms with both vector and scalar coefficients
to develop the theory; the exterior (wedge) product of two vector-valued forms is the
form with scalar coefficients defined by:

(a⊗ ψ) ∧ (b⊗ ω) = (a · b)ψ ∧ ω [1]

in which a,b ∈ Ed(D) are vector fields andψ, ω are forms onD. See (Bishopet
al., 1980; Fleming, 1964; Spivak, 1965) for more complete expositions of differential
forms and tensor calculus on manifolds.

2.2. Mechanical fields

Let the ordered set{Qα} be a partition of the spacetime domainD into open
subdomains with regular boundaries. We define a broken Sobolev space over{Qα} as
V (D) := {w ∈ L2(D) : w|Qα ∈ H2(Qα)}. Note thatV (D) admits discontinuities
across the boundaries between adjacent subdomains. For anyQ ∈ {Qα}, let V Q :=
V (D)|Q = H2(Q).

Let u ∈ V denote thedisplacement field onD, whereu = uiei. The velocity
is the1-form with vector coefficients given byv := u̇ ⊗ dt = u̇iei ⊗ dt, and the
linearized strainis given byE = Eijei ⊗ dxj , whereEij := 1

2 (ui,j + uj,i). The
strain-velocityis the1-form defined byε := E + v.

The force-like fields ared-forms onD with vector coefficients. We introduce the
stress:

σ = σijei ⊗ dx̂j , [2]
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whereσij are the components of stress tensor. The restriction of the stress to any
spacetimed-manifoldΓ ⊂ D delivers thesurface tractiononΓ. Thelinear momentum
densityis defined as:

p = piei ⊗ iΩ. [3]

in which the vector fieldp = (p1, · · · , pd) : D → Ed is the linear momentum mea-
sured per unit volume in the reference configuration. These combine to form the
spacetime linear momentum flux:

M = σ − p. [4]

Thebody force densityis given by:

b = biei ⊗Ω. [5]

whereb̄ = (b1, · · · , bd) : D → Ed is the vector field that delivers body force per unit
mass onD.

The total energy densityΦ = ΦΩ is the non-negative(d + 1)-form with scalar
coefficient such thatΦ = K+U , in whichK andU are thekinetic energy densityand
the internal energy densityrespectively, each measured per unit volume in the unde-
formed configuration. The form of the functionΦ for the case of linear elastodynamic
response is given in Subsection 2.5.

2.3. Kinematic compatibility

Kinematic compatibility requires the limiting displacement values,u+ andu−, on
opposing sides of any spacetimed-manifoldΓ ⊂ D to match. That is:

(u+ − u−)|Γ = 0. [6]

In lieu of [6], we enforce an equivalent system of boundary jump conditions
(Petracovici, 2004) on all subdomainsQ ⊂ D:

(ε∗ − ε) |∂Q = 0 [7a]

(u∗0 − u0) |∂Q = 0 [7b]

in which a superscript “*” denotes a physically consistent target value that is
uniquely defined on anyd-manifold embedded inD by causality, by prescribed bound-
ary or initial data, or by the solution to a local Riemann problem (Abediet al., 2006).
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A subscript “0" indicates a local projection of the displacement field onto a zero-
energy subspace characterized by vanishing velocity and strain. Specific definitions
of the target values appear in 2.6.

2.4. Momentum and energy balance

Balance of linear momentum requires that:∫
∂Q

M +
∫

Q

ρb = 0 ∀Q ⊂ D [8]

in whichρ is the mass density per unit volume in the reference configuration. Equation
[8] also implies balance of angular momentum when the stress tensorσ is symmetric
(Abediet al., 2006).

The following system enforces [8]via the Stokes Theorem while accounting for
possible jumps inM. It also enforces compatibility with a target momentum fluxM∗

that is defined uniquely on everyd-manifold embedded inD (see 2.6). For allQ ⊂ D,

(dM + ρb)|Q\ΓJ = 0 [9a]

(M∗ −M)|∂Q∪(Q∩ΓJ) = 0 [9b]

whereΓJ is the jump set ofM.The component form of [9a] is
[
σij

,j + ρ(bi − üi)
]
ei⊗

Ω = 0 onQ \ ΓJwhich is the familiar Equation of Motion.

Energy balance requires:∫
∂Q

N +
∫

Q

u̇ ∧ ρb = 0 ∀Q ⊂ D, [10]

whereN := −iΦ + u̇ ∧ σ is thespacetime flux of total energy.

2.5. Constitutive model

We restrict our attention to materials with linear elastodynamic response. That is,
we assume there exists a spacetime total energy density field of the form:

Φ(ε) =
1
2
ε ∧Cε =

1
2

(
EijC

ijklEkl + ρu̇iδ
ij u̇j

)
Ω, [11]
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whereC is a linear transformation of1-forms intod-forms such that:

σ + p =
∂Φ
∂ε

⇒ σ + p = Cε [12a]

σ =
∂Φ
∂E

⇒ σ = CE or σij = CijklEkl [12b]

p =
∂Φ
∂v

⇒ p = Cv or pi = ρδij u̇j . [12c]

Hereδij is the Kronecker delta and the componentsCijkl of the positive-definite
elasticity tensor exhibit the usual major and minor symmetries - a structure that en-
sures symmetry ofσ. The momentum flux is related to the strain-velocityvia the
linear transformation:

M = Ĉε := C(E− v), [13]

and the spacetime flux of total energy for linear elastodynamic response reduces to:

N =
1
2

(u̇ ∧M + ε ∧ iσ) . [14]

2.6. Boundary/initial conditions

Consider a subdomainQ ⊂ D. The target valuesu∗0, ε∗ and M∗ in [7] and
[9b] provide a unified mechanism for enforcing boundary conditions consistent with
prescribed boundary and initial data on∂Q ∩ ∂D or with causality on∂Q \ ∂D. We
use undecorated symbols and symbols decorated with a superscript “+" to denote,
respectively, the interior and exterior traces of a quantity on∂Q. A superscript “G"
indicates aGodunov valueon ∂Q that solves a local Riemann problem, as described
in (Abedi et al., 2006). An underlined symbol denotes prescribed initial or boundary
data on∂D. Next, we introduce two partitions of∂Q that determine how the target
values are computed.

The temporal partitionis used to determine the target valuesu∗0 on ∂Q (see Fig-
ure 1a). Thetemporal inflow boundary ofQ, denoted by∂Qti, consists of all points
x ∈ ∂Q where the temporal basis vectoret points inward relative toQ. Thetemporal
outflow boundary ofQ is ∂Qto := ∂Q \ ∂Qti.

Thecausal partitionof ∂Q is used to determine the target values forε∗ andM∗

based on prescribed initial/boundary data or on the characteristics associated with
elastic wave propagation (see Figure 1b). We say that a spacetimed-manifold iscausal
if and only if it has a zero intersection with the union of the dynamic domains of
influence of all its points. This implies that, everywhere on a causal subdomain of
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∂Q, the characteristic directions are either all outward or all inward relative toQ.
We partition∂Q into its causal and noncausal parts,∂Qc and∂Qnc, and we further
partition∂Qc into acausal inflowpart∂Qci and acausal outflowpart∂Qco according
to whether the local characteristic directions are all inward or all outward relative
to Q. In this work, we restrict our attention tomaterial noncausal surfaces that are
everywhere tangent toet.

We also assume a disjoint partition of the noncausal boundary into two regions
where eitherM or ε is prescribed:∂Dnc = ∂DM ∪ ∂Dε.

The target values provide a unified means for specifying jump, boundary and initial
conditions based on the temporal and causal partitions. For everyQ ⊂ D, the target
values are given by:

u∗0|∂Q =


u0 on∂Qto

u+
0 on∂Qti \ ∂Dti

u0 on∂Qti ∩ ∂Dti
[15a]

M∗ =


M on∂Qco ∪ (∂Q ∩ ∂Dε)
M+ on∂Qci \ ∂Dci

MG(M,M+,a∂Q) on∂Qnc \ ∂Dnc

M on∂Q ∩
(
∂Dci ∪ ∂DM

) [15b]

ε∗ =


ε on∂Qco ∪

(
∂Q ∩ ∂DM

)
ε+ on∂Qci \ ∂Dci

εG(ε, ε+,a∂Q) on∂Qnc \ ∂Dnc

ε on∂Q ∩
(
∂Dci ∪ ∂Dε

) [15c]

The Godunov values derive from solutions to local Riemann problems (closed-
form expressions are provided in (Abediet al., 2006)). They provide physically and
mathematically consistent target values on∂Qnc \ ∂Dnc that hold whether or not a
shock is present.

2.7. Discrete formulation

We obtain a discontinuous Galerkin finite element method by associating the
partition {Qα} with a spacetime finite element mesh and by considering a finite-

dimensional subspace ofV , Vh :=
{
w ∈ V : w|Qα ∈ V

Qα

h

}
, in which V Qα

h is a

finite-dimensional subspace ofH2(Qα). We use spacetime simplex elements and
polynomial spaces,V Qα

h = Pn(Qα), wherePn(Qα) is the space of vector fields on
Qα whose components are complete polynomials of ordern.1 The discrete weighted

1. The polynomial ordern must satisfyn ≥ 1 for d = 1 andn ≥ 2 for d = 2, 3 (Abedi et
al., 2006).
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(a) Temporal partition (b) Causal partition

Figure 1. Alternative partitions of∂Q

residual statement for equations [7] and [9] takes the following form.Find uh ∈ Vh

such that for allQ ∈ {Qα} :∫
Q

ẇ ∧ (dMh + ρb) +
∫

∂Q

{
ẇ ∧ (M∗

h −Mh) + (ε∗h − εh) ∧ iM̂
}

+
∫

∂Qti
w0 ∧ (u∗h − uh)⊗ iΩ = 0 ∀w ∈ V Q

h , [16]

in which a superposed ‘’̂ indicates a function ofw, and a subscript ‘h’ denotes a
function ofuh. The Stokes Theorem applied to [16] leads to the discrete weak form
used in our numerical implementation:∫

Q

{−dẇ ∧Mh + ẇ ∧ ρb}+
∫

∂Q

{
ẇ ∧M∗

h + (ε∗h − εh) ∧ iM̂
}

+
∫

∂Qti
w0 ∧ (u∗h − uh)⊗ iΩ = 0 ∀w ∈ V Q

h . [17]

It is easily shown (Abediet al., 2006) that the discrete solution to [17] satisfies exactly
the integral forms of Balance of Linear and Angular Momentum over every spacetime
elementQ ∈ (Qα). For convenience of implementation, an alternative statement
using indicial tensor notation of the weak form [17] appears in (Abediet al., 2006).
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2.8. Energy dissipation

While the SDG formulation balances linear and angular momentum to within ma-
chine precision over every spacetime element, the method does not balance energy.
Recalling [10] and [14] and enforcing the target flux values, the numerical energy
dissipation for spacetime elementQ is given by:

ϕQ =
1
2

∫
∂Q

(u̇∗ ∧M∗ + ε∗ ∧ iσ∗) +
∫

Q

u̇ ∧ ρb. [18]

As shown in (Abediet al., 2006), the following identity holds:

ϕQ =
1
2

∫
∂Q

{Ju̇hK · JMhK + JεhK ∧ JiMhK} . [19]

The jump integrand is identically zero on∂Qco and is nonnegative on∂Qco ∪ ∂Qnc

(Petracovici, 2004). Therefore,ϕQ is nonnegative. Thetotal energy dissipation over
D with respect to the target flux on∂D, denoted by∆, is given by:

∆ :=
∫

D

u̇h · ρb +
1
2

∫
∂D

{u̇∗h ·M∗
h + ε∗h ∧ iM∗

h} =
∑

Q∈Ph

ϕQ. [20]

The total energy dissipation is clearly nonnegative, so our method is dissipative. Ana
priori error estimate reported in (Petracovici, 2004) indicates that the dissipation∆ is
of orderh2n−1, provided that the exact solution satisfies certain regularity conditions
and that all inter-element boundaries are causal. Our numerical studies suggest that
the same convergence rate is achieved for arbitrary patch-wise causal partitions.

3. Adaptive implementation

In contrast to methods that use a sequence of global time steps to advance the
solution in time, we implement our SDG method on unstructured spacetime meshes
that admit nonuniform refinement in both space and time. We construct our space-
time meshes subject to acausality constraintthat enables a direct, patch-by-patch,
advancing-front solution procedure that interleaves mesh generation with patch-level
solution procedures. This leads to an algorithm with linear computational complexity
in the number of patches that is well-suited to parallel and adaptive implementation.
The following subsections describe the basic SDG meshing and solution procedure
and a spacetime adaptive refinement strategy that controls element-wise energy dissi-
pation.

3.1. Spacetime meshing and advancing-front solution procedure

We say that a spacetime mesh ispatchwise causalif and only if the elements in
the mesh can be organized into groups of contiguous elements calledpatches, such
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that the boundary of each patch consists exclusively of causal manifolds (see 2.6).
Inter-element boundaries within the patch can be noncausal, so the elements within
the patch must be solved simultaneously. However, the dependency graph between
patches defines a partial ordering wherein the solution on each patch depends only on
boundary data and solutions on earlier patches in the partial ordering. Thus, patches
can be solved locally, without approximation, using only boundary data and outflow
data from previously-solved patches (Abediet al., 2006). Furthermore, elements at
the same level in the partial ordering are mutually independent and can be solved
in parallel. This causality-based partial ordering is the basis of our advancing-front
solution procedure.

We use theTent Pitchermeshing procedure (Üngöret al., 2002; Ericksonet al.,
2002) to construct causal spacetime meshes in 2D× time, as illustrated in Figure 2.
Tent Pitcher begins with a constant-time triangulation of the spatial domain at the
initial analysis time; this is the initialfront. A front is a triangulated spacetime surface,
generally with nonuniform time coordinates. Tent Pitcher constructs a new front by
advancing in time a local-minimum vertex of the current front.2 The line segment
between the old and new positions of the advancing vertex is called atent pole. Each
time the front advances, Tent Pitcher fills the volume between the old and new fronts
with a patch (ortent) of tetrahedral elements that share the tent pole as a common edge.
We refer to the process of erecting a new tent pole and generating the corresponding
patch of elements aspitching a tent.

In order to guarantee that every patch is causal, we require every triangular facet in
each new front to be a causal manifold. Tent Pitcher limits the height of each new tent
pole to satisfy thiscausality constraint. Unfortunately, advancing the front sequen-
tially, subject only to the causality constraint, can lead to a locking condition in which
it is impossible to advance the front further. Tent Pitcher enforces a second constraint
on the tent-pole height, called theprogress constraint, to ensure that this locking con-
dition does not occur (Ericksonet al., 2002). This leads to a robust, advancing-front
algorithm for constructing patch-wise causal spacetime meshes.

Each new causal patch can be solved independently of all subsequent patches,
using data only from the spacetime domain boundary and from adjacent, previously-
solved elements. Tent Pitcher immediately passes the geometric description of each
new patch, together with all required physical data, to the SDG finite element routines
for solution. The required physical data include flags that describe the material type for
each element, and solution fields on the adjacent, previously-solved elements. Also
included are boundary data and complete descriptions of the geometry. The finite
element routines compute the SDG solution on the new patch and return it to Tent
Pitcher. Tent Pitcher stores the new patch solution, updates the current front to the
new front, and locates a new local-minimum vertex in preparation for pitching the next
tent. Thus, the processes of spacetime mesh generation and finite element solution are

2. A local-minimum vertexis a vertex whose time coordinate is less than or equal to the time
coordinates of all its neighboring vertices.
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interleaved at the patch level. Any previously-solved patch that is no longer adjacent
to the updated front cannot influence subsequent solutions, so its data are written to
mass storage and removed from high-speed memory. The tent-pitching cycle repeats
until the entire spacetime analysis domain is covered.

This patch-wise solution method has several advantages. First, it delivers linear
computational complexity in the number of patches (if the maximum degree of any
vertex in the spatial triangulation is bounded). There is no need to assemble and store
a global system of equations; the finite element routines are written to solve a single
patch at a time. The local structure also facilitates adaptive analysis, as described in
Section 3.2. If the error in the current patch is unacceptable, the mesh can be refined
locally; only the solution on that particular patch need be discarded. Thus, the overall
cost of the adaptive solution is reduced relative to methods that require recalculation
of a global time step. Finally, the patch-by-patch solution technique lends itself to
parallel computation. Multiple tents can be pitched and solved simultaneously on
separate processors, subject only to the partial ordering constraint for patches. The
local characteristics of the algorithm minimize interprocessor communication.

↘ ↗ ↘ ↗

Figure 2. Pitching tents in spacetime. Wire-frame-rendered clusters of tetrahedra in-
dicate newly-constructed, unsolved patches; the shaded, triangulated surface depicts
the current front in each image

3.2. Adaptive analysis

This subsection describes adaptive extensions of the SDG method that ensure an
accurate solution, especially when shocks are present. Geometric aspects of adaptive
mesh refinement and coarsening are described in 3.2.1, and a dissipation-based error
indicator is introduced in 3.2.2 to drive the mesh adaptation.

3.2.1. Adaptive mesh refinement and coarsening

We use an adaptive extension of the Tent Pitcher algorithm (Abediet al., 2004) to
implement adaptive refinement and coarsening within our patch-by-patch, advancing-
front solution algorithm. Rather than adapting patches of spacetime elements directly,
Tent Pitcher implements adaptive refinement by managing the triangulation of the cur-
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rent front. Each time a patch is solved, a local error indicator (see below) is computed
for each element in the patch and tested against user-specified target values.

If the error indicator is too far above its target value in a given element, then that
element is marked forrefinementand the solverrejectsthe patch when it is returned
to Tent Pitcher. Tent Pitcher, in turn, discards the rejected patch and, using a newest-
vertex-bisection algorithm (see Figure 3 and (Abediet al., 2004)), refines the facets of
the current front that correspond to elements marked for refinement. This effectively
refines the spacetime mesh in both space and time when tent pitching is resumed, be-
cause the causality constraint dictates shorter tent-pole heights (local time steps) at
vertices associated with refined facets. Note that Tent Pitcher discards the solution
only on the rejected patch. The solutions on all previously-solved patches are unaf-
fected due to the patch-wise causal structure of the spacetime grid, so the amount of
redundant calculation is minimized when the front is refined.

A B C
A A

D

D

B C B C

B C

BC

Figure 3. Newest-vertex bisection. Tent Pitcher bisects the edge opposite the newest
(marked) vertex in each triangle designated for refinement in the current front. This
produces a limited set of triangle shapes, with guaranteed quality relative to the orig-
inal triangleA

If the error indicator in a given element is too far below its target value, then that
element is marked ascoarsenablewhen it is returned to Tent Pitcher. Otherwise, if
an element is neither coarsenable or marked for refinement, the element is marked as
acceptable. Tent Pitcher accepts the solution on the current patch if all elements in the
patch are either acceptable or coarsenable. In this case, Tent Pitcher stores the patch
solution, advances the front, and copies the status (acceptable or coarsenable) from
the patch elements to the corresponding facets of the new front.

Requests for coarsening need not be acted on immediately, since they do not in-
volve unacceptable error. Tent Pitcher’s coarsening operation involves deleting a
degree-4 vertex so as to merge two pairs of adjacent, coarsenable facets into two facets
in the new front. In order to maintain the integrity of the spacetime grid, each pair of
facets must be coplanar before the coarsening operation can be executed. Typically,
this requirement is not satisfied immediately, so Tent Pitcher postpones coarsening
until it has pitched new tent poles with heights adjusted to meet the coplanarity con-
straint.

The adaptive refinement and coarsening operations maintain a nesting relation be-
tween the old and new fronts wherein every facet on the new front is either a subdo-
main of a single facet from the old front (refinement) or the union of two adjacent old
facets (coarsening). The nesting property facilitates the evaluation of boundary inte-
grals that depend on data from previously solved elements. Refinement and coarsening
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Figure 4. Local refinement of the spacetime mesh in response to a bisection of a facet
in the current front. The resulting nonconforming spacetime mesh is fully supported
by the SDG formulation without projecting data from the old front to the new front.
Nonconforming facets are nested to facilitate evaluation of jump terms on the element
boundaries. Coarsening, the inverse of this operation, is handled in a similar fashion

operations produce nonconforming spacetime grids, but this does not cause a prob-
lem, and there is no need to project the solution from the old front onto the new front,
because the SDG formulation naturally accommodates discontinuous data. This cir-
cumvents a source of numerical error and algorithmic complexity that impacts many
other adaptive algorithms while preserving exact, element-wise balance of linear and
angular momentum.

3.2.2. Adaptive control of numerical dissipation

Although the SDG formulation balances linear and angular momentum over every
spacetime element, the method is dissipative. Therefore, we must limit the numerical
dissipation to obtain an accurate solution. Further, to achieve an efficient solution, we
attempt to distribute the numerical dissipation evenly over the spacetime elements.

The dissipation on elementQ is given by Equation [18]. Letϕ∗ be the target
dissipation per element. The dissipation on elementQ is considered acceptable when
ϕ ≤ ϕQ ≤ ϕ, whereϕ = (1− η)ϕ∗ andϕ = (1+ η)ϕ∗ in whichη is a user-specified
parameter subject to0 < η < 1. Refinement is required whenϕQ > ϕ, and element
Q is coarsenable whenϕQ < ϕ. The parameterη must be chosen sufficiently large to
minimize undesirable cycling between coarsening and refinement. We useη = 0.2 in
our current implementation.
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Figure 5. Spatial domain and boundary conditions for the crack scattering problem

4. Numerical example

This section presents numerical solutions of a crack-tip wave-scattering problem
that demonstrate the performance of our adaptive algorithm. Crack-tip singularities
and complex patterns of scattered shock fronts produce a challenging, multi-scale
analysis problem.

Figure 5 shows a center-cracked plate that we model using plane-stress assump-
tions, Young’s modulusE = 10, Poisson ratioν = 0.3, and densityρ = 2. A
spatially uniform tensile traction of magnitudeT acts along the top and bottom edges
of the plate. The magnitudeT vanishes at negative times, ramps from zero at time
t = 0.0 to a maximum value of10 at timet = 0.002, and holds constant at the ma-
ximum value until the simulation interval terminates at timet = 0.150. The ramping
approximates a stress-velocity shock while maintaining continuity of the loading. We
apply symmetry boundary conditions to model only the shaded region shown in the
figure, and we use complete cubic polynomials to model the displacement field within
each spacetime tetrahedron. A uniform2× 4 rectangular grid defines the initial space
mesh, with each rectangle subdivided into two triangles.

Figure 6 shows the influence of the target dissipationϕ∗ on the accuracy and cost
of the solution. We use the total numerical dissipation∆, normalized by thetotal
inflow energyE0, to measure the solution error and the total number of elements
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(a) Total energy dissipation∆ versus target
per-element dissipationϕ∗
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Figure 6. Influence of target per-element dissipation on solution accuracy and cost

solvedNs to indicate the cost of the solution.3 Figure 6(a) shows that the energy
dissipation converges toward zero asϕ∗ approaches zero. We observe in Figure 6(b)
that the costNs increases monotonically asϕ∗ decreases.

Figure 7 compares the efficiency of theh-adaptive and nonadaptive versions of the
SDG method. The results for the nonadaptive case were obtained using static, uniform
refinements of the initial mesh. The adaptive algorithm is more efficient throughout
the range of this study, as it delivers less dissipation for any given value ofNs. Fur-
thermore, the adaptive convergence rate increases monotonically with increasingNs,
while there is no clear trend for the nonadaptive case.

Figure 8 shows the state of the spacetime mesh constructed by the adaptive Tent
Pitcher algorithm at an intermediate stage of the simulation. The spatial directions are
aligned with the horizontal axes, and time increases upward in the vertical direction.
The fine details of the elastodynamic solution are clearly evident in the pattern of mesh
refinement. The dark diagonal bands along the right face of the spacetime volume
are traces of plane waves generated by the sudden traction loading, while the lighter
diagonal band ascending at a steeper angle traces the trajectory of a Rayleigh wave
moving along the free edge of the plate.

The spacetime trajectory of the crack tip runs along the vertical center-line of the
left face of the spacetime volume. The apex of the cone-shaped region of mesh re-
finement indicates the initial scattering event. The separation of the scattered wave
into dilatational and shear components can be seen in the pattern of refinement. The
outer perimeter of the cone indicates the progress of the faster-moving dilatational
wave, while the dark circular band within the cone traces the trajectory of the slower

3. The countNs includes elements in patches that are ultimately rejected due to unacceptable
error since solving these elements still contributes to the total cost of the solution.
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shear wave. Figure 8(b) shows a detail of the spacetime mesh in the vicinity of the
initial scattering event. The diagonal band of intense refinement traces a Rayleigh
wave moving along the free surface of the crack, while the vertical band shows steady
refinement that captures singular fields at the stationary crack tip. Regions of milder
refinement indicate the extent of the dilatational wave.

Instances of nonconforming spacetime elements, associated with both refinement
and coarsening operations, can be found at various locations in the mesh. These non-
conforming features facilitate the construction of strongly graded meshes and do not
require special treatment in the SDG formulation. In this example, the ratio of the
largest to smallest element diameter is1024. The ability of the adaptive SDG method
to limit refinement to the trajectories of moving shocks and the avoidance of a global
time step lead to significant computational savings.

Figure 9 shows a time sequence of visualizations of the adaptive solution; the
images were generated by a pixel-exact visualization system developed by Garlandet
al. (Zhouet al., 2004). The strain energy density field is mapped to color, with blue
indicating zero energy density and red and violet indicating the highest values. The
magnitude of the velocity vector is mapped to the height field, which is then shaded
by a lighting model to reveal its form. The visualization clearly reveals fine features
of the solution such as Rayleigh waves moving back and forth along the crack surface
and the scattered shear and pressure waves emanating from the crack-tip (see Figures
9(c)-9(h)). For purposes of comparison between the spacetime mesh and the solution,
we note that the top of the spacetime volume in Figure 8(a) is at roughly the same time
as the instantaneous solution depicted in Figure 9(c).
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Figure 7. Energy dissipation∆ versus number of elements solvedNs
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(a) Partial mesh with 11 million tetrahedra

(b) Detail of the initial crack-tip
scattering event

Figure 8. Adaptive space-time mesh for the crack-tip wave scattering problem
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(a) time t = 0.033 (b) time t = 0.070

(c) time t = 0.105 (d) time t = 0.140

(e) time t = 0.175 (f) time t = 0.210

(g) time t = 0.245 (h) time t = 0.280

Figure 9. Elastic wave scattering by a stationary crack-tip (at center of lower edge)
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Small-scale features, such as the shock fronts, are well resolved. The solution is
free of spurious oscillations, although no extra stabilization has been added to the SDG
formulation. A small amount of overshoot in the derivative fields can be observed in
the vicinity of shock fronts, but the overshoot reduces with adaptive refinement and
the shocks leave no artifacts in their wakes.

5. Conclusions

We have presented anh-adaptive implementation of the spacetime-discontinuous
Galerkin method for linearized elastodynamics. Our method is unconditionally sta-
ble, and it balances linear and angular momentum with respect to Godunov boundary
values on every spacetime element. However, it is mildly dissipitive, so our adap-
tive scheme is designed to limit the numerical energy loss. The method requires no
extra stabilization to deliver oscillation-free solutions at shocks. Patch-wise causal
spacetime grids support a patch-by-patch solution procedure with linear complexity
in the number of patches and a patch-level adaptive refinement strategy. Refinement
operations only affect the current patch, so the need for redundant calculations during
adaptive refinement is minimized. Coarsening does not reduce the method’s accuracy
or interfere with its balance properties because there is no need to project the solution
from the old front onto the new front. The SDG method admits nonconforming grids,
and we use this feature to construct strongly graded grids as required in multi-scale
problems. Our use of unstructured spacetime grids, adapted simultaneously in space
and time, delivers high-resolution simulations of shocks and other transient pheno-
mena at a reasonable cost.

Several potential enhancements and extensions of our adaptive method are worthy
of mention. We are investigating a broader vocabulary of adaptive mesh operations
to transform the active front in Tent Pitcher. These include edge flips, edge deletion
and insertion as well as inclined tent poles. The additional operations could be used
to improve the geometric quality of the spacetime mesh, to refine and coarsen more
efficiently and to support front-tracking models for problems with moving interfaces.
Improving the geometric quality of the mesh is especially important because oura
priori error estimate depends on a lower bound for the worst element quality in the
mesh. Moreover, numerical studies show that low-quality elements with extreme as-
pect ratios can lead to ill-conditioning in the patch-wise SDG equations.4 The use
of inclined tent poles is the spacetime equivalent of anr-adaptive procedure. This
capability could be used to optimize element quality, to track moving interfaces or to
model crack propagation.

4. The quality of the initial space mesh is an important factor in determining the quality of
the spacetime mesh in our current implementation. Even with the addition of the active quality
control measures proposed here, the initial space mesh would still affect the quality of the early
spacetime mesh, so procedures for improving the quality of the initial space mesh might be
needed in some cases.
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In addition to nonconforming meshes, the SDG formulation accommodates jumps
in polynomial order between adjacent elements. Thus, it provides a natural platform
for implementinghp-adaptive analysis procedures. The objective would be to use
h-refinement and low-order polynomials in the vicinity of shocks and other solution
features with limited regularity and to use elements with higher-order polynomials
in regions where the solution is smooth. Reductions in the convergence rate in re-
gions with low regularity can be used to detect the locus of shocks, as described in
(Krivodonovaet al., 2004).

The integration and assembly of the patch equations account for a relatively large
percentage of our computational load. The cost of equation solving is smaller than in
conventional algorithms because the patch-level systems are relatively modest in size.
Our current implementation uses Gaussian quadrature to evaluate the element inte-
grals. Substantial speed-ups could be realized either by using analytical quadrature
formulas for simplices or by eliminating redundant calculations as in thequadrature-
free methods(Atkins et al., 1998). We are also working on a parallel version of
the adaptive algorithm. Our advancing-front solution algorithm has a natural paral-
lel structure; patches can be pitched and solved simultaneously with very little inter-
processor communication. The main challenge in the parallel implementation is to
maintain load balance between processors as the adaptive procedure modifies the lo-
cal density of the mesh.
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