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ABSTRACT. The discontinuous Galerkin time domain (DGTD) methods are now widely used for
the solution of wave propagation problems. Able to deal with unstructured meshes past complex
geometries, they remain fully explicit with easy parallelization and extension to high orders of
accuracy. Still, modal or nodal local basis functions have to be chosen carefully to obtain
actual numerical accuracy. Concerning time discretization, explicit non-dissipative energy-
preserving time-schemes exist, but their stability limit remains linked to the smallest element
size in the mesh. Symplectic algorithms, based on local-time stepping or local implicit scheme
formulations, can lead to dramatic reductions of computational time, which is shown here on
two-dimensional acoustics problems.

RÉSUMÉ. Les méthodes de Galerkin discontinu sont maintenant largement utilisées pour la ré-
solution numérique de problèmes de propagation d’ondes. S’appuyant sur des maillages non
structurés autour des géométries les plus générales, elles restent presque complètement expli-
cites, facilement parallélisables et d’ordre élevé. Il convient néanmoins d’optimiser le choix des
fonctions de base discontinues (modales ou nodales). Pour ce qui est de la discrétisation en
temps, des schémas explicites non dissipatifs existent, mais leur limite de stabilité reste liée aux
plus petits éléments du maillage. Des algorithmes symplectiques, avec pas de temps local ou
schéma localement implicite, conduisent à des diminutions considérables du temps de calcul.

KEYWORDS: waves, acoustics, Maxwell’s system, discontinuous Galerkin methods, mass matrix
condition number, symplectic schemes, energy conservation, local time-stepping.
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1. Introduction

The accurate modeling of systems involving electromagnetic, acoustic, or elastic
waves, in particular through the time-domain numerical solution of wave equations on
space grids, remains of strategic interest for many technologies. The still prominent,
explicit, energy-conserving finite difference time-domain (FDTD) method (Yee, 1966)
lacks two important features to be fully applied in industrial design chains: 1) the
huge restriction to structured or block-structured grids, and 2) the efficiency of FDTD
methods is limited when fully curvilinear coordinates are used.

Many different types of methods have been proposed in order to handle com-
plex geometries and heterogeneous configurations by dealing with unstructured tetra-
hedral meshes, including, for example, mass lumped finite element time-domain
(FETD) methods (Elmkies et al., 1997; Joly et al., 2000), mimetic methods (Hyman et
al., 1999), or finite volume time-domain (FVTD) methods (Shang et al., 1996; Cioni
et al., 1997; Remaki, 2000), which all fail in being at the same time as efficient as ex-
plicit methods, easily extendible to high orders of accuracy, and provably stable. The
global conservation of the electromagnetic energy and the preservation of divergence,
which are two desirable properties of Yee’s original method, have been also obtained
for FETD methods or for FVTD methods based on totally centered numerical fluxes
(Remaki, 2000), coupled with a centered implicit time-scheme or an explicit leap-frog
time-scheme.

The discontinuous Galerkin methods enjoy an impressive favor nowadays and are
now used in many and various applications (Cockburn et al., 2000), taking advantage
of their ability to achieve a high order of accuracy by simply choosing suitable basis
functions (spectral elements (Kopriva et al., 2000), Lagrange high-order polynomials
on tetrahedra (Hesthaven et al., 2000, 2002a, 2002b)) or to handle complicated ge-
ometries and meshes (locally-refined (Canouet et al., 2003) and non-conformal grids
(Warburton, 2005)). The existing software, based on discontinuous Galerkin time-
domain (DGTD) methods implement in most cases upwind fluxes and multi-step low-
storage Runge-Kutta time-schemes (Cioni et al., 1997; Warburton, 2000; Kopriva et
al., 2000; Hesthaven et al., 2002b), which make them robust, stable, all-purpose, but
slightly dissipative when applied to wave propagation problems. However, centered
fluxes coupled with an explicit leap-frog time-scheme lead to a convergent, stable, and
energy-conserving DGTD method (Fezoui et al., n.d.), for which the time-integration
remains a concern for locally refined grids like those obtained by automatic mesh
generators round configurations involving small devices or details in the geometry.

It has been shown (Piperno, n.d.) that symplectic time-schemes, originally deve-
loped for the numerical time integration of dynamical Hamiltonian systems (molecular
dynamics, astronomy, etc. (Sanz-Serna et al., 1994)) and currently being used for the
time-integration of spatially-discretized wave propagation problems (Hirono et al.,
1997, 1998, Rieben et al., 2004) can overcome this problem, via locally implicit
time-integration or explicit local time-stepping.
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We consider in this paper the application of some particular symplectic schemes
to the finite-dimensional system obtained after space-discretization based on a discon-
tinuous Galerkin method using totally centered fluxes, with a particular attention to
configurations where different scales in the grid are present. In Section 2, we recall
the basic features of discontinuous Galerkin space-discretizations of first-order 3D
Maxwell’s equations or first-order 2D acoustics equations in the time domain, based
on totally centered numerical fluxes. In Section 4, we quickly discuss the advan-
tages and drawbacks of several sets of local basis functions in the particular context
of discontinuous Galerkin methods. We propose an original choice for basis func-
tions in simplices in any space dimension, which have many numerical properties. In
Section 4.2, we quickly recall two symplectic approaches in the particular context of
DGTD methods for Maxwell’s equations or acoustics equations, one is explicit with
recursive local time-stepping, the second one is locally implicit. Numerical results in
two space dimensions are presented in Section 5 and conclusions and further research
and development directions are proposed in Section 6.

2. DGTD methods for wave propagation problems

2.1. Discontinuous Galerkin discretization of Maxwell’s system

We first consider in this section the Maxwell’s equations in three space dimensions
for heterogeneous anisotropic linear media with no source. The electric permittivity
tensor ¯̄ε(x) and the magnetic permeability tensor ¯̄µ(x) are varying in space and both
symmetric positive definite (with uniform strictly positive lower and upper bounds).
The electric field ~E and the magnetic field ~H verify:

¯̄ε∂t
~E = ~curl ~H, ¯̄µ∂t

~H = − ~curl ~E, [1]

where the symbol ∂t denotes a time derivative. These equations are set and solved on
a bounded polyhedral domain Ω of R3. These equations have a particular form: the
time derivative of the electric field ~E (resp. the magnetic field ~H) only depends on
the other field, i.e. ~H (resp. ~E). This feature is also present in two-dimensional and
three-dimensional acoustics equations, which are introduced in the next section.

For the sake of simplicity, a metallic boundary condition is set everywhere on the
domain boundary ∂Ω, i.e. ~n × ~E = ~0 (where ~n is the unitary outwards normal).
We assume we dispose of a partition of a polyhedral domain Ωh (approximating the
Lipschitz-continuous or more regular domain of interest Ω) into a finite number of
polyhedra. For each polyhedral element Ti, Vi denotes its volume, and ¯̄εi and ¯̄µi are
respectively the local electric permittivity and magnetic permeability tensors of the
medium, which could be varying inside the element Ti. We call face between two
finite elements their intersection, whenever it is a polyhedral surface. We denote by
Fh the union of faces and by F int

h = Fh/∂Ωh the union of internal faces (common
to two finite elements). For each internal face aik = Ti

⋂

Tk, we denote by Sik the
measure of aik and by ~nik the unitary normal, oriented from Ti towards Tk. The same
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definitions are extended to metallic boundary faces (in the intersection of the domain
boundary ∂Ωh with a finite element), the index k corresponding to a fictitious element
outside the domain. Finally, we denote by Vi the set of indices of the neighboring
elements of the Ti (having a face in common). We also define the perimeter Pi of Ti

by Pi =
∑

k∈Vi
Sik. We recall the following geometrical property for all elements:

∑

k∈Vi
Sik~nik = 0.

Following the discontinuous Galerkin approach, the electric and magnetic fields
inside each finite element are seeked for as linear combinations (~Ei, ~Hi) of linearly
independent basis vector fields ~ϕij , 1 ≤ j ≤ di, where di denotes the local number
of scalar degrees of freedom inside Ti. We denote by Pi = Span(~ϕij , 1 ≤ j ≤ di).
The approximate fields (~Eh, ~Hh), defined by (∀i, ~Eh|Ti

= ~Ei, ~Hh|Ti
= ~Hi) are

allowed to be completely discontinuous across element boundaries. The formulation
is mathematically invariant if another local basis vector fields is chosen, the set Pi

remaining constant. However, numerical accuracy and efficiency of the methods are
related to the choice of basis functions, which will be discussed in Section 4.

Because of this complete discontinuity, a global variational formulation cannot be
obtained. However, dot-multiplying [1] by any given vector field ~ϕ ∈ Pi, integrating
over each single element Ti and integrating by parts, yields:















∫

Ti

~ϕ · ¯̄εi∂t
~E = −

∫

∂Ti

~ϕ · (~H× ~n) +

∫

Ti

~curl ~ϕ · ~H,
∫

Ti

~ϕ · ¯̄µi∂t
~H =

∫

∂Ti

~ϕ · (~E× ~n) −

∫

Ti

~curl ~ϕ · ~E.
[2]

In Equations [2], we now replace the exact fields ~E and ~H by the approximate
fields ~Eh and ~Hh in order to evaluate volume integrals. For integrals over ∂Ti,
some additional approximations have to be done since the approximate fields are dis-
continuous through element faces. We choose to use completely centered fluxes,
i.e. ∀i, ∀k ∈ Vi, ~E|aik

' (~Ei + ~Ek)/2, ~H|aik
' (~Hi + ~Hk)/2. The metal-

lic boundary condition on a boundary face aik (k in the element index of the ficti-
tious neighboring element) is dealt with weakly, in the sense that traces of fictitious
fields (~Ek, ~Hk) are used for the computation of numerical fluxes for the boundary
element Ti. In the present case, where all boundaries are metallic, we simply take
~Ek |aik

= −~Ei|aik
and ~Hk |aik

= ~Hi|aik
. Replacing surface integrals using centered

fluxes in [2] and re-integrating by parts yields the final discontinuous Galerkin dis-
cretization of the Maxwell’s system (see (Fezoui et al., n.d.) for more details). In
terms of scalar unknowns inside each element, the fields being recomposed according
to ~Ei =

∑

1≤j≤di
Eij ~ϕij , ~Hi =

∑

1≤j≤di
Hij ~ϕij and denoting by Ei and Hi

respectively the columns (Eil)1≤l≤di
and (Hil)1≤l≤di

, we get the general form:















M ε
i ∂tEi = KiHi −

∑

k∈Vi

SikHk,

Mµ
i ∂tHi = −KiEi +

∑

k∈Vi

SikEk,
[3]
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where the positive definite symmetric mass matrices M ε
i , Mµ

i , and the symmetric
stiffness matrices Ki (all of size di) are given by: (M ε

i )jl =
∫

Ti

t ~ϕij ¯̄εi~ϕil, (Mµ
i )

jl
=

∫

Ti

t ~ϕij ¯̄µi ~ϕil, (Ki)jl = 1
2

∫

Ti

(

t ~ϕij
~curl~ϕil + t ~ϕil

~curl~ϕij

)

, and for any interface

aik, the di × dk rectangular matrix Sik is given by (Sik)jl = 1
2

∫

aik
~ϕij · (~ϕkl × ~nik).

Finally, if all electric (resp. magnetic) unknowns are regrouped inside column
vectors E (resp. H) of size d =

∑

i di, then the space discretized system [3] can be
rewritten as:

{

Mε∂tE = KH − AH − BH,
Mµ∂tH = −KE + AE − BE,

where we have the following definitions and properties:

– Mε, Mµ and K are d × d block diagonal matrices with diagonal blocks equal to
M ε

i , Mµ
i , and Ki respectively. Therefore Mε and Mµ are symmetric positive definite,

and K is symmetric; one can recall that the matrices M ε
i and Mµ

i being block diagonal,
time integration with an explicit time-scheme leads to an almost completely explicit
algorithm;

– A is also a d × d block sparse matrix, whose non-zero blocks are equal to Sik

when k ∈ Vi is not fictitious (aik then is an internal face of the grid). Since ~nki =
−~nik, it can be checked that (Sik)jl = (Ski)lj , and then Ski = tSik; then A is
symmetric;

– B is a d× d block diagonal matrix, whose non-zero diagonal blocks are equal to
Sik when aik is a metallic boundary face of the grid. In that case, (Sik)jl = − (Sik)lj ,

and Sik = −tSik ; then B is skew-symmetric (tB = −B).

One finally obtains that the Maxwell’s equations, discretized using discontinuous
Galerkin finite-elements with centered fluxes and arbitrary local accuracy and basis
functions can be written, in function of the matrix S = K − A − B, in the form:

{

Mε∂tE = SH,
Mµ∂tH = −tSE,

(Mε, Mµ symmetric positive definite). [4]

After spatial discretization, we obtain a system of ordinary differential equations for
which the quantity E ≡ 1

2

(

t
EMεE + t

HMµH
)

is exactly conserved for any solution
of [4]. This property will be preserved after symplectic time-discretization.

2.2. Discontinuous Galerkin discretization of acoustics

We now consider the equation of classical acoustics in two or three space dimen-
sions with no source. Assuming isentropic perturbations of still air with uniform pres-
sure p0 and density ρ0 (with c2

0 = γp0/ρ0), the velocity and pressure perturbations
~u and p verify ρ0∂t~u + ∇p = 0 and ∂tp + ρ0c

2
0∇ · ~u = 0, which take the follow-
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ing symmetric form in terms of non-dimensional velocity ~v = ~u/c0 and pressure
q = p/(ρ0c

2
0):

∂t~v + c0∇q = 0, ∂tq + c0∇ · ~v = 0. [5]

If s is the space dimension (s ∈ {1, 2, 3}), these equations are set and solved on
a bounded polyhedral domain Ω of Rs and have the same “cross-over” form as
Maxwell’s system. For the sake of simplicity, a slip boundary condition is set on
the whole domain boundary ∂Ω, i.e. ~n.~v = 0. All other geometrical settings are
unchanged.

Following a simplified discontinuous Galerkin approach, the velocity ~v and the
pressure q inside elements are seeked for as combinations of the same scalar fields
with respectively vectorial and scalar coefficients, i.e. di now denotes the local num-
ber of scalar basis fields ϕij , 1 ≤ j ≤ di inside Ti, and ~v and q are expressed as
~v =

∑

j ϕij~vij and q =
∑

j ϕijqij . Again, the approximate fields are allowed to be
completely discontinuous across element boundaries. The same process as previously
is used: local variational formulation, centered numerical fluxes for interface integrals,
and weak treatment of the slip boundary condition (i.e. on a boundary face aik, k be-
ing the index of the fictitious neighbour of element Ti, we simply take qk |aik

= qi|aik

for the pressure and ~vk |aik
= −~vi|aik

for the velocity, which seems to enforce a no
slip condition ~v = 0, but one must remember than only the normal component of ~vk

is used in the computation of the wall flux).

Denoting by Qi and Vi respectively the column (qil)1≤l≤di
and the matrix

(~vil)1≤l≤di
, we get finally the general form:















Mi∂tQi + KiVi +
∑

k∈Vi

SikVk = 0,

Mi∂tVi + KiQi +
∑

k∈Vi

SikQk = 0.
[6]

where, by convention, 1) Vi is understood as a column vector with vectorial entries
in Rs; 2) Ki and Sik are understood as matrices with transposed vector entries in Rs;
3) the product KiVi is understood as a sum of matricial products of entries; and 4)
the product MiVi is understood as a column of vectorial entries obtained by simple
linear combination. Finally, we have the following definitions: the positive definite
symmetric mass matrix Mi is given by (Mi)jl =

∫

Ti
ϕijϕil; the “skew-symmetric”

stiffness matrix Ki is given by (Ki)jl = c0

2

∫

Ti

(

ϕij
t∇ϕil − ϕil

t∇ϕij

)

; for any in-
terface aik, the di×dk rectangular matrix Sik (with transposed vector entries) is given
by (Sik)jl = c0

2
t~nik

∫

aik
ϕijϕkl.

Finally, if all pressure (resp. velocity) unknowns are regrouped inside column
vectors Q (resp. V with vectorial entries) of size d =

∑

i di, then the space discretized
system [6] can be summed up, like for Maxwell’s system, as:

{

M∂tQ + KV + AV − BV = 0,
M∂tV − t

KQ − t
AQ − t

BQ = 0,
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where we have the following definitions and properties:

– M and K are d × d block diagonal matrices with diagonal blocks equal to Mi

and Ki respectively (then K has vectorial entries). Therefore M is symmetric positive
definite;

– A also is a d× d block sparse matrix with transposed vector entries, whose non-
zero blocks are equal to Sik when k ∈ Vi is not fictitious (aik then is an internal
interface of the grid). Since ~nki = −~nik, it can be checked that Ski = −tSik;

– B is a d×d block diagonal matrix with vectorial entries, whose non-zero diagonal
blocks are equal to Sik when aik is a metallic boundary face of the grid. In that case,
(Sik)jl = (Sik)lj , and Sik = tSik .

One finally obtains that the equations of acoustics, discretized using discontinuous
Galerkin finite-elements with centered fluxes and arbitrary local accuracy and basis
functions can be written, in function of the matrix S = −(K + A − B), in the form:

{

M∂tQ = SV,
M∂tV = −t

SQ.
[7]

We again obtain a system of ordinary differential Equations [7] for which an energy,
here E ≡ 1

2

(

t
QMQ + t

VMV
)

, is exactly conserved for any solution.

3. An original set of modal basis functions

In the previous section, we have proposed two discontinuous Galerkin discretiza-
tions of PDEs over simplices. The context of this paper is quite particular, since the
PDEs considered (Maxwell’s system, homogeneous acoustics) are linear and with at
least elementwise constant coefficients. If one is considering the construction of a
more general DG-based software, the scope of application should also include non-
linear PDEs (possibly other than hyperbolic systems of conservation laws), with ele-
mentwise varying coefficients, curvilinear elements, etc.

As recalled previously, the mathematical properties of a discontinuous Galerkin
method does not depend on the particular choice of basis functions or vector fields.
The method only depends on the local vector spaces Pi = Span(~ϕij , 1 ≤ j ≤ di).

3.1. Criteria for the choice of local basis functions

However, when a real implementation is considered, all choices for basis fields
are not equivalent, because the numerical computation of integrals present in matrix
terms, and then the numerical solution of linear systems (or the inversion/factorization
of local mass matrix) cannot be exact in general. Indeed, the condition number of
the mass matrices as well as the quadrature formulae used for volume or interface
integrals play an important role in the actual numerical accuracy and stability of the
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software developed (Hesthaven et al., 2000). The use of simplicial elements makes
the construction of an optimal set of basis functions more difficult.

In the formulations seen above, several numerical operations must be performed
which can be numerically difficult:

– the computation of volume integrals for the mass matrices, typically
∫

Ti
ϕijϕil;

– the computation of volume integrals for the stiffness matrices, typically of the

form
∫

Ti

(

t ~ϕij
~curl~ϕil + t ~ϕil

~curl~ϕij

)

or more simply
∫

Ti
(ϕij ∂xϕil − ϕil ∂xϕij)

involving derivatives (it should be noted that these formulae are quite different if a
system of nonlinear PDEs is considered);

– the numerical solution of linear system requiring the inversion or the factoriza-
tion of the mass matrices.

We now limit our context to linear PDEs with at least elementwise constant co-
efficients. Among many possible approaches, one can disitinguish nodal approaches
from modal approaches.

Nodal approaches rely on Lagrange polynomials based on a set of nodes. The set
of nodes is optimized such that 1) the subset of nodes on element faces yields efficient
and accurate computation of surface integrals; 2) the nodes provide an efficient and
accurate way to compute volume integrals; 3) the condition number of the mass matrix
is controlled and the inverse of the mass matrix can be computed or factorized. The
simultaneous optimization of all these criteria is very difficult and has produced an
important literature, for example on spectral finite element methods (see (Hesthaven
et al., 2000) for a review).

Modal approaches do not rely on particular sets of nodes. The idea is only to
chose an optimal family of functions generating Pi. Criteria for optimizing the family
is the efficiency to compute surface integrals (for Pk elements, only k + 1 in 2D and
(k + 1)(k + 2)/2 in 3D functions should be nonzero on an element face), the volume
and interface integrals should be exactly known if possible, the condition number of
the mass matrix should be minimal or the inverse of the mass matrix should be known.

We consider Pk functions in affine simplicial elements (polynomials of total degree
at most k in coordinates). We propose an original set of scalar basis functions for a
modal approaches with many interesting properties which seems to be quite optimal
with respect to the criteria listed above. We first describe these modes in one space
dimension and then derive expressions and two and three space dimensions.

3.2. A family of modal basis functions in 1D

We consider here scalar basis functions of Pk (k ≥ 0) in the reference interval
(0; 1) of R. We propose the following polynomials πk

i (for 0 ≤ i ≤ k):

πk
i (x) = ckix

i(1 − x)k−i,
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where the scalar coefficients cki are assumed positive and still to be defined. It is
clear that the k + 1 polynomials πk

i are linearly independent and then that Pk =
Span(πk

i , 0 ≤ i ≤ k). Some elementary remarks can be done:

– the polynomials πk
i are of degree k exactly;

– assuming the cki are positive, they are positive over (0; 1);

– since ∂x(πk
i ) = ckix

i−1(1 − x)
k−i−1

(i−kx), each polynomial πk
i is increasing,

has a maximum at x = i/k and then is decreasing. The maxima of the πk
i are then

uniformly placed in (0; 1);

– for all i 6= 0, πk
i (0) = 0 and for all i 6= k, πk

i (1) = 0: then only one degree of
freedom is necessary to compute the value of any polynomial at x = 0 or x = 1.

The coefficients cki are chosen such that the condition number of the mass matrix Mk

is minimum. The entries in the mass matrix are derived from the generic expression
∫ 1

0 xα(1 − x)
β

= α!β!/(α + β + 1)! . Then we have:

Mk
ij ≡

∫ 1

0

πk
i πk

j = ckickj(i + j)!(2k − i − j)!/(2k + 1)!.

We then propose a conjecture, which is still to be proved, but has been numerically
verified (up to order k = 5).

Proposition 1. The condition number of the mass matrix deriving from the basis func-
tions πk

i is minimal when cki =
(

k
i

)

(where the
(

k
i

)

are the binomial coefficients
(

k
i

)

≡ k!
i!(k−i)! ).

In the remainder of this section, we then take:

πk
i (x) =

(

k

i

)

xi(1 − x)
k−i

. [8]

One can understand why this choice for the cki coefficients might be optimal. Indeed,
they play a normalization role and reset the basis functions to “comparable levels”.
This is quite nicely done for this set of coefficients, since we have two renormalization
properties at the same time. The positive functions add up to equal 1, and all basis
functions πk

i have the same L1 norm over (0; 1), which is summed up as:

a)
k

∑

i=0

πk
i (x) = 1, b) ∀i,

∫ 1

0

πk
i (x) dx =

1

k + 1
. [9]

Concerning the condition number, eigenvalues and eigenmodes of the mass matrix
Mk (being symmetric, it is diagonalizable), we have the following properties (all of
which have been numerically verified, many being still unproved).
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Proposition 2. The condition number #Mk of the mass matrix deriving from the basis
functions πk

i is equal to
(

2k+1
k

)

. More precisely,

(i) the eigenvalues µk
l (0 ≤ l ≤ k) of Mk are simple and µk

l = k!k!
l!(2k+1−l)! =

1
k+1

(

2k+1
l

)

/
(

2k+1
k

)

. The eigenvalues are ordered: µk
k = 1

k+1 > µk
k−1 > . . . > µk

0 .

(ii) for 0 ≤ l ≤ k, an eigenvector z = (zi)0≤i≤k corresponding to µk
k−l is given

by zi =
∫ 1

0 πk
i Ll, where Ll is the lth Legendre polynomial (defined over (0; 1), i.e.

L0 = 1, L1 = 2x−1, L2 = 6x2−6x+1, (l+1)Ll+1 = (2l+1)(2x−1)Ll− lLl−1).

(iii) This implies the following property:

∀l, 0 ≤ l ≤ k,
k!k!

(k − l)!(k + 1 + l)!
Ll(X) =

k
∑

i=0

[(∫ 1

0

πk
i Ll

)]

πk
i (X).

[10]

REMARK. — Some parts of these results are easily shown. For example, the
Equation [9-b] yields the result for the first eigenvalue µk

0 . The result for µk
1 derives

from the identity
∫ 1

0 πk
i L1 = 2i−k

(k+1)(k+2) .

As stated by the previous proposition, the condition number of the mass matrix grows
quickly, but reasonably since #M7 = 6435. It is also remarkable that the eigenvalues
have such a simple expression. Indeed, the polynomials being with integer coeffi-
cients, the mass matrix entries are rational and the eigenvalues and the inverse of the
mass matrix as well. Numerically, the condition number #Mk is not so important
anymore, since the inverse of the mass matrix can be computed and stored. More, it
seems that the this inverse must be multiplied by k(k+1)/2, which is a “slowly grow-
ing” integer, to become integer itself, as shown in the examples in Annex A. Finally,
the entries in the stiffness matrix are exactly known, since

∫ 1

0

(

πk
i ∂xπk

j − πk
j ∂xπk

i

)

dx = (2k + 1) Mk
ijsij with

{

sij = 0 if i = j, else
sij = 2k(j−i)

(j+i)(2k−i−j) .

3.3. A family of modal basis functions in more space dimensions

The family of modal basis functions seen in one space dimension can be naturally
extended to higher dimensions on simplices. Consider scalar functions of Pk (k ≥ 0)
in the reference simplex Ts = {x = (x1, . . . , xs) ∈ (R+)

s
,

∑s
i=1 xs ≤ 1} of Rs.

Each point x in the simplex can be located through its s + 1 barycentric coordinates
with respect to the s + 1 vertices of the simplex. There is an affine bijective map be-
tween the simplex and the set of s+1-barycentric coordinates of points in the simplex,
equal to {λ = (λ1, . . . , λs, λs+1) ∈ (R+)

s+1
;

∑s+1
i=1 λi = 1}. Let us introduce the
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notion of a s + 1-multiindex: α = (α1, . . . , αs+1) is a s + 1-multiindex (let us say
α ∈ Is+1) if the αi are non-negative integers. We define |α|s+1 =

∑s+1
i=1 αi and we

denote by Ik
s+1 the multi-indices α of Is+1 such that |α|s+1 = k. We propose the

following polynomials πk
α, α ∈ Ik

s+1 by:

πk
α(x) = ckα

s+1
∏

i=1

λαi

i ,

where the scalar coefficients ckα are assumed positive and still to be defined.
The

(

k+s
s

)

polynomials πk
α are linearly independent and Pk = Span(πk

α, α ∈
Is+1, |α|s+1 = k). Some elementary remarks can be done:

– the polynomials πk
α are of total degree k exactly in the barycentric coordinates

and in the geometric coordinates;

– if ckα > 0, then πk
α ≥ 0 over the reference simplex Ts;

– the extrema of πk
α are reached when ∂λj

(πk
α) = 0 for all j > s (with λs+1

expressed has λs+1 = 1 −
∑s

i=1 λi). Simple calculus shows that the extrema are
obtained at points where λj =

αj

k
, which are uniformly placed in the simplex;

– considering a given face of the simplex, let us say defined by λj = 0, then all πk
α

but
(

k+s−1
s−1

)

vanish on that face. The
(

k+s−1
s−1

)

polynomials are (up to renumbering)
the same polynomials as those defined for Pk polynomials on the simplex Ts−1. Then
the minimal number of degrees of freedom is necessary to compute the value of any
polynomial or integral on a given face of the simplex Ts.

The coefficients ckα are chosen such that the condition number of the mass matrix Mk

is minimum. The entries in the mass matrix are derived from the generic expression
∫

Ts

∏s+1
i=1 λαi

i =
Qs+1

i=1
αi!

(s+
Ps+1

i=1
αi)!

. Then we have:

Mk
αβ ≡

∫

Ts

πk
απk

β = ckαckβ

∏s+1
i=1 (αi + βi)!

(2k + s)!
.

We have a conjecture in s space dimensions corresponding to the one in one space
dimension (it is still to be proved and has been numerically verified up to order k = 5
in 2D).

Proposition 3. The condition number of the mass matrix deriving from the basis func-
tions πk

α is minimal when ckα =
(

k
α

)

(where the
(

k
α

)

are the generalized “binomial”

coefficients
(

k
α

)

≡ k!
Qs+1

i=1
αi!

).

In the remainder of this section, we then take:

πk
α(x) =

(

k

α

) s+1
∏

i=1

λαi

i . [11]
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As in one space dimension, this choice for the ckα coefficients leads to two renorma-
lization properties:

a)
∑

α∈Ik
s+1

πk
α = 1, b) ∀α ∈ Ik

s+1,

∫

Ts

πk
α(x) dx =

k!

(k + s)!
. [12]

Concerning the condition number, eigenvalues and eigenmodes of the mass matrix
Mk (being symmetric, it is diagonalizable), we have the following properties (all of
which have been numerically verified, many being still unproved):

Proposition 4. The condition number #Mk of the mass matrix deriving from the basis
functions πk

α is equal to
(

2k+s
k

)

. More precisely, there are k+1 different eigenvalues
for Mk, denoted by µk

l (0≤ l≤k). µk
l is multiple (unless l = 0 or s = 1) of multiplicity

(

l+s−1
l

)

and µk
l = k!k!

l!(2k+s−l)! = k!
(k+s)!

(

2k+s
l

)

/
(

2k+s
k

)

. The eigenvalues are ordered:

µk
k = k!

(k+s)! > µk
k−1 > . . .

It seems more difficult to find the eigenvectors in more than one space dimensions.
However, one easily finds that 1 is the function reconstructed for the eigenvector µk

k,
that L1(λj) are s + 1 eigenvectors for the µk

k−1, but only s are independent...

For practical applications, it is valuable to give the actual condition numbers #Mk

for low orders k, in one, two, and three space dimensions. They are given in Table 1
and seem to grow in any space dimension like in one space dimension (not far from
2s4k instead of a more common 4ks). Anyway, it is remarkable that the eigenvalues
and the condition number of the mass matrix have such a simple expression in any
space dimension. Also, as in one space dimension, the polynomials being with integer
coefficients, the mass matrix entries are rational and its inverse as well. Numerically,
the condition number #Mk is not so important anymore, since the inverse of the mass
matrix can be computed and stored. More, like in one space dimension, it seems that
the this inverse must be multiplied by a “slowly growing” integer to become integer
(k is enough in two and three space dimensions up to order k = 5), as shown in
the examples 2D in Annex B. Finally, the entries in the stiffness matrix can again be
exactly computed.

Table 1. Condition numbers of the mass matrix for polynomials πk
α (1D, 2D, and 3D)

Order k 0 1 2 3 4 5 6 7

#Mk 1D 1 3 10 35 126 462 1716 6435
#Mk 2D 1 4 15 56 210 792 3003 11440
#Mk 3D 1 5 21 84 330 1287 5005 19448
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3.4. An actual implementation in 2D

One particular delicate task to do, when actually implementing these basis func-
tions, is to choose a numbering of the set Ik

s+1 (the multi-indices α of Is+1 are such
that |α|s+1 = k). Do we need to recall that this numbering has to be automatic? For
the sake of simplicity, we shall consider here the two-dimensional case only.

At the same time, when computing interface integrals (edge integrals in two space
dimensions), a problem appears: in the two neighbouring simplices (here triangles),
local vertex indices (1, 2, or 3) are not necessarily the same! Then vertices do not
correspond and basis functions must be identified. A solution consists in storing,
for each edge the permutation which leads to a coinciding numbering of vertices in
the two neighbouring triangles. This can be done by storing only two integers per
edge. Consequently, some deriving permutation on basis functions πk

α must also be
recovered. This permutation can be precomputed once and for all. It is global and not
local. It gives, for a given permutation of vertices in a triangle, what is the induced
permutation on functions πk

α. This indeed assumes that the 6 vertex permutations are
also numbered (it is easy), and we recall that the basis functions have already been
numbered.

For instance, we have chosen to number the basis functions in a reverse lexico-
graphic order (in function of the decreasing vertex numbers in barycentric coordi-
nates). This yields for example for P3 on a triangle:

α[1] = (3, 0, 0) πk
[1] = λ3

1

α[2] = (2, 1, 0) πk
[2] = 3λ2

1λ2

α[3] = (1, 2, 0) πk
[3] = 3λ1λ

2
2

α[4] = (0, 3, 0) πk
[4] = λ3

2

α[5] = (2, 0, 1) πk
[5] = 3λ2

1λ3

α[6] = (1, 1, 1) πk
[6] = 6λ1λ2λ3

α[7] = (0, 2, 1) πk
[7] = 3λ2

2λ3

α[8] = (1, 0, 2) πk
[8] = 3λ1λ

2
3

α[9] = (0, 1, 2) πk
[9] = 3λ2λ

2
3

α[10] = (0, 0, 3) πk
[10] = λ3

3.

This ordering yields a little simplification: in order to compute edge integrals, once
the vertices are locally renumbered, the degrees of freeom involved are the first ones,
i.e. after permutations, the “third” vertex is not on the edge considered, then λ3 = 0
on the edge and the first four degrees of freedom only are needed. More examples are
given in Annex B.
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4. Symplectic schemes applied to wave propagation problems

4.1. Symplectic schemes for Hamiltonian systems

Symplectic integrators include a variety of different time-discretization schemes
designed to preserve the global symplectic structure of the phase space for a Hamil-
tonian system. These integrators are well established for finite-dimensional Hamil-
tonian systems (see (Lu et al., 2001) for several references), most applications being
devoted to N-body mechanical systems. However, the number of applications of sym-
plectic schemes in the context of computational electromagnetics is currently growing
rapidly (Hirono et al., 1998; Rieben et al., 2004). The electromagnetics (or acoustics)
equations are first discretized, then the finite-dimensional system of ODEs obtained is
considered as an input for symplectic methods. However, in some cases only, the dis-
cretization of Maxwell’s equations actually leads to a Hamiltonian system of ODEs:
it is indeed the case for some FDTD methods (Hirono et al., 1998), more generally for
FETD methods (Rieben et al., 2004), and, also for the case considered here: DGTD
methods with totally centered numerical fluxes.

One particular feature of symplectic schemes is their ability to reach high accuracy
and to deal with local time-stepping. This is particularly needed for N-body mechani-
cal systems for instance, where fixed stepsize numerical integration leads to difficulties
when particles are very close. In this context, the leapfrog scheme is often replaced by
the equivalent Verlet method which serves as a basis for further enhancements. The
time-integration of [4] for instance would then take the form:







MµHn+ 1
2 = MµHn − ∆t/2t

SEn,
MεEn+1 = MεEn + ∆tSHn+ 1

2 ,

MµHn+1 = MµHn+ 1
2 − ∆t/2t

SEn+1.

[13]

The classical leapfrog writing leads to an equivalent, cheaper two-step algorithm. The
Verlet writing allows for the computations of fields at the same time stations. More-
over, the reversible writing leads to many quite easy enhancements in the scheme
(varying time-step (Huang et al., 1997), high-order accurate extensions (Holder et
al., 2001), etc.). Last but not least, two strategies have been proposed in the con-
text of waves propagation (Piperno, n.d.) where the local refinement of the unstruc-
tured grid requires the use of locally-implicit schemes or of local time-stepping. To
our knowledge, the first one is still to be found. The second one, i.e. the construc-
tion of a totally explicit, stable, energy-conserving, second-order accurate local time-
stepping algorithm has been seeked for without total success (Fouquet, 2000; Bécache
et al., 2005; Piperno, 2003). These two strategies are quickly presented in the next
section.



Symplectic modal DGTD methods for waves 657

4.2. DGTD methods based on symplectic schemes

4.2.1. A locally-implicit symplectic scheme

We consider a case where the set of elements has been partitioned (once and for
all) into two classes with no particular assumption on the connectivity of the classes:
one made of particularly small elements and the other one gathering all other elements.
The “small” elements will be handled using an implicit midpoint rule, while all other
elements will be time-advanced using a Verlet method.

As an illustration, we assume we solve Maxwell’s equations. Using notations
inspired from domain decomposition algorithms, we denote with an “e” (resp. “i”)
subscript unknowns and matrices related to the explicit (resp. implicit) subdomain.
Unknowns are reordered such that explicit elements and unknowns are numbered first:

E =

(

Ee

Ei

)

, H =

(

He

Hi

)

.

The system of ordinary differential Equations [4] can be rewritten (Piperno, 2005) as:
{

Mε
e∂tEe = SeHe − AeiHi,

Mµ
e ∂tHe = −tSeEe + AeiEi,

{

Mε
i∂tEi = SiHi − AieHe,

M
µ
i ∂tHi = −tSiEi + AieEe,

where Aie = tAei and M
µ or ε
e or i are symmetric positive definite matrices. We propose

the following implicit-explicit algorithm: starting from unknowns at time tn = n∆t:
1) advance of ∆t/2 the explicit domain with a pseudo-forward-Euler scheme; 2) ad-
vance of ∆t the implicit domain with the implicit midpoint rule; 3) advance of ∆t/2
the explicit domain again with the time-reversed pseudo-forward-Euler scheme. The
whole algorithm reads:

{

Mµ
e H

n+ 1
2

e = Mµ
e Hn

e + ∆t/2
(

−t
SeEn

e + AeiE
n
i

)

,

Mε
eE

n+ 1
2

e = Mε
eEn

e + ∆t/2
(

SeH
n+ 1

2
e − AeiH

n
i

)

,






Mε
iE

n+1
i = Mε

iE
n
i + ∆t

(

Si
H

n
i +H

n+1

i

2 − AieH
n+ 1

2
e

)

,

M
µ
i Hn+1

i = M
µ
i Hn

i + ∆t
(

−t
Si

E
n
i +E

n+1

i

2 + AieE
n+ 1

2
e

)

,
{

Mε
eEn+1

e = Mε
eE

n+ 1
2

e + ∆t/2
(

SeH
n+ 1

2
e − AeiH

n+1
i

)

,

Mµ
e Hn+1

e = Mµ
e H

n+ 1
2

e + ∆t/2
(

−tSeEn+1
e + AeiE

n+1
i

)

.

[14]

This algorithm is obviously reversible. One can verify that, if the two subdomains
are disconnected (i.e. Aei = Od), this algorithm reduces to the juxtaposition of the
Verlet-method for the “explicit” subdomain and the midpoint-rule for the “implicit”
subdomain. The stability (at least for small time steps) can be shown (Piperno, 2005)
using an energy approach : the scheme exactly preserves an energy (a quadratic form
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of numerical unknowns En
e , En

i , Hn
e , and Hn

i is exactly conserved) and this quadratic
form is positive definite at least for small time steps.

4.2.2. A multi-scale fully-explicit symplectic scheme

The fully explicit algorithm recalled in this section is directly inspired from the one
introduced by Hardy et al. (Hardy et al., 1999) for N-body problems with multiple
time stepping, i.e. the atoms or bodies are time-advanced with different time steps.
We present here a less general version, with time steps given as ∆t/2k, ∆t being
the global time step of the algorithm. We assume that the set of elements has been
partitioned into N classes. For 1 ≤ k ≤ N , elements in the class k are be time-
advanced using the local time step ∆t/2N−k: thus the larger elements lie in class N
(and are time-advanced with a local time step ∆t) and the smallest lie in class 1.

The algorithm can be built recursively. Let us denote by RN(τ) the algorithm
for advancing in time N classes over the time interval τ > 0. We decide that the
algorithm R1(τ) with only one class is exactly the Verlet method [13] with ∆t = τ .
For any N ≥ 1, if RN (τ) is well defined, we define RN+1(τ) by:

1) start with all unknowns at time tn = n∆t;

2) advance all elements with class k ≤ N with RN (∆t/2); if required, use values
at time tn for unknowns in elements of class N + 1;

3) advance all elements with class k = N+1 with the Verlet method (i.e. R1(∆t));
if required, use values at time tn + ∆t/2 for unknowns in elements of class k ≤ N ;

4) advance all elements with class k ≤ N with RN (∆t/2); if required, use values
at time tn+1 for unknowns in elements of class N + 1;

5) all unknowns at time tn+1 = tn + ∆t have been computed.

The reader can check that this algorithm does not required any additional storage
and remains completely explicit. It is reversible, symplectic, second-order accurate,
stable for small time-steps and conserves an energy (Piperno, 2005). The algorithm
R2(∆t) and R3(∆t) are respectively sketched in Figure 1 and Figure 2.

5. Numerical results

We consider here the acoustics equations in two space dimensions (with c0 = 1).
We give illustrations of the explicit local time-stepping algorithm of Section 4.2.2 and
of the locally implicit algorithm of Section 4.2.1 in the following two sections.

5.1. An illustration of the explicit local time-stepping algorithm

We have imagined a toy problem where the propagation of acoustic waves is con-
fined in a completely reflecting cavity. In order to have different scales in the geome-
try, the cavity has been designed the following way:
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– the cavity is an ellipse (2m × 1.6m);

– inside the cavity, a small perfectly reflecting inclusion is located on the right
focus; the device is a circular array of 0.2mm square, set at a distance equal to 1mm
from the focus;

– the initial condition is a p/Hz pulse (for the acoustic equations) located at the
other focus, such that the solution should refocus exactly on the other focus and scatter
on the detail.
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Figure 1. Algorithm R2(∆t): the nine sub-steps are detailed from 1 to 9
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Figure 2. Algorithm R3(∆t): the twenty-one sub-steps are detailed from 1 to 21

The unstructured mesh produced by a commercial mesh generator contains 1 176
vertices and 2 254 elements. The mesh partitioning leads to eleven classes of elements,
i.e. the smallest elements are time-advanced 1 024 times more often than the largest
elements. A zoom of the mesh near the square is shown on Figure 3. Contours of
the fields obtained with the algorithm R11(2.6ms) are shown on Figure 4. We have
used in this section the P5-DGTD (the fields are described with polynomials of degree
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at most 5 inside elements). The CPU times obtained with the different time schemes
considered are given on Table 2. For this particular case, the computational time is
reduced by a factor near 5. This reduction factor is due to the fact that 80 % of elements
are time-advanced at most 4 times per global time-step, but 11 % of elements are time-
advanced at most 512 times per global time-step (the refined zone of the mesh is quite
large). In some other more adhoc cases, (with a very limited, highly refined zone),
CPU accelerations up to 40 have been observed.

Figure 3. Unstructured triangular mesh near the circular array

Table 2. Comparison of CPU times and gain between algorithms R11, R1, and a
classical leapfrog implementation

Algorithm R11(2.6ms) R1(3.54µs) leapfrog (3.54µs)
CPU time 7958 58212 38808

Gain (vs. leap-frog) 4.88 0.67 1

5.2. An illustration of the locally implicit algorithm

We give here an illustration for the locally implicit algorithm used jointly with a
local time-stepping algorithm. The global procedure is the following. We assume
we dispose of 1) a table giving the minimum admissible number nk of points per
wavelength for each Pk-DGTD method, 2) a maximum Courant number νk leading
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to the stability of the method obtained with the simple Verlet method and Pk-DGTD
elements. We know assume the user is able to set, for his computation:

– a global “wavelength” λTC of his problem (or a minimal characteristic scale);

– extremal ((kmin, kmax) values for the degree k of polynomials inside elements;

– a maximal number of different time-classes used in the recursive Verlet method;

– a maximal storage size for implicit matrix LU factorizations.

Figure 4. Square inclusion: p/Hz (top), u/Ey (middle), and v/ − Ex (bottom) near
the inclusion, obtained with algorithm R11(2.6ms) at t = 4s (extremal values for
contours on the zooms have been adapted)
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Then we propose the following process:

1) for all elements, define the local order ki as the smallest integer k (kmin ≤ k ≤
kmax) such that λTC/hi > nk where hi is the diameter of the element;

2) for all elements, define a maximal local admissible time step by ∆ti = hiνki
/c;

3) define an implicit time-step ∆timp and an implicit set of elements such that
implicit elements are such that ∆ti ≤ ∆timp and the storage required for the implicit
computations is less than the maximal admissible storage (if not, reduce ∆timp);

4) compose classes of explicit elements for the recursive Verlet method.

A toy example has been composed by deforming the mesh shown on Figure 3. It is
presented on Figure 5, where we have shown the implicit elements (each connected
component must be isolated and we have contoured the index of this connected com-
ponent for implicit elements, i.e. all non-black elements are implicitly handled and
elements with the same color in the left figure are handled jointly in a common lin-
ear system) and more generally the class indices of all elements (we have taken here
kmin = 1, kmax = 4). One can see that isolated implicit elements are present, which
is not a concern at all. Implicit elements correspond to the class #1, and the explicit
local time step increases with the class number for explicit elements. This sample
mesh was not sufficient to produce a significative difference in CPU time, because the
implicit elements are not small enough and too few to make a difference between the
explicit multiscale time-scheme and the explicit-implicit algorithm. We then proposed
a specially designed case: in the mesh of Figure 3, we have moved two neighbouring
vertices towards each other, such that their mutual distance has been divided by 100.
We then have two very thin elements. The mesh obtained could be seen as a poor
result of an automatic mesh generator. We then compared the behaviours of the fully
explicit multiscale algorithm and the implicit-explicit mutliscale algorithm. In both
cases, the global time step, for an overall P4-DGTD discretization, is ∆t = 1.19ms.
However:

– in the fully explicit multiscale algorithm, the two thin elements are advanced in
time with ∆ti = 36.3ns = 1.19/2−15ms (there are 16 classes in the computation);

– in the implicit/explicit multiscale algorithm (where only these two-elements are
dealt with implicitly), only ten classes are necessary; this computation required a very
small storage and a CPU time with a reduction of 36 %.

In the present configuration, the CPU time reduction is related to one defect in
the mesh. This shows the implicit/explicit multiscale algorithm can lead to impor-
tant computational time reduction, especially in cases where defects in the mesh are
present (small number of ridiculously small elements). Such small elements are not
necessarily easy to get rid of, in particular slivers in unstructured tetrahedral meshes.
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Figure 5. Deformed triangular mesh near the circular array: indices of the implicit
connected zone (left) and indices of class (right)

6. Conclusion

In this paper, we have presented two symplectic algorithms which are able to
perform a reversible, energy-conserving, second-order accurate, stable, and adap-
tive time-integration of the Maxwell’s equations after discretization on unstructured
meshes using the discontinuous Galerkin method. The main conclusion is that, if
totally centered numerical fluxes are to be used, in order to have no numerical dissi-
pation at all, local time-stepping can overcome the stability limit set by the leapfrog
time-scheme.

This kind of algorithm can be particularly valuable if the mesh is distorted or
locally refined, i.e. the mesh is refined in a very limited area, for example around a
geometrical detail. Two ways have been proposed in this paper. The first one relies on
an simple implicit/explicit coupled algorithm. It has been implemented in two space
dimensions and is very promising for configurations where the unstructured mesh
at hand has very small elements and is difficult to restore. Another totally explicit
algorithm, with no additional storage, has been proposed, and leads to very efficient
implementations, at least in two space dimensions.

Further works will deal with the implementations in three space dimensions, the
local time-stepping algorithm being quite straightforward because the algorithms can
be seen has time-step reorganizations only. The main difficult task will certainly con-
sist in obtaining an efficient parallel implementation of these local time-stepping al-
gorithm. In particular, mesh partitioning and message passing have to be optimized.
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Annex A. Inverse of the mass matrix (1D)

(M0)
−1

=
`

1
´

, (M1)
−1

= 2

„

2 −1
−1 2

«

(M2)
−1

= 3

0

@

3 −3 1
−3 7 −3
1 −3 3

1

A , (M3)
−1

=
4

3

0

B

B

@

12 −18 12 −3
−18 52 −43 12
12 −43 52 −18
−3 12 −18 12

1

C

C

A
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(M4)
−1

=
5

2

0

B

B

B

B

@

10 −20 20 −10 2
−20 70 −85 47 −10
20 −85 132 −85 20
−10 47 −85 70 −20
2 −10 20 −20 10

1

C

C

C

C

A

(M5)
−1

=
6

5

0

B

B

B

B

B

B

@

30 −75 100 −75 30 −5
−75 310 −495 408 −173 30
100 −495 954 −887 408 −75
−75 408 −887 954 −495 100
30 −173 408 −495 310 −75
−5 30 −75 100 −75 30

1

C

C

C

C

C

C

A

(M6)
−1

=
7

15

0

B

B

B

B

B

B

B

B

@

105 −315 525 −525 315 −105 15
−315 1505 −2975 3255 −2065 715 −105
525 −2975 6881 −8337 5671 −2065 315
−525 3255 −8337 11229 −8337 3255 −525
315 −2065 5671 −8337 6881 −2975 525
−105 715 −2065 3255 −2975 1505 −315
15 −105 315 −525 525 −315 105

1

C

C

C

C

C

C

C

C

A

(M7)
−1

=
8

7

0

B

B

B

B

B

B

B

B

B

B

@

56 −196 392 −490 392 −196 56 −7
−196 1064 −2506 3416 −2884 1496 −439 56
392 −2506 6776 −10108 9080 −4927 1496 −196
−490 3416 −10108 16424 −15823 9080 −2884 392
392 −2884 9080 −15823 16424 −10108 3416 −490
−196 1496 −4927 9080 −10108 6776 −2506 392
56 −439 1496 −2884 3416 −2506 1064 −196
−7 56 −196 392 −490 392 −196 56

1

C

C

C

C

C

C

C

C

C

C

A

Annex B. Example of actual implementations

P2-DGTD implementation in 2D

In two space dimensions, for a P2 DGTD method, there are 6 degrees of freedom
per triangle and 3 on each edge. The 6 basis functions are numbered as:

α[1] = (2, 0, 0) πk
[1] = λ2

1

α[2] = (1, 1, 0) πk
[2] = 2λ1λ2

α[3] = (0, 2, 0) πk
[3] = λ2

2

α[4] = (1, 0, 1) πk
[4] = 2λ1λ3

α[5] = (0, 1, 1) πk
[5] = 2λ2λ3

α[6] = (0, 0, 2) πk
[6] = λ2

3

The mass matrix and its inverse are given by:

M
2 =

Vi

90

0

B

B

@

6 3 1 3 1 1
3 4 3 2 2 1
1 3 6 1 3 1
3 2 1 4 2 3
1 2 3 2 4 3
1 1 1 3 3 6

1

C

C

A

, (M2)
−1

=
1

Vi

0

B

B

@

36 −24 6 −24 6 6
−24 66 −24 −9 −9 6
6 −24 36 6 −24 6

−24 −9 6 66 −9 −24
6 −9 −24 −9 66 −24
6 6 6 −24 −24 36

1

C

C

A

.
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The three following stiffness matrices Kq (q = 1, 2, 3) are computed:

K
q
αβ =

c

Vi

∫

Ts

(

πk
β ∂λq

πk
α − πk

α ∂λq
πk

β

)

dx.

They are given (here c = 15) by:

K
1 =

0

B

B

@

0 1 1 1 1 1
−1 0 3 0 2 1
−1 −3 0 −1 0 0
−1 0 1 0 2 3
−1 −2 0 −2 0 0
−1 −1 0 −3 0 0

1

C

C

A

, K
2 =

0

B

B

@

0 −3 −1 0 −1 0
3 0 −1 2 0 1
1 1 0 1 1 1
0 −2 −1 0 −2 0
1 0 −1 2 0 3
0 −1 −1 0 −3 0

1

C

C

A

, K
3 =

0

B

B

@

0 0 0 −3 −1 −1
0 0 0 −2 −2 −1
0 0 0 −1 −3 −1
3 2 1 0 0 −1
1 2 3 0 0 −1
1 1 1 1 1 0

1

C

C

A

.

Finally, the 6 permutations (σ1 to σ6) of the vertices of a triangle are numbered as:

σ1 : (1, 2, 3) → (1, 2, 3), σ2 : (1, 2, 3) → (1, 3, 2),
σ3 : (1, 2, 3) → (2, 1, 3), σ4 : (1, 2, 3) → (2, 3, 1),
σ5 : (1, 2, 3) → (3, 1, 2), σ6 : (1, 2, 3) → (3, 2, 1),

For each edge in the mesh, we need to identify the right degrees of freedom in order
to compute edge integrals. If the edge was joining the vertex “1” to the vertex “2” of
a neighbouring triangle, then the 3 basis functions which do not vanish on this edge
would be πk

[1] = λ2
1, πk

[2] = 2λ1λ2, and pik[3] = λ2
2, i.e. the three basis functions in one

space dimension. In general, the vertices in the triangle must be permuted such that a
given edge joins the vertex “1” to the vertex “2” after the permutation. Thus, the basis
functions which do not vanish are not in general πk

[1], π
k
[2], π

k
[3]. We have to compute

the three indices. They are given in the array below:

Θ =





1 1 3 3 6 6
2 4 2 5 4 5
3 6 1 6 1 3



 .

The array Θ is used as follows: assume a given edge joins the vertex “3” to the vertex
“1” of a neighbouring triangle. Then the permutation σ5 is required such that 3 =
σ5(1) and 1 = σ5(2). Then Θ(., 5) =

t
(6, 4, 1) yields the basis functions which play

the role of λ2
1, 2λ1λ2, and λ2

2 (here πk
[6] = λ2

3, πk
[5] = 2λ3λ1, πk

[1] = λ2
1).

P3-DGTD implementation in 2D

We give here the same hints for the two-dimensional P3 DGTD method on tiran-
gles. There are 10 degrees of freedom per triangle and 4 on each edge. The basis
functions are given in Section 3.4. The mass matrix and its inverse are given by:

M
3 =

Vi

560

0

B

B

B

B

B

B

B

@

20 10 4 1 10 4 1 4 1 1
10 12 9 4 6 6 3 3 2 1
4 9 12 10 3 6 6 2 3 1
1 4 10 20 1 4 10 1 4 1
10 6 3 1 12 6 2 9 3 4
4 6 6 4 6 8 6 6 6 4
1 3 6 10 2 6 12 3 9 4
4 3 2 1 9 6 3 12 6 10
1 2 3 4 3 6 9 6 12 10
1 1 1 1 4 4 4 10 10 20

1

C

C

C

C

C

C

C

A

,
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(M3)
−1

=
10

Vi

0

B

B

B

B

B

B

B

@

10 −10 5 −1 −10 5 −1 5 −1 −1
−10 30 −21 5 0 −9 3 3 1 −1
5 −21 30 −10 3 −9 0 1 3 −1
−1 5 −10 10 −1 5 −10 −1 5 −1
−10 0 3 −1 30 −9 1 −21 3 5
5 −9 −9 5 −9 40 −9 −9 −9 5
−1 3 0 −10 1 −9 30 3 −21 5
5 3 1 −1 −21 −9 3 30 0 −10
−1 1 3 5 3 −9 −21 0 30 −10
−1 −1 −1 −1 5 5 5 −10 −10 10

1

C

C

C

C

C

C

C

A

.

The three stiffness matrices Kq (q = 1, 2, 3) are not given here. The array Θ yielding
right degrees of freedom on egdes is given, for our choices of permutations σj and of
numbering of basis funcions πk

[i], by:

Θ =









1 1 4 4 10 10
2 5 3 7 8 9
3 8 2 9 5 7
4 10 1 10 1 4









.

P4-DGTD implementation in 2D

The same elements are given for the two-dimensional P4 DGTD method on tri-
angles. There are 15 degrees of freedom per triangle and 4 on each edge. The basis
functions are numbered as:

α[1] = (4, 0, 0) πk
[1] = λ4

1

α[2] = (3, 1, 0) πk
[2] = 4λ3

1λ2

α[3] = (2, 2, 0) πk
[3] = 6λ2

1λ
2
2

α[4] = (1, 3, 0) πk
[4] = 4λ1λ

3
2

α[5] = (0, 4, 0) πk
[5] = λ4

2

α[6] = (3, 0, 1) πk
[6] = 4λ3

1λ3

α[7] = (2, 1, 1) πk
[7] = 12λ2

1λ2λ3

α[8] = (1, 2, 1) πk
[8] = 12λ1λ

2
2λ3

α[9] = (0, 3, 1) πk
[9] = 4λ3

2λ3

α[10] = (2, 0, 2) πk
[10] = 6λ2

1λ
2
3

α[11] = (1, 1, 2) πk
[11] = 12λ1λ2λ

2
3

α[12] = (0, 2, 2) πk
[12] = 6λ2

2λ
2
3

α[13] = (1, 0, 3) πk
[13] = 4λ1λ

3
3

α[14] = (0, 1, 3) πk
[14] = 4λ2λ

3
3

α[15] = (0, 0, 4) πk
[15] = λ4

3

The mass matrix and its inverse are given by: (with the notation m̄ ≡ −m):

M
4 =

Vi

3150

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

70 35 15 5 1 35 15 5 1 15 5 1 5 1 1
35 40 30 16 5 20 20 12 4 10 8 3 4 2 1
15 30 36 30 15 10 18 18 10 6 9 6 3 3 1
5 16 30 40 35 4 12 20 20 3 8 10 2 4 1
1 5 15 35 70 1 5 15 35 1 5 15 1 5 1
35 20 10 4 1 40 20 8 2 30 12 3 16 4 5
15 20 18 12 5 20 24 18 8 18 18 9 12 8 5
5 12 18 20 15 8 18 24 20 9 18 18 8 12 5
1 4 10 20 35 2 8 20 40 3 12 30 4 16 5
15 10 6 3 1 30 18 9 3 36 18 6 30 10 15
5 8 9 8 5 12 18 18 12 18 24 18 20 20 15
1 3 6 10 15 3 9 18 30 6 18 36 10 30 15
5 4 3 2 1 16 12 8 4 30 20 10 40 20 35
1 2 3 4 5 4 8 12 16 10 20 30 20 40 35
1 1 1 1 1 5 5 5 5 15 15 15 35 35 70

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,
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(M4)
−1

=
5

4Vi

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

180 ¯240 180 7̄2 12 ¯240 180 7̄2 12 180 7̄2 12 7̄2 12 12
¯240 810 ¯828 390 7̄2 75 ¯387 243 5̄1 54 96 3̄0 5̄1 9̄ 12

180 ¯828 1356 ¯828 180 54 ¯114 ¯114 54 1̄6 152 1̄6 3̄0 3̄0 12
7̄2 390 ¯828 810 ¯240 5̄1 243 ¯387 75 3̄0 96 54 9̄ 5̄1 12
12 7̄2 180 ¯240 180 12 7̄2 180 ¯240 12 7̄2 180 12 7̄2 12
¯240 75 54 5̄1 12 810 ¯387 96 9̄ ¯828 243 3̄0 390 5̄1 7̄2

180 ¯387 ¯114 243 7̄2 ¯387 1454 ¯653 96 ¯114 ¯653 152 243 96 7̄2
7̄2 243 ¯114 ¯387 180 96 ¯653 1454 ¯387 152 ¯653 ¯114 96 243 7̄2
12 5̄1 54 75 ¯240 9̄ 96 ¯387 810 3̄0 243 ¯828 5̄1 390 7̄2
180 54 1̄6 3̄0 12 ¯828 ¯114 152 3̄0 1356 ¯114 1̄6 ¯828 54 180
7̄2 96 152 96 7̄2 243 ¯653 ¯653 243 ¯114 1454 ¯114 ¯387 ¯387 180
12 3̄0 1̄6 54 180 3̄0 152 ¯114 ¯828 1̄6 ¯114 1356 54 ¯828 180
7̄2 5̄1 3̄0 9̄ 12 390 243 96 5̄1 ¯828 ¯387 54 810 75 ¯240
12 9̄ 3̄0 5̄1 7̄2 5̄1 96 243 390 54 ¯387 ¯828 75 810 ¯240
12 12 12 12 12 7̄2 7̄2 7̄2 7̄2 180 180 180 ¯240 ¯240 180

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

The array Θ yielding right degrees of freedom on egdes is given by:

Θ =













1 1 5 5 15 15
2 6 4 9 13 14
3 10 3 12 10 12
4 13 2 14 6 9
5 15 1 15 1 5













.

P2-DGTD implementation in 3D

The same elements are given for the three-dimensional P2 DGTD method on tetra-
hedra. There are 10 degrees of freedom per tetrahedron and 6 on each face. The basis
functions are numbered as:

α[1] = (2, 0, 0, 0) πk
[1] = λ2

1

α[2] = (1, 1, 0, 0) πk
[2] = 2λ1λ2

α[3] = (0, 2, 0, 0) πk
[3] = λ2

2

α[4] = (1, 0, 1, 0) πk
[4] = 2λ1λ3

α[5] = (0, 1, 1, 0) πk
[5] = 2λ2λ3

α[6] = (0, 0, 1, 0) πk
[6] = λ2

3

α[7] = (1, 0, 0, 1) πk
[7] = 2λ1λ4

α[8] = (0, 1, 0, 1) πk
[8] = 2λ2λ4

α[9] = (0, 0, 1, 1) πk
[9] = 2λ3λ4

α[10] = (0, 0, 0, 1) πk
[10] = λ2

4

The mass matrix and its inverse are given by:

M
2 =

Vi

210

0

B

B

B

B

B

B

B

@

6 3 1 3 1 1 3 1 1 1
3 4 3 2 2 1 2 2 1 1
1 3 6 1 3 1 1 3 1 1
3 2 1 4 2 3 2 1 2 1
1 2 3 2 4 3 1 2 2 1
1 1 1 3 3 6 1 1 3 1
3 2 1 2 1 1 4 2 2 3
1 2 3 1 2 1 2 4 2 3
1 1 1 2 2 3 2 2 4 3
1 1 1 1 1 1 3 3 3 6

1

C

C

C

C

C

C

C

A

,
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(M2)
−1

=
1

Vi

0

B

B

B

B

B

B

B

@

10 −5 1 −5 1 1 −5 1 1 1
−5 16 −5 −2 −2 1 −2 −2 1 1
1 −5 10 1 −5 1 1 −5 1 1
−5 −2 1 16 −2 −5 −2 1 −2 1
1 −2 −5 −2 16 −5 1 −2 −2 1
1 1 1 −5 −5 10 1 1 −5 1
−5 −2 1 −2 1 1 16 −2 −2 −5
1 −2 −5 1 −2 1 −2 16 −2 −5
1 1 1 −2 −2 −5 −2 −2 16 −5
1 1 1 1 1 1 −5 −5 −5 10

1

C

C

C

C

C

C

C

A

.

The 24 permutations (σ1 to σ24) of the vertices of a tetrahedron are numbered as:

σ1 :→ (1, 2, 3, 4), σ2 :→ (1, 2, 4, 3), σ3 :→ (1, 3, 2, 4), σ4 :→ (1, 3, 4, 2),
σ5 :→ (1, 4, 2, 3), σ6 :→ (1, 4, 3, 2), σ7 :→ (2, 1, 3, 4), σ8 :→ (2, 1, 4, 3),
σ9 :→ (2, 3, 1, 4), σ10 :→ (2, 3, 4, 1), σ11 :→ (2, 4, 1, 3), σ12 :→ (2, 4, 3, 1),
σ13 :→ (3, 1, 2, 4), σ14 :→ (3, 1, 4, 2), σ15 :→ (3, 2, 1, 4), σ16 :→ (3, 2, 4, 1),
σ17 :→ (3, 4, 1, 2), σ18 :→ (3, 4, 2, 1), σ19 :→ (4, 1, 2, 3), σ20 :→ (4, 1, 3, 2),
σ21 :→ (4, 2, 1, 3), σ22 :→ (4, 2, 3, 1), σ23 :→ (4, 3, 1, 2), σ24 :→ (4, 3, 2, 1).

The array Θ yielding right degrees of freedom on egdes is given by:

Θ =

0

B

B

B

B

B

B

@

1 1 1 1 1 1 3 3 3 3 3 3 6 6 6 6 6 6 10 10 10 10 10 10
2 2 4 4 7 7 2 2 5 5 8 8 4 4 5 5 9 9 7 7 8 8 9 9
3 3 6 6 10 10 1 1 6 6 10 10 1 1 3 3 10 10 1 1 3 3 6 6
4 7 2 7 2 4 5 8 2 8 2 5 5 9 4 9 4 5 8 9 7 9 7 8
5 8 5 9 8 9 4 7 4 9 7 9 2 7 2 8 7 8 2 4 2 5 4 5
6 10 3 10 3 6 6 10 1 10 1 6 3 10 1 10 1 3 3 6 1 6 1 3

1

C

C

C

C

C

C

A

.




