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ABSTRACTThe popular Newmark time integration scheme is used in #relard finite difference
form as well as in an equivalent Galerkin form for the timeegration of rigid body dynamics
problems. Estimators for local and global time integratiemors are developed. In particular
the evaluation of the dual problem for different goals oféher is discussed. A special focus is
also on the comparison for linear and nonlinear problemsafly an adaptive time integration
scheme is presented for which both - the local and the globalor estimators are used. The
merits and limits are shown for some particular numericallgems.

RESUME.Pour la dynamique de corps rigides, le trés populaire schéfivaégration en temps

de Newmark est utilisé soit sous sa forme classique de eliftés finies soit sous une forme
de Galerkin équivalente. Des estimateurs des erreurs éoeaplobale d’intégration en temps
sont développés. On discute plus particulierement I'éatidm du probléme dual orienté vers
differents objectifs pour I'estimation d’erreur. Une att®n particuliére est portée a la compa-
raison des problémes linéaires et non linéaires. Finalemerschéma adaptif d’'intégration en

temps est présenté pour lequel, les deux estimateurs dag®focale et globale sont utilisés.
Les avantages et inconvénients sont montrés pour quelgolelemes numériques particuliers.

KEYWORDStime integration, error estimation, adaptive methodsidibgodies, dynamics.

MOTS-CLES intégration en temps, estimation d’erreur, méthodes aataps, corps rigides, dy-
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1. Introduction

The solution of coupled ordinary differential equationteyss, resulting from e.g.
rigid body dynamics or from a spatial FE discretization mustural dynamics, can be
determined for rather general cases only numerically. iReal equations the modal
decomposition method provides a very clear and comprebiensiol, however, the
numerical effort is rather large for systems with many degref freedom. Nonlin-
ear systems of equations can be treated only numericallytoWow we know only
few nonlinear equation systems from rigid body dynamicssmetan exact solution is
given.

In principle many numerical methods exist to solve the gponding second order
ordinary differential equations in rigid body dynamics,ialhcan be e.g. separated
into Finite Difference and Finite Element Methods. A verpptar integration method
in the engineering community is Newmark’s time integrascheme. For this scheme
Wood (Wood, 1990) proved, that an equivalent Galerkin fdation for linear equa-
tions with constant coefficients exists. Both variants ef lewmark method will be
in the focus of this contribution.

The estimation of the global time integration error for ErDifference Methods
is a very difficult task. One proposal is to consider the aadation of the local error
to the global error using the amplification matrix However, the numerical effort for
the computation of the amplification matrix is very high, arficular as the dimension
of Ais 2N.q x 2/Neq. For nonlinear systems the use of the amplification matnots
possible.

The mentioned equivalence between the Finite Differencetla@ Galerkin form
of Newmark’s scheme is the basis to apply an essential estimtachnique, which is
usually used for the error estimation of FE-solutions apétt problems, e.g. quasi-
static problems. The duality principle is mapped to the gldimme error estimation,
which allows us to estimate the global time integration e&iso for the Galerkin
form of Newmark’s scheme. For a general derivation conogrttie duality principle
in dynamics, we refer to Bangerth/Rannacher (Bangsiréh, 1999) and for an exten-
sive derivation of the discussed subject to Neumann (Neani2004). The derived
method is tested on four linear resp. nonlinear numericablems. In order to solve
the problems efficiently and with prescribed accuracy theetstep size should be
adapted based on the global error. Thus an adaptation siheteeeloped, which is
based on the local and global error estimation and applicatio nonlinear problems
are presented.

2. Class of problems

The basic equation system of rigid body dynamics or aftetatisgd~E discretiza-
tion in structural dynamics is given as:

Md +n(t,d,d) =0 Vt(0,T], [1]
with initial conditions att = 0 : d(t = 0) =doy, d(t=0)=d,.
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The mass matri e RNa*Nea is positive definite, the vector of nonlinearities
n € RNes contains stiffness, damping and loading properties. Tis¢ dierivative

of u with respect to time is called veloci = % the second derivation of the

displacemend w.r.t. time is the acceleratioh = ‘fl—‘;l. For the solution the equation
system [1] has to be solved in the time domirT’]. To guarantee an unique solution
u of Equation [1] the vecton(t,d,d : (R,RVes, RNea) — RNea must fulfill the

Lipschitz condition, see Stoer/Burlisch (Statal., 1990);
In(t,di,d;) — n(t,dy,dy)|| < L]|d; — daf| mit£>0. 2]

The solutionsl; andd, belong to two different initial conditions, thus the gerera
solutiond depends continuously on the initial conditions. The Ligschonditions
[2] can be substituted by the mean value theorem, which leadenditions for the
partial derivatives, the so-called Jacobiagn:

Dgn = g:; (i, =1...N,) continuous and bounded and
j
on; [3]
Dsn = adZ (i,j = 1...Ne,) continuous and bounded
j

If the Jacobian matriceBqn or Dgn exist, then the solutiod can be differenti-
ated continuously. The following equations of motion willffll the conditions [2] or

3]
3. Numerical time integration

The class of Equations [1] will be solved by two differententes. First we write
down the well known method of Newmark in difference form (RBewmark, 1959):

dn+1 = dn + kdn + (1 - Qﬁ)kQ/Q&n + ﬁkQan—‘rl ’
dn-l—l - dn + (1 - V)kdn + ’Ykan-‘rl ) [4]
nonlinear case Md,, ;1 + n(dni1,dns1,tng1) = O,

linear case Md,,;; + (cxyM+ cxK)dpy1 + Kdyy1 — Foyq = 0.

The exact solutionl is substituted with discrete dadh,; the parameter§ and~
are taken to control the accuracy and numerical stabilitheflgorithmk = ¢,,,1 —
t,, is the time step size. For some special parameter combisaig. 26 = v = 0.5)
we can find an equivalent Galerkin formulation for linear®t order differential
equations. Wood (Wood, 1990) proved, that the following-taed ansatzfunctions
lead to an equivalent so-called Continuous Galerkin foriN@fymark’s scheme:
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) 1 .
di(t) = d,, + dn(t —tn) + 5 (t —tn)’dyn  VE€E (tn,tnia],

gh(t) = G, (% —(t—tn)/k+ (t—ﬁn)Q/k:Q) Yt € (tn,tni1],

with: G,, € RNee = const. as a vector of weighting coefficients
tn1 (5]
General nonlinear casef g" (M&’c +n (dk,&’“,t)) = 0vgF,
tn
tnsn
Linear case:/ gk (M&’“ + (eyM + cxK)d* + Kd* — F) dt = 0 vgF.

tn

amplification matricedA v, A of both forms, the Finite Difference (N) [4] and the
Continuous Galerkin (C) form [5]:

dn+1 _ dn _ dn
<dn+1>AN<dn>AC<dn>' [6]

It must be noted, that this equivalence is of course onlydvilr linear second
order differential equations without external loadinggfnithout a particular solution.
Furthermore both formulations for Newmark’s methad, Finite Difference form
and Continuous Galerkin form, differ in the implementatitmthe Finite Difference
schemed,, resp.&nﬂ corresponds to the acceleration at timeresp.t, 1. The
vectord,, in the Continuous Galerkin scheme has to be interpretedeaavbrage
acceleration in the time step = ¢,.1 — t,. Here noinitial acceleration has to
be computed. This is in contrast to the Finite Differenceesad, where thénitial
accelerationly = —M~! - n(do, do,t = 0) is needed.

4. Local error versusgglobal error

The local time integration errag;(¢,,) is defined as the difference between the
numerical solutiord,, and the exact solutiod(¢ = ¢,,) in a certain time interval:

el(tn) = dn - d(t = tn) . [7]

E.g., then the error resulting from previous time stepsegected or is set to zero,
thusd,,—; = d(t = t,,—1). The local velocity error is defined in the same way:

élty) = d, —d(t =tn). [8]

The global time integration error, howeveg,att = t,, is influenced by all previ-
ous local errore; (¢, —1), thusd,,,—1 # d(tn—1). The local errors are further filtered
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and accumulated to the global errex(t,,), see Hairert al. (Hairer et al,1992),
which can be written as:

m—1

eiltm) = dm — d(t =tp) = > ert:) + eiltm) . [9]

=1

The global velocity error is defined analogously:

m—1
ét(ﬁm) =d, — t = trn Z et + e m)- [10]
=1

4.1. Estimation of the local error

Usually methods to estimate the local time integrationresre simple to imple-
ment, because only the information of the last time $tep4, ¢,,) is needed. Here a
method proposed by Riccit al. (Ricciuset al,, 1996) based on a finite difference
operation is applied for the local error estimation usingviterk’s time integration
scheme:

2 . .. .
él(tn>N = 5_4 (dn72 + (2 - 24ﬂ)dn71 + (246 - 3>dn) ~ el(tn) ;
; ko ) ) [11]
&iltn)n = 75 (dn_g (4 —129)dn_ + (127 — 5)dn) ~e&ytn).

The local order of convergence fer(t,,) andé;(t,) with v = 28 = 0.5 can be
established from Dahlquist (Dahlquist, 1963) as:

el(t,) = O(K®) é(ty) = O(K%). [12]
The single degree of freedom system:

md + pd + cd = 0Vt € (0,5

with: d(t =0) =1.0, d(t=0)=0.0andm=1.0,u=0.5,c=1.0 113l

is the model problem to test the order of convergencefar,) andé;(¢,,).
The data from Table [1] give two essential informations:

i) the estimated local error has the exact order of convergen
i) the estimated error converges asymptotically to thecezeror.
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Table 1. SDOF, see eq. [13]; order of convergence for estimated aadtdwcal error
att, = 5.0 for displacements and velocities using Newmark'’s scheme

EloaB) | &l | e | e
02 [1.635-107*]1.302-107% [ 1.585-10"*] 1.517-10~*
0.1 | 1.999-107° | 1.790-10~° | 1.985-10~° | 1.907-107°
0.05 | 2.480-1076 | 2.319-107% | 2.482-107% | 2.388-107F

0.025 | 3.105-1077 | 2.943-10"7 | 3.103-10"7 | 2.987-10~"

These results correspond well wilpriori error estimates of Hairer/Norsett/Wanner
(Haireret al, 1992):

lei(tm)]] < Ck®,

. [14]
with: e;(t,,) = d(t =t,) —d,,, C>0.

I - |l is some arbitrary norm, the accuracy order of the time iratiégin scheme is
s—1 with s = 3 for the given parameter combination. The straightforwaaclaula-
tion of all subsequent local errors — without a filtering —he global error, however,
yields to a substantial overestimation of the exact globaire

4.2. Egtimation of the global error

To avoid this overestimation the transport of the local efrom each time step
has to be included in the consideration, see Figure 1. Thasifify of the local error is
formulated with the amplification matriA of the considered time integrator:

ei(tn) = Aei(tn—1) +eitn). [15]

A subsequent application of Equation [15] leads to the dlebar att = t,,:

m

ertm) = Alei(to) + Y _ AT Hle(t). [16]

i=1

With the assumption, (ty) = O the first term can be removed from Equation [16].
For verification the estimated global error has to be contpaith a priori estimates.
Haireret al. (Haireret al, 1992) and Stoer/Burlisch (Stoet al,, 1990) make ama
priori statement for Finite Difference methods:

O eL(tm,_tO) — 1
L L ’
with: L ... Lipschitz constantC > 0.

le:(tm)| < ks [17]
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Figure 1. Error propagation of the local time integration erraf;(¢,,) to the global
time integration errore;(t,,), Hairer et al. (Hairer et al., 1992)

There are alsa priori error estimates for time-continuous and time-discontirsuo
Galerkin methods from Estegi al. (Estepet al., 1994), (Estep, 1995):

et (tom)j0.6] < C (1 + LtyeClt) % max 3= |d (=D

i<m

Ly - (18]

Both estimates [17] and [18] for the global error show the loflsone order of con-
vergence compared to the local estimate [14]. Based on tad doror estimates [11]
for Newmark’s difference scheme (N) Riccius/Schweizertiitciuset al, 1996)
proposed an alternative indicator for the global time iragign error:

~ t'rn ~
€ (ﬁm)N = k_el(tm)N , [19]
< tm +
é(tm)N = k_el(tm>N- [20]

In difference to the simple accumulation of all local errer&;) Riccius assumes
that the local errors; (¢;) for ¢t < t,,, are equally distributed with an average time step
size ofk,, up tot = t,,, when we estimate the corresponding global time integrnatio
erroré;(t;) resp.&:(t,,).

The equivalence between the FD form of Newmark's scheme la@adntinu-
ous Galerkin formulation of Wood is used to apply the duglitinciple of Betti, see
Cirak/Ramm (Ciraket al,, 1998), to the global error estimation. First the method is
discussed for linear equations. The weak, discretizedridal®drmulation is written:

m—1 tnt1
S gt (Mél’c + cdt + Kd* - F) dt = 0vgt eV cy.  [21]

n=0 t
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The corresponding weak Galerkin formulation:

m—1 it

3 gk(M&JerJrdeF)dt:OngGV’“CV [22]

n=0 tn

is subtracted from Equation [5] to get the Galerkin orthaagjiiy of the residuunR:

tm

/gk-Dedt = 0, e=d-d*
0
with: De = M(d—-d*) + C(d—d*) + K(d —d")
= Mé + Ceé + Ke
- —(M&kJrC&kJrKd’“)JrF:R. (23]

With the principle of duality suggested by Bangeethal. (Bangerthet al., 1999)
and used also by Maute (Maute, 2001) the corresponding dugtien in the dual
variabley can be formulated,

D'y = My — Cy + Ky = 0,Vt < t,,,
. _ o [24]
with theinitial conditions at = t,,: yim =yt =tm), Ym =yt =tm) .

This backward problem results from partial integrationtaf primal problem with
y as test function. The fréeal conditions or initial conditions of the backward prob-
lemy,., v determine the kind of error norm, as will be shown later. Tiffeckntial
equation for the primal error [23] is tested with the solatjoof the dual problem:

tm

/det = —y Me;
0

b [25]

Partial integration of Equation [25] gives the informatfonthe choice of théinal
conditions:

tm tm

/yDedt = /eD*ydt + y Me
0 0

f)’m. _ }VMe f)’m. + yCe f)m ) [26]
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The assumption for the primal problem concerning the ihd@nditionse(t =
0) = 0 andé(t = 0) = 0 and the special choicg,, = y(t.,) = 0 leads to a removal
of the rest of the boundary valuestat 0 andt = t,,:

tm tm

/yDedt = /eD*ydt — yMe | .
0 0

Asy is the solution of Equation [24] thignal conditions fory,,, = y(¢,,) can be
found directly from:

tm
/ yRdt = —y Me, |"™ . [27]
0

E.g., if we choose

_M_let (t'rn)

v (tm) = 28
Y( Yl) |et(tm)| [ ]
the global time integration error can be computed:
tm
erlt = tn)] = [ ¥Rt = 3 Me, [ [29]

0

The error distributiore: (¢,,,) is not known, but at least a reasonable distribution of
the error has to be given in the r.h.s. of Equation [28]. Fax plurpose the local time
integration erroe, (¢,, ), Equation [11], can be estimated and is substitutee for,, )
into the r.h.s of Equations [28] and [29],

2 . . .
él(tn)N = ];_4 (dn—Q + (2 - 24ﬁ)dn—1 + (24ﬁ - 3)dn) ~ el(tn) )
[11]
ilt) = 15 (s + (4= 129)d s + (127~ 5)dn) ~ (1),

If the global error is wanted only for one coordinateis not necessary to estimate
the local error, as the right hand side of Equation [28] isicedl to:

. _ T
Y(tm> = = (M II) ) [30]
with: I € RN , =0, excluding:I; =1

tm

uilt=tn) = [ YRt [31]
0
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In contrast to Equations [25] and [26], wheyds used as test function, it would
be alternatively possible to test Equation [23] with theoeities of the corresponding
dual solutiony,

tom tom
/yDedt:/det. [32]
0 0

If the final conditionsy (¢,,) = —M~te;(t,,) andy(t,,) = —M~1é.(t,,) are

chosen, then the global time integration error in the enaggyn is computed for this
alternative case:

trn 1/2

(lectn)l? + [lentm)]2,)" = /det | [33]
0

In order to compute this alternative global error measuse, @ approximation is
necessary such as the estimated local en@r,,) resp.€;(¢t.).

In reality the exact or analytical solutignof the dual problem [24] is not available,
thusy has to be replaced by*. This numerical solutiog” is computed with the same
Galerkin resp. Finite Difference method as the primal sofyt

0 tn

> g" (My* — Cy* + Ky") dt = 0vgh e Vi V. [34]

nzm—lt
n+1

Thusy* is the dual solution assuming the estimated global ey, asfinal
conditions. The developed procedure for the estimatioh@fiobal time integration
error can now be summarised:

a) solve the primal problem from= t, to ¢t = t,,,, Equation [5], and compute the
residuumR.(¢),

b) solve the dual problem from= ¢,,, tot = ¢y, Equation [34], using the time step
size from the primal problerh = k(¢) and computg*,

tm
c) compute[ y, Rdt: — [&:(tm)c|.
0
NOTE. — A numerical integration should be applied to computeititesgral.

In order to show the convergence and the accuracy of the astihglobal error
é:(tm) as dfirst test examplethe following single degree of freedom system is used:

mii + pd + cd = OVt € (0,2],
35
with: u(t =0) = 1.0, @(t =0) = 0.0 andm = 1.0, p=0.5, ¢ =1.0. 139]

The global error is estimated &t 2 andt = 5.
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Table 2. Single degree of freedom system,= 1.0, u = 0.5, ¢ = 1.0; convergence
of the estimated global time integration error for both EeDifference and Galerkin
schemes;(t,,, ) v [19] resp. é:(tm)c [35] and exact global error of the numerical
solution for displacement and velocityigt = 2.0 varying the time step size

k | ét(2)1\7 | ét(2)1\7 | ét(2)C | ét(2)C | et(2) | et(2)

0.2 [1.83-1072 [ 811-10°° [ 253-1072 [ 6.84-1072 | 2.63-10"2 | 6.83-10"~
0.1 [5.90-1072 | 1.92-1072 | 6.77-1072 | 1.71-1072 | 6.83-1072 | 1.71-1072
0.05 |1.61-1072 | 458-1072 | 1.72-1073 | 4.29-1072 | 1.72-1072 | 4.29-1073
0.025(4.18 -107% | 1.11-107% | 4.32-107* | 1.07-1072 | 4.32-107* | 1.07-1073

Table 3. Single degree of freedom system,= 1.0, u = 0.5, ¢ = 1.0; convergence
of the estimated global time integration error for both FaDifference and Galerkin
schemes;(t,,, ) v [19] resp. é:(tm)c [35] and exact global error of the numerical
solution for displacement and velocityigt = 5.0 varying the time step size

k| &Gy | &Gy | &b | eBGle | eB) | eld)

0.2 [441-10721325-1072 [ 4.04-1072 [ 3.78-10"° | 4.00-10° ] 3.80-1073
0.1 |1.04-1072 | 8.95-10"* | 9.97-107* | 9.53-10"* | 9.95-107* | 9.54-107*
0.05 [2.54-107* | 2.32-107% | 2.49-107* | 2.39-107* | 2.48-107* | 2.39-107*
0.025(6.28 -107° | 5.89-107° | 6.20-107° | 5.96-107° | 6.21-107° | 5.97-107°

The results in Table %;(2)¢, and Table 3¢:(5)¢, indicate, that the effectivity
index:

n = & resp.— [36]

is very close to 1 for the Galerkin formulation of Newmarkiheme. The results for
the estimator of Ricciug; (t,,) show, that the correct order of convergettg?) can
be observed for a sufficiently small time step size, see cof2rand 3 in Table 2 and
Table 3.

As asecond test exampla linear system with two degrees of freedom is chosen,

400 0 dy 200 —1007][d ]
{0 200“J2}+[100 100 Hdz}—o for 0 <t < 40,

(37]

. o [dY] o5 @1 [00
with the initial cond|t|0ns[ 9 } = { 1.0] and [ dg =1 00
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AN @AN-@

c 2m c m

Figure 2. Two degree of freedom system with- 100 andm = 200

The time step size is set to = 0.05 = const. The exact solutionl; andds
for system [37] is shown in Figure 3. Here the global time gn&tion error in the
Euclidean norm is estimated:

Now the problem is to find the proper initial conditions foettiual problem. Be-
cause we do now know; ; ande, 2, the estimated local erref; 1 (t,,), e;2(tn) at
t = t,, is substituted into Equation [28]:

-1 L L L L \‘V'lx’ L L
0 5 10 15 20 25 30 35 40

time

Figure 3. Solutionsd, (t) anddx(t) of two degree of freedom system with initial dis-
placement conditions
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Figure 4. Two degree of freedom system; a) comparison of estimateebaud global
error of Newmark’s scheme as difference scheme (N), mehsurthe Euclidean
norm; b) efficiency index
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al.i)me timeb)

Figure 5. Two degree of freedom system; a) comparison of estimateebaud global
error of Newmark’s scheme as continuous Galerkin schemer{@asured in the
Euclidean norm; b) efficiency index

The numerical results in Figures 4a) and 5a) show, that ttimated error corre-
sponds rather well with the exact error. Visually there im@dt no difference. The
estimation, based on the extrapolation of the local errgquéfon [19]), oscillates
about the exact error with increasing timesee Figure 4a). Beyond= 37 the good
efficiency index of about "1’ also starts to deviate, see Feguib). The reason for
this expected misbehaviour lies in the missing informatbiout the error propaga-
tion, see Figure 1. In addition the numerical differentiathas some influence on
the results due to the different difference formulas in theal error estimator [11].
However, for the Galerkin formulation of Newmark’s scherhe thosen heuristics
ei(tm) — & (ty) for the initial conditions of the dual problem seem to be alyai
good choice, because the effectivity indgfor e, is close to '1’, see Figure 5b),
though some problems appear to start at37.
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4.3. Egtimation of the global time integration error for nonlinear ordinary
differential equations

Here the estimators of the global time integration error, [29 will be applied
to nonlinear problems of rigid body dynamics. The numerszautiond* = d*(t)
of the problem is given by Newmark’s method resp. by the Guuus Galerkin
formulation. In the numerical solution with the Continudsalerkin method:

tna1 tn41
/gk.Makdt+ /gk-n(dk,dk,t)dt:OngGVk [38]

tn tn
Newton’s iteration method is embedded. The integral:

tn41
/ gt -n(d*, d*, t)dt

tn

is evaluated with the 4-point Gauss-Legendre integratide r

As is well known, the principle of duality is valid only forear operator® = n:

tm tm

/y~Dedt = /e~D*ydt,

0 0

with the appropriate initial conditions ferandy. Thus, ifn is nonlinear, we have to
use a linearization of to define the dual problem. Thus the total differentiahat
necessary:

On . On : : :
dn = —=dd + 72dd = C(d,d)dd + K(d,d)dd. [39]

In addition we assumK = K7, thus conservative problems. Now the procedure,
see Equation [5], for linear differential equations can bepped to the linearized
primal problem. Thus, we multiply the linearized problentiwihe dual solutiory
and after partial integration we get:
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tm
/y.@mM+wx¢dmd+1q¢dmd)ﬁ
0
[40]

tm
- /dd~ (My — C(d,d)y + K(dvd)Y) dt.
0

For every primal solutiod the corresponding dual problem becomes then:
My — C(d,d)y + K(d,d)y = 0. [41]

As a consequence we have either to store or to reconkitded) andC(d, d)
for the complete time range for which we intend to perform anreestimation.

Two rigid body problems will be used in the following to testtb methods, Equa-
tions [19], [29], for global error estimation.

Figure 6. Two-body problem

Thetwo-body problem (Estepet al., 1994), Figure 6, consists of two mass points
my andmes, which interact due to a gravity field. The motionefi andms with the
coordinates; andr,; w.r.t. the center of gravitys is transformed to the motion of

one mass withn = % with the coordinatel = (d;,d»)”. The gravity field

is point symmetric with a gravity constafit= 1.0:

dy

mdi + ¢ 2 . 2\3/2

i : (di + ‘j?) fort >0 [42]

mdy + (5257 =
@ B

with initial conditions:d? = 0.4, df = 0.0, d? = 0.0, dY = 2.0.
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Form = 1.0 an analytical (classical) solution to the problem [42] cargiven,
dy(t) = cos(T) — 0.6, da(t) = 0.8sin(7) with: t = 7 — 0.6sin(7).

The time step size for the numerical solution with the Camnditns Galerkin (New-
mark) scheme and the standard Newmark scheme (FD formpwith v = 0.5 is set
to k = 0.005 = const.. The solution of the two-body problem is given in Figure 7a)
with the timet as the natural coordinate of the curve. The chosen initiafltimns
guarantee a periodic solution, see figure 7b) with the Poénoeap ford; = 0 and
dy > 0.
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1 1 o
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-1+
-1+
15 L
2 . . . . . . . 15 Lo . . .
-2 -15 -1 05 0 05 1 15 2 -15 -1 -0.5 0
dy d2
a) b)

Figure 7. Two-body problem; a) solutiod,(t) over d;(t) and b) Poincaré map
da(t) — da(t) ford; = 0andd; > 0

Both global estimators, the local extrapolation error dmeldther one, based on
the Galerkin formulation and dual problem are applied torthalinear problem of
rigid body dynamics. First we estimate the global time ind¢ign error for the Con-
tinuous Galerkin method [5] with initial conditions for tlaeal solution based on the
local error estimate of the standard (FD) Newmark schemdiidfigure 8a) the esti-
mated global erroé, - is depicted, the effectivity index is evaluated in Figure 8b).
Althoughn oscillates considerably the maximum and the minimum of thbaj error
in the Euclidean norm are estimated rather weleing fairly close to '1’. This un-
desirable effect is due to the approximation of the init@hditionse;~ — ¢&;y for
the dual problem at = ¢,,,. As the exact solution is known and the exact error for this
problem can be computed, we can confirm this presumptionsihgdhe correct ini-
tial conditionsy* (t = t,,,) = — (M—Tet(tm))T /le:(tm)| with the results displayed
in Figure 9. There is no visible difference between the egadtthe estimated global
error which is also shown in the effectivity index. The lattgows — as expected
— with increasing time. In Figure 10 the estimated globabeft9] for Newmark’s
scheme based on the local error indicator [11] is displayée. effectivity index; is
very small,n < 1, a complete contrast to the corresponding linear problerterd
estingly, the maxima of the global errér, correspond qualitatively to the maxima
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Figure 8. Two-body problem; a) estimated erréf- and exact errore,, measured
in Euclidean norm, and b) corresponding efficiency ingdgr Continuous Galerkin
scheme with approximated initial conditions for the duailgem
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Figure 9. Two body problem; a) estimated erréfc and exact errore,, measured
in Euclidean norm, and b) corresponding efficiency ingdgr Continuous Galerkin
scheme with the 'exact’ initial conditions for the dual plein

of the exact global error, however, the quantities of therested error are completely
wrong.

Finally the global time integration error is estimated sapely for the coordinates
dy andds with the Galerkin form using the dual approach. Accordindetjuation
[30] theinitial conditions for the dual problem aiming at the global eerpor e, are
applied:

¥ = - (M'L)" with: I, = (1,0)” respI, = (0,1)7 .

The corresponding global error estimates and the exaatsesre depicted in Fi-
gures 11a) and 11b). It is obvious, that the initial condisidor the dual problem
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Figure 10. Two body problem; a) estimated erréy,, measured in Euclidean norm
and b) corresponding efficiency indgXor Newmark’s difference scheme
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Figure 11. Two-body problem; estimated erréf~ and exact errok, of the continu-
ous Galerkin scheme (C) for a) 1-st coordindteand for b) 2-nd coordinatéd;

dominate the quality of the estimated global error. We atsmgnise that the error
increases with increasing time.

In the second nonlinear examplaanlinear spring pendulumis discussed. Met-
tler (Mettler, 1959) uses this spring pendulum to model tigtability behaviour of
longitudinal motions in shaft constructions and on spsagported foundations. The
nonlinear spring pendulum, see Figure 12, has the followigation of motion:

; \Jdi+d3 -1
mdy + edy L2
\/d? + d3
LI V>0, [43]
; Va3 +d3 =l
mds + cdg+———— = mg
\/d3+d3
with initial conditions:d{ = 107!, dS = 1.5, d = 0.0, d3 = 0.0,
and parametersn = 1.4, Iy = 1.0 (length of unstretched springy = 38.5.
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m g

Figure 12. Spring pendulum problem

The numerical time integration is performed with the Galedcheme with quadratic
test and ansatz functiogé andd”. The Finite Difference form of Newmark’s scheme
is not used for the spring pendulum problem, because thaa&tsbin of the global time
integration error failed due to a very small efficiency indese Figure 10. The time
step size is set tb = 0.05 = const. As no solution of the differential Equation [43]
is known, a reference solution with= 6.25 - 10~ = const. is determined.
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Figure 13. Spring pendulum problem; a) solutiah(¢) and b) Poincaré mag; () —
dq(t) fords — (lo + mg/c) = 0andds > 0

In Figure 13a) the horizontal motiof (¢) of the pendulum is shown, based on the
initial perturbationd!. In regular time intervals the fundamental solutiondefwith
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small amplitudes bifurcates into thperturbedsolution with fairly large amplitudes.
The solution with the chosen initial conditions is quasipéic, because the Poincaré
map is a closed line, see Figure 13b). The estimated €ypofor the displacement
dy is of the same order as the exact error up to 150 , see figure 14a). Then the
estimated error deviates strongly from the exact errors Tan be seen more clearly
in the curve for the effectivity index, Figure 14b).
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Figure 14. Spring pendulum problem; estimated global erg. and exact error
e; for Continuous Galerkin scheme (C) a) 1-st coordinédteand b) corresponding
efficiency index

As in the two-body problem we discuss also the influence ofrtttial conditions
for the dual problem. Now the time integration errors for doerdinatesl;, d, and
the Euclidean norm are estimated separately. The initiadlitions for the Euclidean
norm are chosen according to Equation [30]. In contrastédwlo-body problem the
global time integration error for both coordinaiésandd, as well as the Euclidean
norm is overestimated, see Figure 15. Up te 150 the estimated and the exact errors

0.9

1

08 09|

07| ec (estimatedg g 08
o~ e (exact) - A 07 |e/c|(estimated
B 06 + le | (exact;
a ~ 06

05 %

a 05 |

- 04Ff
o — 04r
g 031 <
< o 0.3 -

0.2 - L 02¢f

0.1 01 r .

0 N i Q L L L L L L
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
time time
a) b)

Figure 15. Spring pendulum problem; estimated global eré&y, and exact errore,
for a) 2-nd coordinatel, and b) global time integration error, measured in Euclidean
norm
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look fairly similar. Later the errors differ very much. Fhetr we note that the error
estimation in the Euclidean norm appears to behave be#ettitie corresponding error
estimation for the single coordinates, though there is anlgstimation of the initial
conditions of the dual problem.

In order to explain the deviation of the estimated ekt from the exact error
e; we compare the numerical solution with= 0.05 = const. with the reference
solution for the first coordinatd; . It is obvious, that the estimated global er&¥,

0.5 —
dk— k;0.0ig E—
04 r dq (k=6.25€-4) oo |

0.3 . & )
0.2

0.1 |

dy, d,¥

350 355 360 365 370
time

Figure 16. Spring pendulum problem; comparison of numerical soluti§rfor k& =
0.05 = const. and reference solutiod; with & = 6.25 - 107 = const. using the
Continuous Galerkin method (C); showing a dominant efféth® phase error

depends strongly on the primal solutidf which shows a considerable phase dif-
ference for the two different time steps. This is a strondgdation of the numerical
sensitivity of the solution to the time step size and in paittr of the dependency of
the error estimation on the quality of the dual solution. Esémated error is for a
long time as large as the amplitude of the controlled quaatitd is even growing.
As a consequence of this observation it appears to be lefid tsperform a serious
error estimation once the estimated error reaches the §ihee @ontrolled quantity
and then the time step size should be reduced consideratdgéh an error quantity
of e.g. 10 % of the controlled value.

4.4. Adaptive time stepping scheme

To improve the efficiency of the numerical time stepping &l a procedure
to automatically adapt the time step size is proposed. Hemnzbination of local
and global error estimation is used to control the time sizp. $-or the global error
estimation we apply the estimator based on the duality jplecsee Equation [26].
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The local error estimator is based on the standard Newmatkadethe FD form.

However, it must be noted, that in general a local refinemgthistime step size will

not guarantee a reduction of the global time integratioarerfhus in the combined
adaptive time stepping scheme three bounds are introdaeemhtrol the local/global
error;

i) upper bound for the global time integration eryao!;

if) upper bound for the local time integration eriosl,,,;
e.g.ltoly, = gtol /Cyp, Cup >> 1,

iii) lower bound for the local time time integration erripl;,;
e.g.ltollo = ltolup/Clo, Cio = 2...10.

With the estimated local err@; the local time step size is controlled which limits
consequently the local residuuR of the differential equation. The residuum itself
has some influence on the global eréewia the dual problem [29]. The local control
of the time step sizé is based on the proportionality between local egoand time
step size. For Galerkin’s method with quadratic test ana@&@nfsinctions for linear
second order ordinary differential equations the locadreis of orderO (k3):

e xk®, s=3. [44]

The maximum of the global erretnar = max;c, 7] €:(t.») can be determined
at the final time = T'. If the upper boundmax > gtol is violated, then the numer-
ical simulation starts at = 0 with modified error boundsitol.,, (new), itol;,(new).
This iteration stops, if the inequaliggnax < gtol is fulfilled over the complete time
domain0 <t <T.

For the adaptation of the error bounds the knowledge abastrig one order of
accuracy in the error computation going from local to gladrabr is used,

gtol o< k* ! (new), emar o< k¥,

ltolyp(new) o< k*(new) , ltoly, o< k%,

gtol

s/(s—1)
= ltol,p(new) = ( ) ltolyp(old) ,

emax

gtol

s/(s—1)
= ltolj,(new) = ( > ltol,(old) .

emax

In Figure 17 the algorithm to control the global time intdgra error is shown.
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Figure 17. Adaptive algorithm to control the time step size
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This adaptive time stepping scheme is tested now on two eleampor thewo-
body problem, Figure 6, the estimated and the exact global time intemuagiror are
computed fork = const.. To control the local and global time integration error the
following error bounds are applied,

gtol = 1.5-1072 | Itol;, = 1-107° , ltol,, = 5-107°.

Here the time integration is controlled in the EuclideanmmorThe numerical
results show, that 4 complete analysis, 4 iterations, are necessary to fulfill to upper
boundgtol of the global time integration error. In total the maximumdi step size is
reduced by a factor @f.6 of the maximum in the first time interval of the first iteration
It is remarkable, that the estimated error in the 1-st itenadleviates barely from the
estimated error in the 4-th iteration befare- 30, see Figure 18a).
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Figure 18. Two-body problem, adaptation of the time step size; a) eséichglobal
time integration error for 1-st iteration and for 4-th itetian, comparison with ex-
act error of 4-th iteration, b) adapted time step size fortitaration loop and 4-th
iteration loop

0.005

The same time stepping scheme is applied tespireng pendulum problem, see
Figure 12. Here the following starting error bounds werelyse

gtol = 0.05, Itol, = 1-107° ltol, =1-10"% .

As in the previous simulation of this problem with uniforrmg step size the
global time integration error is controlled for the first aif for t € (0, 400].

Because of the connection with the local error, which ostgh strongly, also the
time step size oscillates, see Figure 19b). However, thptatien procedure shows
its qualities, the global error is considerably reduceaWwel, 02 and does not show
an increase up to= 400, see Figure 20a). The comparison with the reference value
(exacterror), see Figure 20b) shows that the error is very welhesgted after the sec-
ond iteration. The final time history diagram for the analysee Figure 21 reveals the
effectivity of the proposed procedure, as amplitude andeloé this highly nonlinear
problem could be well captured.
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Figure 19. Spring pendulum problem, adaptation of time step size;robof error

for the 1-st dofl; a) estimated global time integration error for 1-st item@ti and for
2-nd iteration in logscale , b) adapted time step size fot 4rgl 2-nd iteration loop
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Figure 20. Spring pendulum problem; adaptation of time step size;wutnge from
t = 350 — 370; a) estimated global time integration err@t ¢ in logscale for 1-st and
2-nd iteration; b) comparison of estimated error with exaabr e;

5. Conclusions

The developed algorithms for error estimation of local alabgl errors for rigid
body dynamics problems were explained and discussed onlgwae and nonlinear,
small size numerical problems. For the Newmark scheme ifiritie difference form
as well as in the Galerkin form the merits and the limits werespnted. The effec-
tivity of the local estimator as well as of the global estioravere demonstrated. It
is clear that the dual concept with the Galerkin scheme léadell defined global
error quantity, however, somehow restricted to single dimates. For a mixture of
coordinates approximations for the initial fimal conditions of the dual problem are
necessary, which can be found e.g. by the local estimatmugththis has some limi-
tations.
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Figure 21. Spring pendulum problem; adaptation of the time step sizamerical
solutiond¥ (¢) for 1-st and 2-nd iteration, comparison with reference siolo; main
effect: reduction of the phase error

For nonlinear problems the developed procedure for glofat estimation based
on the Galerkin scheme with a dual problem proves to worlerattell. However, the
quality of the error estimation strongly depends strongiytee primal solution, as not
only the residuum for the error integral is needed, but diedihearized quantities at
each time integration step for the dual solution, the baclyweoblem. It was shown,
that for large time steps due to the latter effect which i®eiséed with an inaccurate
dual solution the error estimator may fail completely.

The numerical effort for the dual problem involves a complgtibrage of the re-
sults of the primal problem to allow the evaluation of theegral, plus at least one
backward analysis has to be performed. In addition, it issasary to compute the
dual solution with at least the same accuracy as the prinhatign. In the nonlinear
case the effort for storage of quantities needed to competéirtearized matrices is
increasing considerably, making this duality based procedather questionable for
large size problems.

However, the proposed adaptive time integration schenetbasa global as well
as on a local error estimation has proven to be very effeatiekis capable to reduce
the achieved error to the desired level. This can be wellnelad to standard FE
discretized nonlinear problems, though the required diveuanerical effort appears
to be prohibitive.

The current use of duality based error estimation and rtlptecedures appears
to be on using the information from a duality based schemedoige the effort to
compute a certain quantity needed for design, such as &atiglong term response,
see Meyer/Mathies (Meyaat al., 2002 and 2003) or a maximum displacement, see
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Kizio et al. (Kizio et al, 2005). For alternative, fairly simple procedures for erro
analysis of dynamically loaded plate and shell structuigsetized by finite elements
we refer to Neumann, Schweizerhof (Neumaatral, 1999), (Schweizerhadét al,
2000 and 2001). Our future work is on combining the proceslioe efficient tools
applicable to large scale structures.
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