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ABSTRACTThis paper presents an adaptive time discontinuous Galeridéthod tailored to the
numerical modelling of the wave propagation phenomenautiinshell and 3D structures. To
achieve a reliable and efficient numerical implementatisayveral important computational
issues concerning adaptive computation are discussedelyatime variable transfer between
unmatched adaptively refined finite element meshes and tireviement of the convergence of
the implicit dynamic solver by using a frequency dependeliaixation coefficient. Numerical
examples of large-sized engineering structures are givélfustrate the interest and efficiency
of the presented method.

RESUME Cet article présente une méthode adaptative de Galerkizodtinue en temps, desti-
née a la modélisation numérique des phénoménes de propagitindes dans des structures
coques ou tridimensionnelles. Dans I'objectif d’'une innpééitation numérique fiable et efficace
de la méthode, plusieurs aspects importants sont disaudésmment le transfert des variables
entre des maillages adaptatifs non compatibles et I'amdtiion de la convergence du solver
dynamic implicite par l'utilisation d’un coefficient de edation dépendant de la fréquence. Des
exemples numériques de structures industrielles de graaillie sont présentés afin d'illustrer
I'intérét et I'efficacité de la méthode.

KEYWORDS:space-time formulation, time discontinuous Galerkin (D@9thod, elastic wave
propagation, adaptive computing, implicit solver.

MoTs-CLES formulation espace-temps, méthode de Galerkin discom@mtemps, propagation
des ondes élastiques, calcul adaptatif, solver implicite.
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1. Introduction

The numerical modelling of wave propagation phenomenautjitoengineer-
ing structures still remains a challenging issue, espgcighen medium or high
frequency ranges are studied. In such case, very small &hments and time
discretization steps, compared to the dimensions of eegimg structures and the
time interval of analysis, are required to capture wavetganoving throughout the
whole structure. Therefore, the use of an uniformly refinegsimgenerally results
in huge CPU and memory consuming computations or even ftiveitproblem
sizes. To obtain reliable modelling of wave phenomena witloptimal size of the
numerical model, the adaptive computing, which has beenesstully applied to
static linear or non linear problems, is nowadays more andergonsidered as a
promising way to handle this challenge. An efficient adaptivethod should be able
to automatically concentrate numerical efforts by mesmiadi around the wave
fronts and coarsening away from the wave fronts, which amegdly unknown
beforehand.

Adaptive methods introduce a particular feature that is stahdard for the
structural elastodynamics computing, for which the clzsapproach consists in
doing the time discretization by finite difference schemadthe space discretization
by a fixed spatial finite element mesh. With adaptive methdius,discretisation
of the studied structure changes in the time to follow theevpropagation. As a
consequence, the mechanical fields should be transfertedd&® adaptively evolving
meshes while inappropriate transfers can lead to unstabi@ating. For this reason,
there has been growing interests in the space-time Disuomis Galerkin (DG) finite
element method during the last few years, as far as it preadauitable frameworks
for implementing adaptive dynamic solvers by correctly aging the mesh evolution
in time to ensure the stability in a natural way. Besides sttece-time DG method is
also proved to be more accurate than the conventional Nekviauaily time-stepping
schemes and its numerical built-in damping allows filtetingh frequency numerical
noises and giving proper representation of wave fronts.

The purpose of this paper is to present a two-field adaptine DG method,
which is based on the two-fields space-time DG formulati¢Hsilpertet al, 1988),
(Li et al, 1998), (Tieet al, 2003)). By the choice of adopted space-time elements,
the method can be finally written as a time-stepping schendeoaty spatial FE
meshes are adaptively changed during the dynamic compligerget al, 1999),
(Leclére, 2001), (Tieet al, 2003)). The adaptive remeshing procedure is driven by
a posteriorierror estimates that evaluate local unbalanced dynamae$ocoming
from the FE solutions. Thus it belongs to the class of resichethods well known
for thea posteriorierror estimates ((Babuska al, 1978), (Oderet al,, 1989), (Bank
et al, 1992), (Johnsoet al, 1992), (Aubryet al, 1999), (Tieet al,, 2003)). Data
coming from theoretical analysis of elastic wave propagetire also used to define
remeshing size maps. While this method has already beerssfadly applied to
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analyse wave propagation phenomena @iel., 2003), in this paper, we consider
more particularly its application to large-sized engiegishell and 3D structures.
To achieve a reliable and efficient numerical implementatiawo important compu-
tational issues are considered: the variable transferdmtwnmatched adaptively
refined finite element meshes and the improvement of the cgemee of the implicit
dynamic solver by using a frequency dependent relaxati@fficeent. Numerical
examples of large-sized engineering structures are gvdlustrate the interest and
efficiency of the presented method.

The remainder of the paper is organised in the following watyfirst a brief in-
troduction of the time discontinuous Galerkin method iegiin Section 2. Section 3
presents the adaptive remeshing strategy adopted in olr Bection 4 discusses the
important issue of the variables transfer within the framewof the adaptive com-
puting. An implicit bloc Gauss-Seidel DG solver with impea/convergence rate is
proposed in Section 5. Finally, numerical examples showligwave propagation
through large-sized engineering structures are present&ection 6, followed by
concluding remarks.

2. Two fields time discontinuous Galerkin method

We consider an elastic structurethat is submitted to external dynamic body and
boundary forcesf andg. During the time interval of analysi®, T'], the dynamic
equilibrium of Q2 is governed by the following partial differential equation

Divo(u)+ f=pv in Qx]0,T] [1]

and the following boundary and initial conditions:

u = 0 in Tyx]0,T]
ouyn = g in T,x]0,T] 2]
u(xz,0) = u; in Q
v(x,0) = wv; in Q

Here,u(x, t) andv(x, t) are respectively the displacement and velocity fields ddfine
in 2x]0, T, a superposed dot indicates partial differentiation wéhpect to time

t, uy andwv; are respectively the initial displacement and veloaityis the Cauchy
stress tensop is the mass density, = I', U T, with T';, N T, = () is the boundary
of Q andn is the unit outward normal td'. In this paper, homogeneous Dirichlet
boundary conditions are assumed without lose of generafityur purpose. Under
the hypothesis of small deformations, the Cauchy stresotenis given from the
infinitesimal strain tensat by the generalized Hooke's law:

o(u) =C : €(u) (3]

whereC is the fourth order elasticity tensor. Several formulasgierist for the space-
time DG method (Hulbertt al., 1988). Herein, a two-fields formulation is considered



732 REMN - 15/2006. Space or/and time adaptive strategies

((Johnsoret al, 1992), (Liet al,, 1998), (Tieet al,, 2003)). Both the displacement
u and the velocityv fields are considered as primary unknowns and the following
compatibility equation betweamandwv is added to complete the two-fields system:

Div(e(a—v))=0 (4]
We need also to write appropriate boundary and initial ciioni for the fieldv:

a—v = 0 on I',x]0,T][ [5]
o(u—v)n = 0 on T,x]0,T]

Now to establish the associated weak formulation, the raten of virtual works
is made in the whole space-time doma&in= x]0,T[, which is subdivided into
N space-time slabsS,, = Qx]t,,t,+1[. Between two successive space-time slabs,
the primary unknowns andwv can be discontinuous. Then, the weak formulation in
each space-time sla$,, expressing the dynamic equilibrium and the displacement-
velocity compatibility reads as:

(0, w,)s, + (o (), e(wn))s, + (Plo(ta). wo(tF o
= (f,wy,)s, + (ngv)rgx]tn7tn+l[ (6]

(o(0 = v), e(wu))s, + (a([u(tn)]), e(wu(t)))o =0

where(w,,, w,) denote the virtual space-time test functioest,, )] = e(t,") — e(¢,,)
the jump quantities in time dt,, (e, o) the integration over the space-time or space
domainD.

The consistency of the two-fields time-discontinuous Gaeformulation [6] is
straightforward. Furthermore, its unconditional stapifeature can be easily proven
by choosingw, = v andw, = u. We remark that to guarantee such a stability
feature, it is essential to choose an appropriate operatonpgose the compatibility
condition [4] and to add terms dealing with the time discomities [v(¢,,)] and

[u(ts)].

As far as the numerical discretization of the weak formolafi6] is concerned,
each space-time sla§, can be discretized using a completely free space-time FE
mesh. However, the choice adopted herein is to use a steactuesh that is the
combination of one linear or quadratic finite element in tiamel a free FE mesh in
space. As the use of a quadratic element in time has not beamdb be especially
advantageous with respect to the use of a linear one, all statipns presented in this
paper are made with a linear element in time:

thrl —t t— tn
Uat, (.13, t) = Tun(x) + At un+1(l‘) .
tpt1 — 1 t—t, (7]

VAL, (x,t) = Tvn(x) + At ’Un+1(f1,')
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whereAt,, = t,,+1—t, is thenth time step(u,,, u,,+1, v, v,+1) are respectively the
approximated solutions ¢fa(t;7), u(t, ;) v(t;}), v(t,,)), which are continuous in
space. Then after time integration, we get the followindesysto solve for velocities
(Uny anrl)-

2

(o, w)a + 5o (02, () + (v w)a
_ £ w) + Dpvsw)a — oo (ur), e(w))a
3 3 8]

(PVn+1, W) + =0 (Vat1), €(w))a + —=(o (va), €(w))a
= f5" (w) + (pv;,, w)a — Aty (o (1), e(w))a

wherew denotes the virtual spatial test functioifa,, , v;,) the approximated solu-
tions of (u(t;;), v(t;)) at the end of previous space-time slg&h_; and(f**, £5**)
the external loading terms after the time integration. Otlgevelocity unknowns
(vn,v,41) are calculated, the displacement unknowas, u,,+1) are updated:

(o). cw)n = (o). clw)a — 5 (o~ vo).ew)a
(o) cw)n = (o). cw)a + 5o~ vo).ew)

Let M,, denote the spatial mesh for the space-time Slabnd(U.,,, U, 11, Vi, Viut1)
the vectors of nodal values of the FE solutiqos, ,,, up 41, Vi n, Vhnt1) ON M,

of (un,up+1,vn,v,+1), then the weak form [6] is finally recast into the following
matrix form:

2

A]\jnn gMnn { Vn } _ { _Fn(.fa g, U’rja Vni) } [10]

t Va E, Y U,;, Vn_
Abnpe M v+ 1 +1(f.g )

3

with:
M;:n = Mn” + ATtiKnn

i - 5 _2AL, .

Fn(.fag7 Un aVn ) = Fd(.f7g) + gMnﬂl—an - TKn,n—lUn
Fn+1(.fa g, U’r:a Vn_) = F‘S(.fa g) + Mnm—lvn— B At"Knm’_lUn_

(11]

whereK,,,, and M,,,, are respectively the usual stiffness and mass matricesedefin
on the spatial FE mesM,,, K,, ,—1 and M, ,,_; are respectively the stiffness and



734 REMN - 15/2006. Space or/and time adaptive strategies

mass matrices coupling the two spatial FE mesk&s_; and.M,, of two successive
space-time slabs$,, and S,,_;. For example, the inner product terf, ,_ U,
projects the displacement, from M,,_; onto M,,. For simplicity concern, the
detailed formulations of the loading vectdés;(f, g), Fs(f, g)) depending upon the
external loads$ f, g) are not given here.

Once the velocity unknownd/,, V;,41) are solved, the displacement unknowns
(Un, Up+1) are updated using [9], which reads in following matrix form:

At,
Un = K;ann’nflUni — —(VnJrl — Vn)
N [12]
Un+1 = K;T%Kn,n—lU»; + Tn(vn+1 + Vn)

As the matrix of the linear system of Equations [10] is fuldamot symmetric,
it is preferable to solve it using iterative algorithms byigdhonly the matrix/,,
is computed and factorized while the extra-diagonal masriare put into the right-
hand side. Obviously, as any other implicit solver, the fietds time-discontinous
Galerkin solver is memory and computing time consumingti&rmore in the case
of adaptive computing, the update of the displacement figlis U,,+1) using [12]
requires also the factorisation of the stiffness matfkix, and so doubles the CPU
and memory needs. Therefore, to improve the performandeeochdaptive implicit
DG solver, two important issues are considered in this pajpeprovement of the
convergence rate of the implicit iterative DG solver; ip@ation operator between
unmatched adaptive spatial meshes.

3. Adaptive remeshing stategy

The adaptive strategy is defined in the following way: at éaubk step, the spatial
FE mesh used at the previous time step is taken as the inigahron which the
first FE solutions are computed. Then a size map is definedregtbect to these FE
solutions. According to the size mesh, a new spatial meshilisly a whole adaptive
remeshing of the studied structure if it is necessary. Attroog mesh adaption is
performed on each time step and this is sufficient becausk tme step is used to
avoid large discretisation errors in time.

To define the size map for the mesh adaption, local error &tdis are calculated
as the main purpose of the adaptive computing is to achieeg@red accuracy in
FE solutions with an optimally sized FE mesh. Several cas$enethods for tha
posteriori error estimates have been developed in the literature &bic gtroblems,
namely the so-called Z2-method proposed by Zienkievdtal. (1992) based on
the post stress smoothing processes, the method propodeatibyeze (1983) that
explicitly builds static admissible stress fields and theideal forces method, which
investigates the unbalanced residuals using enriched &fétents bases.
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In this work, two method of computing local error indicat@ese considered.
The first one is the residual forces method for which the dyinammbalanced
residuals are evaluated by solving local residual probldefsied on local patches
of hierarchical refined finite elements (see (€teal, 2003) for more details of its
numerical implementation). The other less expansive anelgicalculates the time
discontinuities of displacement in elastic energy norm #redtime discontinuities
of velocity in kinetic energy norm at the beginning of each@ptime slals,,. Then
the local error indicators are used in the following way: toenparison of the sum
of local error indicators with respect to a user prescritbedghold first tells whether
the mesh adaption should be performed or not. In the formse,¢he error map is
used to define a size map of a new mesh. The size map is definedhirasvay that
a nearly homogeneous error distribution is achieved ovénalelements on the new
mesh. According to the principle of the equi-distributidneoror, the so-built new
mesh is nearly optimal.

V Magnitude.
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Figure 1. 2D adaptive computing of the propagation of P-waves and $ewan
foothills areas (see Section 6.1 for the definition of théHills areas). Are presented
for atime step: left, adaptive mesh built using error indara calculated by the resid-
ual method,; right, adaptive mesh built using error indiaatoalculated by evaluating
the time jumps ofu, v) at the beginning of this time step

These two methods generally give quantitatively differembr indicators. Ne-
vertheless the size maps defined by the two methods resdaimyridentical adaptive
meshes (Figures 1 and 2, see also Section 6.1 for the ddiioititne foothills exam-
ple), because of the use of the following parameter togetitarthe local error indi-
cators to define the size maps. This parameter is the shesestength\,,,;., (fimaz)
related to the highest frequency under stygy.... In the case of 2D, plate and 3D
structures \.in (fmaz) Can be calculated by the theoretical analysis of the elastic
wave propagation. Using,..»(fmaz), the adaptive strategy adopted in our work is
defined in such a way that the adaptive remeshing systeraptacesN,;; elements
within the shortest wavelength of interest around the wawet. Generally, we sug-
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gest to chooséV,;; € [4,10] in numerical analyses. So the minimum size of space
finite elements,,,;,, around the wave fronts is calculated as follows:

min — Ne]t
In the case of a heterogeneous structure composed of sciosési having different
mechanic properties, as in the case of multilayered fdetarkeas (Section 6.1), each
substructure has its own minimum size of finite eleménts, .

100 T i
1 - - —errors (residual method)
90p —errors (time jumps in (u,v)|

[lell/liuw)II

OO 20 40 60 80 100 120

time step

Figure 2. 2D adaptive computing of the propagation of P-waves and $ewan
foothills areas. Comparison of the global level of erroricators calculated using
the two different methods: the residual method and the ndegvaluating the time
jumps of(u, v) at the beginning of each time step

In 2D or 3D structures, the slowest direct waves are the shamscmm = cs
and so the shortest wavelength is determined by the sheasway;, = A\s =
In plate structures, the bending waves are dispersive: elscity depend on the
frequency, and the shortest wavelength is determined thdithg waves:\,.;,, =
Ar(fmaz). We remark that the bending wave velocity depends not only upon the
frequencyf but also upon the shell thickness. For the same highestdreyuunder
study f,..z, the thinner is the plate, the smaller should be the finitmelgs. Theore-
tical wave analysis is necessary to find the dispersion equathich can be explicitly
written in the case of the Mindlin plate modeling (Leclér@02). In the case of curved
shells, no analytical explicit dispersion equation is Ealde and we have simply ap-
plied the discretization parametdrst, h,,;,) defined from the Mindlin plates to the
shell modeling for the numerical results presented hei&iullard, 2004).
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Finally the time stepAt is chosen according to the propagation velocity of the
fastest wave,,., (in general, it is determined by the pressure wayg,, = ¢,) and
by the highest frequency of interest involved in the extelmeads, denoted by,qq,
that should be taken into account:

1 hmin

At = min ,
(Nfloa,d Cmax

(14]

In our numerical analyses, we usually taKe< [10, 25] in order to ensure an accurate
modelling of the external loads.

4. Interpolation issues of the adaptive time DG solvers

During the adaptive transient computing, unmatched FE pwale successively
generated, so mechanical fields, namely the displacenmenteiocity and the stress
fields, should be transferred from one mesh to the other. ffdmsfer should be done
using appropriate operators to avoid introduction of nuca¢errors. The choice of
interpolation operators of our adaptive time DG solver issgnted and discussed in
this section.

We consider the space-time sl&h = Qx|t,, t,+1][ on which a new adaptive
meshM,, is built, while the mesh adaptively built for the previoussp-time slab
Sn_1is M,_1. Then the adaptive time DG solver has to deal with two kinds of
variables transfer.

The first concerns the calculation of the velocity fields ie s#pace-time slal,,,
more precisely the calculation of the terfis(u;, ), e(w))q and (pv;,, w)q of the
right-hand side of the Equation [8]. The integration of #héerms is computed at the
Gauss quadrature points of the mesh,. To compute the velocity terrfpv;, , w)q,
the transfer is straightforward as, is known everywhere in the structure due to
the FE interpolation operatd?,,, _, defined on the mesiM,,_;. To compute the
displacementterrfo(u;, ), e(w))q, the transfer is more tactful because inappropriate
transfer can result in the diffusion of the wave fronts that actually localised in
space. For example it is well-known that the global smogtoperator using a
least-squares method of the discontinuous FE stressdi@ig;) generally results
in the diffusion of localised zones of large stresses (Hirgbal., 1974). Hence our
choice consists in using a local element-wise smoothingatpeto have a stress field
defined everywhere in each element of the m&sh_, (Aubry et al, 2003). In fact
in each element a polynomial stress field is locally builhgsh least squares method
and according to the stress values obtained at Gauss péditite meshM,,_;. In
this way, the localised character of the wave fronts is coegke When linear finite
elements are used, the stress field is constant in each d@lemémo smoothing
process is necessary.
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The second kind of variables transfer concerns the updatkeotlisplacement
after the calculation of the velocity using [9] or [12]. Theleulation of the term
(o(uy ), e(w))qn being already presented, the update of the displacemeniresq
therefore the calculation, the storage and factorisatiothe stiffness matrixi,,,
according to [12], which is memory and CPU consuming. A solutmuch less ex-
pensive, which furthermore works well, consists in updatime displacement in the
following way:

At,
U = Pm,.(Uy)— T(V"H —Va)
Al [15]
Un+1 = pMn_l (Un_) + Tn(vn—i-l + Vn)

wherePq, , is simply the FE interpolation operator defined by the mésh_;.

V Magnitude|

.A,ae—m

Figure 3. Wave propagation in an elastic beam. Left, 2D adaptive camguRight,
3D adaptive computing

To illustrate the quality of the interpolation operatoropted in our adaptive
time DG solver, we present here the 2D and 3D numerical modetif the wave
propagation in an elastic beam (Figure 3). Figures 4 and Septehe comparison
of accelerations obtained at a point by different modedlinthe modelling with a
uniformly refined mesh considered as a reference solutieadaptive modelling for
which the displacement update is done by solving the sysi&hgnd the adaptive
modelling for which the displacement update is done by ugid§ Good agreement
is observed between the different modellings, which is gaheobserved by all our
numerical computations. For the 2D analysis, two referesmtetions are obtained
one with a Q4 (four-nodes square element) mesh and the oitiea w3 (three-nodes
triangular element) mesh. It can be remarked that the obdesmnall oscillations
around the reference Q4 solution is rather caused by thefusg element than by
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the interpolation process. For the 3D modelling, only #tff@ur-nodes tetrahedral)
elements are used.
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Figure 4. Accelerations obtained at a point in the 2D beam by differantlellings.
Q4 (no adaptive): uniformly refined mesh with Q4 element; A@ddaptive): uni-
formly refined mesh with T3 elements; T3 (adapti¥g,, factorized): Adaptive com-
puting using T3 elements and the displacement update is loppselving the system
[12]; T3 (adaptive,P,,—1 (U, )): Adaptive computing using T3 elements and the dis-
placement update is done by using [15]
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Figure 5. Accelerations obtained at a point in the 3D beam by differantelling.
tetra4 (no adaptive): uniformly refined mesh with tetradnedmts; tetrad (adaptive,
K,, factorized): Adaptive computing using tetra4 elements #reddisplacement
update is done by solving the system [12]; tetra4 (adapti®e,;(U,,)): Adaptive
computing using tetra4 elements and the displacement apsldbne by using [15]

As far as the mesh adaption is concerned, we can remark thd&Ehmesh is
adaptively refined around the propagating wave fronts byt glightly coarsened far
away behind the wave fronts. Same observation is obtaingtayumerical examples
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presented in Section 6 and indicates that the mesh coagsesinbe more delicate to
manage than the mesh refining. In fact, the mesh coarsenmgdshe done only if
waves of the frequency range of interest have moved awayaahe accuracy of
numerical modelling is maintained.

5. Implicit DG solver of Gauss-Seidel type with frequency-épendent relaxation

As M* the matrix of the linear system of Equations [10] is full arod symmetric,
it is preferable to solve it using iterative algorithms. Timplicit DG solver proposed
by Li et al. (1998) is based on such an iterative algorithm, which isallsta bloc
Jacobi iterative algorithm without relaxation. We propbsee a bloc Gauss-Seidel
iterative algorithm with furthermore a frequency-depamdelaxation. We will prove
that the frequency-dependent relaxation improves coeverg rate of the iterative
solver by uniformly reducing errors in the whole frequenoytin of interest.

Hereafter two iterative algorithms to solve the system [4@] considered: the
bloc Jacobi one et the bloc Gauss-Seidel one. Given anlipitéalictor of V0 =
(V.2, V%, 1), the bloc Jacobi or Gauss-Seidel iterative algorithmssead

Jacobi algorithm, fof > 0:

i+1 i x—1( 1 At? i * i

Vn+1 = VnJrl + aMnn (Fn+1 - TKT”LV’I’L - MnnVnJrl) [16]
, ) _ 2 , ,

Vit = Vi + oMy Y (F, — gMunVisr = M3, Vi)

Gauss-Seidel algorithm, fer> 0:
i+1 i x—1( 1 At? i * i

Vn+1 = VnJrl + aMnn (Fn+1 - TKT”LV’I’L - MnnVnJrl) [17]
) ) _ 2 X )

Vitt = Vi 4 aMy Y (Fy — ngV,iﬂ - M3, V)

where« is the relaxation coefficient.

5.1. Analysis of convergence

The stability and convergence conditions of the time difooous DG solvers
will be written in term of(3, the eigenvalues of the matriz* defined as:

At?

B* = M ‘M, =1I— TM;#K"” [18]
It can be shown thalt < ¢ < 1, as:
1
_ 19
B (At [19]
+1

6
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wherew? are the eigenvalues of the following eigensystem:
Knn\I/ = WQMnn\I/ [20]

where U is the eigenvector corresponding to the eigenvalde We recall that
w =27 f, f being the frequency.

It can be proved that both proposed solvers unconditioralhwerge and that, as
can be expected, the bloc Gauss-Seidel DG solver converges napidly than the
bloc Jacobi one. Furthermore, for the bloc Gauss-Seideésan optimal relaxation
coefficient is found, which is frequency-dependent and owes the convergence rate
of the solver. These results are summarised in the followirgpositions, whose
proofs are given in Appendix 9.1).

Proposition 5.1 The implicit bloc Jacobi DG solver [16] unconditionally ccgrges
for Va €]0,1.268]. The relaxation does not improve its convergence rate.

Proposition 5.2 The implicit bloc Gauss-Seidel DG solver [17] uncondititpaon-
verges forva €]0,2[. Without the relaxationd, = 1), the implicit DG solver of
Gauss-Seidel type converges more rapidly then the one oblgpe.

Proposition 5.3 There exists an optimal relaxation coefficient,.(f) that improves
the convergence of the implicit bloc Gauss-Seidel DG satvéne whole frequency
domain. It is frequency-dependeiat;,.(f) € [1, amaq] is the real root of the follo-
wing quartic equation:

Mgsa® —da+4=0 [21]

where\ 4. is the convergence rate, called also the spectral radiusefiterative

matrix Agg, of the implicit bloc Gauss-Seidel DG solver without refdo@. oy, iS
the optimal relaxation coefficient corresponding to thejfrency valuef = %,
for which A 4., reaches its maximal value (see [38]). The numerical value,gf.

is nearly1.1415.

In Figure 6, we present the frequency dependent relaxatefficient o, (f) and
also the convergence rates of three different bloc GauselSeG solvers: the one
without relaxation ¢ = 1), the one with the constant relaxation coefficient,.. and
the one with the frequency dependent optimal relaxatiofffictant a.,,:(f). Hence,
with ape(f), the convergence rate is improved in the whole frequencyadionwith

amaz, the convergence rate is improved for the frequencies argun % deter-
mined by the time stept,,, and is deteriorated otherwise.
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Figure 6. Above, optimal relaxation coefficient,,;(f) of the implicit bloc Gauss-
Seidel DG solver that depends on the frequeficynderneath, convergence ratio
Ags of the implicit bloc Gauss-Seidel DG solver depending uperclibice of the
relaxation coefficient
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5.2. Implicit bloc Gauss-Seidel DG solver with frequency-dependent relaxation for
the adaptive computing

During the adaptive computing, from one space-time slabeawther, the spatial
FE mesh is adapted to follow the wave propagation. The tinmgimoity of the
primary unknowns(u, v) is weekly imposed between two unmatched FE meshes
as it is allowed by the weak formulation of the time DG methcotherefore, all
convergence analyses previously presented remain vatiteitase of the adaptive
computing.

For the numerical computing, it is impossible to take a curdusly frequency-
dependent relaxation coefficient. The strategy that we ggefhere is to compute a
relaxation coefficient, which is constant but dependsigs, the smallest element
size of spatial FE mesh in the following way:

Cmaa:

Nelt hrmln

wherec,,q... 1S the largest velocity of wave propagation under study. okding to
the strategy for choosing the space-time discretizatioarpaters (see the formula
[13]), fop: is larger than the highest frequency of intergst,, that is linked toc,,,
the smallest velocity of waves. Therefore, the relaxationstanto. (fop:) is still
frequency dependent, as it actually depends on the fregjuange of interest of the
studied problem.

a = aopt(fopt) with: fopt = [22]

Figure 7(a) compares, in the case of a 2D structure with atmiFE mesh with
about100 thousands dofs (degrees of freedom), the numerical coemeegof the
Gauss-Seidel type DG solver with different choices of thaxation coefficienty: (i)
without relaxation = 1; (i) With a = aumaq; (i) With o = aopt (fopt); (iv) with
« alternately equals td andapt (fopt); (V) With o takes linearly distributed values
belonging to[1, copt (fopt)]- All our numerical tests have shown that the previously
proposed strategy [22] is the best 0188, % reduction of total iteration number is
systematically obtained.

In the case of the adaptive computing, the calculation geiyestarts on a
coarse mesh where the implicit DG solver converges rapiBiyt the convergence
rate is deteriorated on adaptively refined meshes if no adélaxx is made, as it
is shown by Figure 7(b). Indeed, the refined meshes captugdtehfrequen-
cies for which the convergence rate is worse, then if thexatian coefficient is
adaptively taken as function of the smallest element sizadaiptively refined FE
meshes, the convergence rate is improved for the higheudrexy errors decrease
more rapidly. Furthermore, such an optimal convergence imtmaintained for
large sized systems. Figure 8 shows the convergence feafute solver on a
3D refined mesh with more thahmillions dofs and improvement of convergence
obtained by the use of the relaxation on a shell mesh with tihares0 thousand dofs.
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Figure 7. (a) Numerical convergence of the implicit bloc Gauss-Sé&desolver with
different choices of the relaxation coefficients(b) Improvement of convergence of
the implicit bloc Gauss-Seidel DG solver on adaptively edimeshes
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6. Numerical examples

Now the presented adaptive solver is applied to industriablems and several
numerical examples are presented to illustrate its effagien

6.1. Elastic wave propagation in foothills areas

For the oil industry, foothills areas that are nowadays fyomxplored appear very
attractive. However, the exploration in foothills areamains challenging and among
the difficulties to handle, the modelling of the wave progdayeis a difficult problem
to address due to the complexity of geologic framework offtioehills areas, namely
the velocity contrast between the layers resulting in cexplave propagation pat-
terns. Furthermore, the dimension of the studied domaireiig large compared to
the implied wavelengths. In our case, the size of the donmabetstudied should be
at least 100 times the smallest wavelength. Therefore aumiy refined mesh that
precisely describes the multi-layered system and finelyucap wave propagation can
be very expensive or even prohibitive.

Figure 9. Foothills areas. Left, 2D uniformly refined mesh showinguékcity con-
trast between the layers, the velocity in near surface islthan in the substratum;
Right, 2D initial coarse mesh for the adaptive computing

6.1.1. 2D modeling

We present at first a 2D adaptive modelling of propagatinggaree (P-) and shear
(S-) waves in a foothills area. Its somewhat simplified ggmatructure and the
coarse initial mesh used to start the adaptive computinglawen in Figure 9. The
external load, a Ricker-type signal whose frequency raageintred arouné5H z,
is vertically applied on a surface point. Figure 10 shows tha wave propagation
patterns of P- and S-waves are captured by the adaptivelyetefneshes. The
P-waves fronts are perturbed by the multi-layered systemd, the S-waves are
continuously triggered at the interfaces by the P-wavepagating more rapidly. By
the automatic mesh adaption, larger finite elements areinggbper layers because
waves propagate more rapidly there. However, there is nd w@srsening observed
for this example because the whole domain is finally fillechwiave fronts.
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Figure 10.2D adaptive computing of the propagation of P-waves and $ewan
foothills areas. Are presented: Left, adaptive meshes tiithsovalues offv||; Cen-
ter, P-waves; Right, S-waves

6.1.2. 3D modeling

With the same number of dofs, it is well known that the 3D FE patation is gen-
erally much more CPU and time consuming than the 2D compuutdecause of the
higher element connectivity in a 3D mesh. Hence the 3D midgdif the wave prop-
agation in the foothills areas remains still a challengiagecif the area to be studied is
large. The 3D computation presented here considers an &i@sevdimension is only
60 times the smallest wavelength. Its geologic structusdsvn in Figure 11(a). A
coarse initial mesh is used to start the adaptive compufigmi(e 11(b)). In Figures 12
and 13, adaptive meshes and the propagation of P- and S wavpseaented. The
beginning of the wave propagation is finely captured. Buhsaicalculation remains
still very CPU and time consuming, the last 3D adaptive mésiwe here has more
than2 millions dofs.
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Figure 11. Foothills areas. Left, 3D mesh showing the velocity contbesween the
layers, the velocity in near surface is lower than in the st#tem; Right, 3D initial
coarse mesh for the adaptive computing

101610

ey

Figure 12.3D adaptive computing of waves propagation in foothillsaasre Above,
adaptive meshes and P-waves; Underneath, adaptive meste&s-aaves

6.2. Shock wave propagations during space launcher stage separation

Shock waves accompanying very fast moving loads are wellvknghenomena:
when the velocity of the moving load is faster than the waviecity of the ma-
terial, high deformation gradients are produced and lsedlin the structure. The
pyrotechnic cut used for the stage separation of a spaceHaugan be modelled as
a moving load and can generates high level shock waves, venetlangerous for
embarked electronic equipment and payload (satellites). eTo try to control the
dynamic environment of the payload, a good understandingasfe propagations
across structures of the launcher is required.
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Figure 13. Planar cuts in the depth of foothills areas at a time step nirteft to right,
the planar cut moves away from the loading point (Remarkntlesh of a planar cut
can be distorted, which is actually a graphic effect.)

Figure 14. Adaptive computing of the propagation of shock waves inespamcher
structures submitted to pyrotechnic cut loads. Are presgznAbove, adaptive meshes,
pressure (blue colors) and shear (red and yellow colors)xkheaves; Underneath,
adaptive meshes and bending shock waves

Here the adaptive modelling of shock wave propagation in ¢aonected shell
substructures of a space launcher is presented. The plni¢ezut is modelled as a
moving load along the interface between the conical andythedrical substructures.
The speed of the moving load (more thz®00 m/s) is higher than the propagation
speed of P-wave in the structures (ab®@0 m/s). Figure 14 shows simultaneously
the propagation of membrane P- and S-waves and of the bem@wes in structures
of a space launcher. The efficiency of the adaptive DG sotvget precise capture
of shock waves is illustrated. The FE mesh is coherently dlaghowing consider-
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able refinement around the propagating wave fronts but aéghrooarsening behind
them. Due to the supersonic moving loads, well-known Macates®f pressure, shear
and bending shock waves are consequently generated. Q¢benue to the curva-
ture of the structures, the conversion of waves is generdiliseveral wave fronts are
observed related to either pressure or shear and, in thedcyglal upper part and the
conical lower part, wave propagation phenomena are signifi¢ different. Finally
we remark that, as the bending waves are dispersive - i.@.vilecity is frequency
dependant - a series of shock wave fronts is observed.

7. Conclusions

In this paper, an adaptive two-fields time DG method is prieskand its reliable
and efficient numerical implementation is discussed. Madigularly, the inter-
polation of mechanical variable between unmatched adaptieshes is considered
and the adopted interpolation operators are shown to beoppate and efficient
by the presented numerical examples. Otherwise, an imhflloc Gauss-Seidel
DG solver with frequency dependent relaxation is proposéts. convergence is
improved especially when the FE mesh is adaptively refineldstarts capturing high
frequencies components. The method has been succesgipligato large-sized
engineering shell and 3D structures. The advantage of attordaptive remeshing
is illustrated by these applications.

Nevertheless, the 3D adaptive computing of the wave prdjmagstill remains a
challenging issue and the sole introduction of adaptidtgat sufficient. We believe
that a coupled strategy of the mesh and the parallel conpigia promising way to
take up the challenge. Otherwise, our experiences haverstit@at the mesh coars-
ening is more delicate to handle than the mesh refining. Butithsh coarsening is
very important to optimise the problem size. So, more peeseisors indicators or
more adaptive astute strategies are expected in order dylogtimise adaptive FE
meshes.
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9. Appendix

Here, we give the proof of the unconditional convergencehef itnplicit DG
solvers of Jacobi and Gauss-Seidel type.
9.1. Unconditional convergence of the implcit bloc Jacobi DG solver

Proposition 9.1 The implicit bloc Jacobi DG solver [16] unconditionally cagrges
for Vo €]0,1.268].

PROOF. The iterative algorithm [16] can be put into the fallog matrix form:
; Mt 0 F, ;
\% +1— o |: 0 M;T_Ll :| { Fn—l—l } + ((1 — a)I + O[AJ)V [23]

with:

i V;’Jrl
yitt { Vit } [24]

n+1

so0, the recurrence relation of the iterative corrections is
Vil v = Ry(VE -V [25]

with Ry = ((1 — a)I + oA ) and the matrix4 ; is defined is:

2
Ay = 0 —3B [26]
-2(I-B*) 0
with:
At?
B = My My = T = == M Ko, [27]

The necessary and sufficiency condition of convergenceaistitie spectral radius of
the iterative matrixR; is strictly inferior tol. We note thatR; = A; whena = 1.
As the matrices3* and(I — B*) have the same eigenvectdrswe conclude that the
eigenvectors of the matrid ; can be written under the following form:

o, :{ e } [28]

We get therefore the eigenvalues of the mattixdepending upon the eigenvalues of
the matrixB*:

o _ 4 1,1
M, =3Bt [29)
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Itis straightforward thath 4, | < %3 ifo<pg <1
Now, we calculate the eigenvalues of the mafsix It is easy to show that:

1

B*® = (AT)QH(I) [30]
6
whereV is the eigenvector of the eigensystem [20]. So, we have:
g=— 1 (31]
(Atw)? -
+1

6

Hence, the bloc Jacobi DG solver without relaxatior.(a = 1) unconditionally
converges.
Finally we get the eigenvalues of the iterative mafix:

)\Ji:].—a:l:()é|)\AJ| [32]

Itis straightforward tha\ ;| < 1 if « €]0, ff\% [.

Corollaire 9.2 The relaxation does not improve the convergence of the éihplioc
Jacobi DG solver.

PROOF. It can be shown that:df > 1, \j_ < —|Aa, i if a <1, ;4 > |Aa, ]

9.2. Unconditionnal convergence of theimplcit bloc Gauss-Seidel DG solver

Proposition 9.3 The implicit bloc Gauss-Seidel DG solver [17] uncondititpaon-
verges folva €]0, 2[.

PROOF. The iterative algorithm [17] can be put into the fwilog matrix form:
. M*fl _EM*flM M*fl F .
Vitl — o nn g7 nn nntinn { _n } — RgsV? [33]
0 M;:;l Fn+1
with:
4 2 R* * 2 * *
2a(I — B*) 0
S0, the recurrence relation of the iterative corrections is

Vi+1 o Vi _ RGS(VZ' o Vifl) [35]
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When there is no relaxatione. o = 1, we obtain the iterative matridqs that reads
as:

A } [36]

Ags = [ 51— BY)

B* is defined by Equation [27]. As in the preceding proof, theassary and suffi-
ciency condition of convergence is that the spectral raglitise matrixR s is strictly
inferior to 1. Let us consider at first the case without relaxation andevihie eigen-
vectors of the matri¥d s under the following form:

Pgs = { T(g) } [37]

We recall thatb denotes the eigenvectors Bft. If N is the dimension of the matrix
B*, then it can be shown that the matix; s hasV eigenvalues equal to zero and
eigenvalues depending upon the eigenvalliesthe matrixB*:

4 1 1
/\AGS = _g(ﬁ - 5)2 + g [38]
Itis obvious thaf 4| < 3 as0 < 8 < 1.
When the relaxation is added, the eigenvallgs of the iterative matrixRgs are:

az)‘AGs + \/(O‘2)‘AGS)2 - 4(04 - 1))‘Acs

Aos=1—a+« 5

[39]
It can be proved thdtgs| < 1 for a €]0, 2.

Corollaire 9.4 Without the relaxationd¢ = 1), the implicit bloc Gauss-Seidel DG
solver converges more rapidly then the implicit bloc Jadd@i solver.

PROOF. It is obvious if we compare the spectral radius of thi&iive matricesA ;
andAgs (see Equations [29] and [38]).

Proposition 9.5 There exists an optimal relaxation coefficient,.(f) that improves
the convergence of the implicit bloc Gauss-Seidel DG sadtvéne whole frequency
domain. Itis frequency-dependent;,:(f) € [1, @mas] IS the real root of the follow-
ing quartic equation:

Mes@® —4a+4=0 [40]

wherea,,, ., i the optimal relaxation coefficient corresponding to tlegjéiency value
f= %‘ftn , for which the spectral radius 4, of the matrixA¢ s reaches its maximal
value (see Equation [38]). The numerical valuengf,,. is nearly1.1415.
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Figure 15. Convergence ratio of the implicit bloc Gauss-Seidel DG a0 s de-
pending upon de choice of the relaxation coefficiert [1, amqz)
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PROOF. A detailed analysis of the spectral radiyg of the iterative matrixRas
(see Equation [39]) can show that, for a given frequeficyhe optimal relaxation
coefficienta,,: € [1, amas] and is the one which corresponds to the bifurcation point
of two situations Ags| has two identical values or two different values (see Figure
15, 16 and 17). Thereforey,,: should vanish the discriminant of [39], resulting in
Equation [40].
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Figure 17. Convergence ratio of the implicit bloc Gauss-Seidel DG a0 s de-
pending upon de choice of the relaxation coefficiem [ayqz, 2]



