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ABSTRACT. A new mesh refinement method for multi-material ALE formulations is presented. 
The computational timestep of this approach is divided in 2 steps: a so-called Lagrangian 
step, during which the mesh deforms with the update of the solution, and a so-called Eulerian 
step, during which the mesh is remapped in order to preserve the mesh regularity and refine 
in the vicinity of the shock front. As test case the method is applied to the propagation of an 
explosive airblast, for which experimental results are available. 

RÉSUMÉ. L’article décrit une nouvelle méthode de raffinement de maillage pour des 
formulations ALE multimatérielles explicites. Le pas de calcul de cette approche est divisé en 
2 temps : un pas dit Lagrangien au cours duquel le maillage se déforme avec la mise à jour 
de la solution, et un pas dit Eulérien au cours duquel le maillage est déplacé de manière à 
préserver la régularité du maillage et à le raffiner dans le voisinage du choc. Au cours de ce 
pas, la solution est projetée sur le nouveau maillage. Cette méthode est appliquée à la 
propagation d’une onde de choc explosive pour laquelle des résultats expérimentaux existent.  

KEYWORDS: mutli-material ALE formulation, delayed mesh relaxation, shock capture, adapted 
mesh refinement. 

MOTS-CLÉS : formulation ALE multimatérielle, relaxation retardée du maillage, capture du 
choc, raffinement adapté du maillage.  
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1. Introduction 

The principle of an ALE1 code is based on the independence of the Finite 
Element mesh movement with respect to the material motion. In fact, the freedom of 
moving the mesh offered by the ALE formulation enables a combination of 
advantages of Lagrangian and Eulerian methods. 

In the Lagrangian description of motion the computational domain follows the 
material motion, which greatly simplifies the governing equations. Lagrangian 
schemes have proven very accurate as long as the mesh remains regular. However, 
the material may undergo large deformations that lead to severe mesh distortions and 
thereby accuracy losses and a reduction of the critical time step, which is the amount 
of time necessary for an acoustic wave to cross the smallest element in the mesh (the 
Courant Friedrichs Levy condition). 

With an Eulerian description of motion the mesh is fixed in space and the 
material passes through the element grid. The transport of mass between elements 
complicates the governing equations by introducing nonlinear transport terms. Mass 
conservation is not automatically satisfied. Advection algorithms need to be 
implemented for the mass, momentum and internal energy conservation and for the 
tracking of all state variables. 

According to (Wilkins, 1964), the accuracy of Eulerian codes are comparable to 
the accuracy of Lagrangian codes in hydrodynamic applications, when using higher 
order advection algorithms. Furthermore, since the reference system is fixed, the 
Eulerian formulation preserves the mesh regularity. The main drawbacks are the 
computational cost per cycle and the dissipation errors generated when treating the 
advective terms in the governing equations. 
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 ������������� ����step into two phases. 
The first step is the Lagrangian phase, where the material motion and the mesh 
motion are identical and where the incremental motion of the material is computed. 
All physical phenomena as well as boundary conditions are considered during this 
phase. 

The second step is the Eulerian phase, which is referred to as the advection, or 
remap phase. In this step the mesh is moved independently to the material motion 
and there is a transport of material between the cells. This corresponds to the 
treatment of the convective terms introduced in the governing equations. 

Pioneering work on the ALE formulation were presented by (Hughes, 1981; Liu, 
1988) to solve free surface problems for incompressible viscous flow, by (Benson, 
1992; Belytschko, 1982) to treat fluid-structure interaction problems. A detailed 
survey of ALE Finite Element methods was presented by (Donea, 1983). Hughes et 
al., developed a streamlined upwind Petrov-Galerkin method (Brook, 1982; Mallet, 

1. Arbitrary Lagrange Euler 
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1985; Hughes, 1986), which was implemented in an ALE formulation by (Liu, 
1988). The formulation has been applied for several applications in automotive, 
aerospace and biomedical industries for free surface modeling, sloshing tanks, fluid-
structure coupling applications and for high velocity impact and penetration 
problems. An explicit ALE formulation has been applied by (Souli et al., 2000), for 
high velocity impacts of elasto-plastic materials and for the analysis of sloshing tanks 
in aerospace applications.  

This paper presents a new mesh relaxation method for explicit multi-material 
Arbitrary Lagrangian-Eulerian (ALE) Finite Element simulations. The proposed 
method is valid for structured and unstructured meshes and it is designed with the 
objective to reduce numerical dissipation errors when analyzing the propagation of 
shock fronts. The method aims to delay the advection phase in the vicinity of shock 
fronts in order to obtain an as “Lagrange like” behavior as possible near the shock, 
while at the same time keeping the mesh distortions on an acceptable level.  

The outline of this paper is as follows. In Section 2 an overview of the governing 
equations in the ALE description of motion are presented. Section 3 describes the 
technique of delaying the mesh relaxation. In Section 4 the numerical modeling of a 
high explosive detonation in air using a structured ALE cartesian grid is presented, 
illustrating the performance of the introduced relaxation technique. In this 
application the airblast loads a steel plate and a comparison with available 
experimental data (Boyd, 2000) was possible. 

2. Multi-material ALE description of Navier-Stokes equations 

2.1. ALE formulation 

In the ALE description of motion, an arbitrary referential coordinate is 
introduced in addition to the Lagrangian and Eulerian coordinates (Hughes et al., 
1981; Souli, 2000). The total time derivative of a variable f with respect to a 
reference coordinate can be described as Equation [1]: 

),().(
),(),(

txfgradwv
t

txf

dt

tXdf −+
∂

∂=  [1] 

where X  is the Lagrangian coordinate, x  is the ALE coordinate, v  is the 

particle velocity and w  is the velocity of the reference coordinate, which will 
represent the grid velocity for the numerical simulation, and the system of reference 
will be later the ALE grid. Thus substituting the relationship between the total time 
derivative and the reference configuration time derivative derives the ALE 
equations. 
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Let 3Rf ∈Ω , represent the domain occupied by the fluid, and let fΩ∂  denote 
its boundary. The equations of mass, momentum and energy conservation for a 
Newtonian fluid in ALE formulation in the reference domain, are given by:  

0=−++
∂
∂

)()()( ρρρ
gradwvvdiv

t
 [2] 
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∂
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where ρ  is the density and σ  is the total Cauchy stress given by: 

( ) ( ) 


 ++−= TvgradvgradµId.p
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σ  [5] 

where p  is the pressure and µ  is the dynamic viscosity. Equations [2]-[4] are 

completed with appropriate boundary conditions. The part of the boundary at which 

the velocity is assumed to be specified is denoted by f
1Ω∂ . The inflow boundary 

condition is:  

fontgv 1)( Ω∂=  [6] 

The traction boundary condition associated with Equation [4] are the conditions 
on stress components. These conditions are assumed to be imposed on the remaining 
part of the boundary. 

fonthn 2)(. Ω∂=σ  [7] 

One of the major difficulties in time integration of the ALE Navier-Stokes 

equations [2]-[4] is due to the nonlinear term related to the relative velocity ( wv − ). 
For some ALE formulations, the mesh velocity can be solved using a remeshing and 

smoothing process. In the Eulerian formulation, the mesh velocity 0=w , this 
assumption eliminates the remeshing and smoothing process, but does not simplify 
the Navier-Stokes equations [2]-[4]. To solve equations [2]-[4], the split approach 
detailed in (Benson, 1992; Hughes, 1981) and implemented in most hydrocodes such 
as LS-DYNA® is adopted in this paper. Operator splitting is a convenient method 
for breaking complicated problems into series of less complicated problems. In this 
approach, first a Lagrangian phase is performed, using an explicit finite element 



A delayed remap technique in ALE methods     469 

method, in which the mesh moves with the fluid particle. In the CFD community, 
this phase is referred to as a linear Stokes problem. In this phase, the changes in 
velocity, pressure and internal energy due to external and internal forces are 
computed. The equilibrium equations for the Lagrangian phase are:  

fdiv
dt

vd += )(σρ   [8] 

vfvgrad
dt

de
.)(: += σρ  [9] 

The mass conservation equation is used in its integrated form Equation [11] 
rather than as a partial differential equation (Belytschko et al., 2001). Although the 
continuity equation can be used to obtain the density in a Lagrangian formulation, it 
is simpler and more accurate to use the integrated form Equation [10] in order to 
compute the current density ρ : 

0ρρ =J  [10] 

where 0ρ  is the initial density and J is the volumetric strain given by the Jacobian: 
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In the second phase, called advection or transport phase, the transportation of 
mass, momentum and energy across element boundaries are computed. This may be 
thought of as remapping the displaced mesh at the Lagrangian phase back to its 
initial position. The transport equations for the advection phase are: 
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where wvc −=  is the difference between the fluid velocity v , and the velocity 

of the computational domain w , which will represent the mesh velocity in the finite 
element formulation. In some papers (Hughes et al., 1981; Belytschko et al., 2001) 

c  is referred as the convective velocity. The hyperbolic equation system [12] is 
solved by using a finite volume method. Either a first order upwind method or 
second order Van Leer advection algorithm (Van Leer, 1977) can be used to solve 
Equation [12]. The advection method is successively applied for the conservative 
variables: mass, momentum and energy with initial condition 0φ (x), which is the 
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solution from the Lagrangian calculation of equations [8]-[9] at the current time. In 
Equation [12], the time t is a fictitious time: in this paper, time step is not updated 
when solving for the transport equation. There are different ways of splitting the 
Navier-Stokes problems. In some split methods, each of the Stokes problem and 
transport equation are solved successively for half time step. 

2.2. Multi-material ALE formulation 

Problems, in which interfaces between different materials are present, are more 
easily modelled by using a Lagrangian method. However if the analysis involves 
large material deformation, the distortion of the Lagrangian mesh makes such a 
method difficult to use. Many re-meshing steps could be necessary for the 
Lagrangian calculation to continue. Another method to use is the multi-material ALE 
formulation. The relaxation technique presented in this work is mainly designed for 
this formulation. The multi-material formulation is a method that allows more than 
one material in each cell. It is powerful by the fact that complex geometries can be 
described without an element grid matching the material interface. The multi-
material concept is used in many hydrocodes, but its implementation is more 
complex than a single material formulation. Also the memory requirement is higher, 
since each cell must be prepared to store more than one set of state variables. The 
multi-material method involves dealing with two new issues: the interface tracking 
and the advection of fluid materials across element boundaries.  

There are several methods to treat the free surface in a fluid problem; the 
common one is the VOF (Volume Of Fraction) method, which is attractive for 
solving a broad range of non-linear problems in fluid and solid mechanics, because it 
allows arbitrary large deformations and enables free surfaces to evolve. The 
Lagrangian phase of the VOF method is easily implemented in an explicit ALE finite 
element method. Before advection, special treatment for the partially voided element 
is needed. An element containing a material interface is partially filled and the 
volume fraction satisfies 1≤fV . In order to compute accurately the position of the 

material interface, interface-tracking algorithm is performed before the remesh 
process and advection phase. A possible way of tracking interfaces is the use of the 
volume fractions of the elements, or the Young method (Young, 1982). In this 
method, the material layout is described solely by the volume fraction of the fluid 
material in the element. Specifically, a plane approximates the interface in the cell. 
Then nodal volume fractions are computed to each node based on the fraction 
volumes of elements that share the same node. The nodal volume fractions determine 
the slope of the material interface inside the element. The position of the interface is 
then adjusted so that it divides the element into two volumes, which correctly 
matches the element volume fraction. 

The interface position is used to calculate the volume of the fluid flowing across 
cell sides. As the X-advection, Y-advection and Z-advection are calculated in 
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separate steps, it is sufficient to consider the flow across one side only by taking the 
interface position into account. The fluxes of conservative variables for each 
material are computed by evaluating the volumes given by the intersection of the 
material interface and the total volume of the flux transported to the adjacent 
element. 

3. Fluid – porous structure interaction 

The ALE relaxation technique presented in this section is a general method for 
structured and unstructured meshes in one-, two- and three-dimensional contexts. 
The method has been implemented and tested in the explicit Finite Element code LS-
DYNA®, which uses the second order accurate central difference scheme for the 
time integration. To fully enjoy the benefits of an explicit time integration scheme, 
the mass is assumed concentrated at the nodes. This leads to a diagonal mass matrix, 
which greatly simplifies the relation between nodal forces and accelerations.  

3.1. Lagrangian phase 

In the Lagrangian phase of a cycle, the solution is advanced from nt  to 1+nt , 

without any iterations and without solving any global equation systems. For 

numerical stability reasons, the magnitude of the time step, 1+∆ nt , is limited by the 

highest eigenfrequency of the system or by flux limits in the advection algorithm. To 

save memory, a staggered scheme in time is used. Velocities are computed at 2/1+nt  

and accelerations and coordinates at 1+nt . Knowing the mass nm  of the node and 

the force 
n

f  acting on it, the acceleration is easily computed by Equation [13]: 

n

n
n

m

f
a =  [13] 

Once the acceleration is computed, the material velocity can be updated by 
Equation [14]:  
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Subsequently the Lagrangian node coordinate at 1+nt  is computed by Equation 

[15]: 

12/11
. +++
∆+= nnn

r
n

tvxx  [15] 

1+n
x is the updated Lagrangian node coordinate at 1+nt  and 

n
rx  is the relaxed node 

coordinate after the advection phase at nt . Note that, in a pure Lagrangian 

formulation there is no modification of the node coordinate during the mesh 

relaxation and 
nn

r xx = . 

3.2. Mesh relaxation phase 

For some problems, the element grid after the Lagrangian phase is rather 
distorted and a mesh relaxation phase is necessary to prevent a dropping time step 
size and, eventually, a negative Jacobian of some elements. Working with an 
Eulerian description of motion, the relaxation becomes trivial. It is a special case of 
the ALE formulation, where the mesh is moved back to its initial configuration. That 

is 
0

xx
n
r = . Relaxation algorithms used in most explicit codes, to handle more 

general situations, are linear combinations of the equipotential, simple average and 
volume average methods, as described in (Souli, 2000). The problem of the classical 
ALE formulation for shock and pressure wave problems is maintaining a fine mesh 
near the shock. Most of the methods for grid relaxation, the Winslow method 
developed in (Winslow, 1967), the Winslow-Crowley or the modified Winslow-
Crowley grid relaxation algorithms developed in (Winslow, 1967) and implemented 
in hydrocodes, tend to control the grid spacing and produce a nearly uniform mesh in 
spherical and rectangular domains. There is a dominant reason for the lack of 
powerful mesh relaxation schemes suitable for the context of explicit time 
integration schemes. A good method should, if possible, not require the solving of 
large equation systems every time step. That would slow down each time integration 
cycle and eliminate the advantages of an explicit time integration scheme. The 
method proposed in this work does not involve any equation systems and it is easily 
implemented in existing Finite Element codes. The method is a simple function that 
operates on the configuration produced by an arbitrary relaxation scheme. To better 
capture the physics in the vicinity of shock fronts, the function delays the mesh 
relaxation. 
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n
rx  is a node coordinate provided by a mesh relaxation algorithm operating on the 

Lagrangian configuration at nt  and η  is a relaxation delay parameter. A key issue is 

how to define η . The case 0=η  produces a pure Lagrangian formulation and 

1=η  involves a pure Eulerian formulation. There are essentially two positive effects 

from forcing the mesh to partially follow the shock wave. Firstly, the mesh will 
contract in regions of large pressure gradients, which is beneficial for the accuracy in 
the Lagrangian phase of the simulation. Secondly, minimizing the advective fluxes in 
high gradient regions reduces dissipation and dispersion errors in the advection 
phase. 

4. Numerical application  

The performance of the proposed mesh relaxation scheme has been put to the test 
in a model of a mild steel plate subjected to a explosive blast loading, for which the 
experimental pressure loading was measured in (Boyd, 2000). The purpose is to 
compare the numerical pressure loads for different relaxation parameters η  with the 
experimental pressure measured by a gauge at 100mm away from the center of the 
steel plate. This latter is a 1000mm square with a 5mm thick, which is clamped on 
the borders. The explosive is a sphere of Pentolite weighing 250 g, which is centrally 
detonated at 250mm away from the plate.  

 

 

Figure 1. Mesh at st µ0=  
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The mesh with three planes of symmetry is presented on Figure 1. The air mesh 
is a Cartesian ALE grid with a cubic mesh size of 1cm. The volume fraction of the 
explosive (Aquelet, 2005) is computed in the air mesh so that the explosive be a 1/8th 
of sphere with a radius of 32.9mm. The ignition point is applied at the center of the 
sphere. The high explosive material was modeled with the JWL (Jones-Wilkins-Lee) 

equation of state, which defines the pressure hep with the Equation [17]: 
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where A , B , 1R , 2R ,ω  are experimental constants. E  is the specific internal 

energy in the material and heheV ρρ /0= is a ratio of the initial density and the
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modeled in this work are given in Table 1. In this table heE0  is the initial specific 

internal energy, D  is the detonation velocity and cjP  is the Chapman Jouget 

pressure. 
 

Table 1. Pentolite properties 
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The air was modeled as an ideal gas and its pressure airp  can be expressed by 

Equation [18]: 
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ρ
γ −=  [18] 



A delayed remap technique in ALE methods     475 

with 4.1=γ . The air was initialized to a pressure of Bar1 by setting the initial 

internal energy to BarE air 5.20 =  and the initial density to 
33

0 .1029.1 −−×= cmgairρ . 

The structure is a composed of square shells with the same size. On Figure 1 the 
nodes at the interface of the air and structure meshes are tied in order to handle the 
fluid-structure interaction.  

Figures 2 and 3 present a Lagrangian approach. The deformation pattern was too 
complex to be handled by a pure Lagrangian formulation and comparing simulations 
could not be performed as seen on Figure 3 where the mesh is highly distorted at 

st µ50= . The Lagrangian calculation stops with a negative volume error. The 

obtained ALE results, shown in Figures 4 and 5, qualitatively display the mesh 
refinement in the vicinity of large pressure gradient regions at st µ50= . The volume 

fraction of explosive gas shown in Figure 4 can be compared to Figure 3 for the 
Lagrangian approach. The mesh is more regular on Figure 4 than Figure 3. Figures 
5, 6 and 7 show the pressure distribution at st µ50=  before the reflection against the 

steel plate, st µ100= during the reflection, and st µ150=  after the reflection. It is 

noticeable that the mesh is strongly refined in regions of large pressure gradients in 
the reflected wave. 

Figure 2. Initial Lagrangian mesh 
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Figure 3. Lagrangian mesh: volume fraction at st µ50=  

 

Figure 4. ALE mesh: volume fractions at st µ50=  
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Figure 5. ALE mesh: shock wave at st µ50=  

Figure 6. ALE mesh: shock wave at st µ100=  

A good relaxation scheme should manage to keep the mesh distortions on an 
acceptable level, while at the same time allow the mesh to follow the shock waves as 
well as possible. The issue is to adjust the relaxation parameter η . A small η  can 
give an accurate result for the pressure. However if the mesh is too distorted in the 
vicinity of the shock, the computation will be jeopardized. A large η  can preserve 
the regularity of the mesh but if the mesh is too coarse, the dissipative errors in the 
pressure will be too important. To give a range of acceptable values for η  a 
parametric study is presented on Figure 7 and Table 2. The table presents the 
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numerical pressure peak at 100mm away from the center of the plate, the time of 
arrival of the peak and the computational elapsed time for different relaxation 
parameters, while Figure 8 compares the numerical pressure histories. The last row 
of Table 2 is the experimental pressure peak and time of arrival given by the report 
(Boyd, 2000). The calculations were run on a AMD Opteron® processor 252.  

Figure 7. ALE mesh: shock wave at st µ150=  

Figure 8. Numerical pressures for different relaxation parameters 
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Table 2. Numerical and experimental results 

Relaxation 
parameterη  

Pressure peak 
)(MPa  

Time of 
Arrival )( sµ  

Elapsed time 

1 9.9 126.5 4min-21sec 

0.1 12.7 119 5min-6sec 

0.01 16.9 105 13min-32sec 

0.001 29.5 102.9 1h-16min-56sec 

0.0001 31.3 103.2 11h-2min-39sec 

 Experimental data 40.0 100 - 

 

Table 2 shows that the smaller the relaxation parameter η  is, the closer to the 

experimental data the numerical results are. However the law is not linear because 
the results for 001.0=η  and 0001.0=η  are very close each other in respect with 

the other results. On Figure 8 the curves for 001.0=η  and 0001.0=η  are close, 

while the other pressure histories are disparate. The range of acceptable η  for this 

problem should be between 001.0=η  and 0001.0=η . Nevertheless the 

computational elapsed time for 0001.0=η  is ten times longer than the one 

001.0=η  and the run for 0001.0=η  terminates with a negative volume error. The 

suitable values of the relaxation parameter for this problem are around 001.0=η .  

5. Conclusion 

This paper has introduced a technique for delaying the mesh relaxation in ALE 
applications. The new method is an efficient tool for the treatment of shock waves. The 
function delaying the relaxation is simple and easily implemented in existing Finite 
Element codes. Delaying the mesh relaxation makes the description of motion more 
“Lagrange like”, contracting the mesh in the vicinity of the shock front. This is 
beneficial for the numerical accuracy, in that dissipation errors are reduced. Away from 
the shock, the method relaxes the mesh to eventually behave more as an Eulerian or a 
classical ALE equipotential method. The exact definition of the relaxation parameter is 
a issue for general applications of shock wave. However a good value of this parameter 
should be smaller than 0.01. The numerical application showed that the suitable 
relaxation parameter for the problem should be around 0.001.  
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